Differenslikninger. Inger Christin Borge. Matematisk institutt, UiO. Kompendium 2 i MAT1001 Matematikk 1. Høsten 2008

Størrelse: px
Begynne med side:

Download "Differenslikninger. Inger Christin Borge. Matematisk institutt, UiO. Kompendium 2 i MAT1001 Matematikk 1. Høsten 2008"

Transkript

1 Differenslikninger Kompendium 2 i MAT1001 Matematikk 1 Høsten 2008 Inger Christin Borge Matematisk institutt, UiO

2 Forord Trilogien fortsetter, og du tar nå fatt på Kompendium 2 i MAT1001. Her skal vi ta for oss det andre temaet i kurset, nemlig Differenslikninger (herunder følger, grenseverdier, komplekse tall, enkel grafteori, trær, nettverk og boolsk algebra). Utgangspunktet for stoffvalg og presentasjon har vært som i Kompendium 1 om lineære likningssystemer; 2MX eller 2MY og 3MY, og vi fortsetter å bake inn matematikken du har med fra videregående i en større sammenheng. Sørg fortsatt for å repetere stoff fra videregående så fort det dukker opp ting du føler du ikke husker godt nok! Løsningene til differenslikninger er tallfølger, og vi starter med å se litt nærmere på tallfølger. Deretter tar vi for oss visse typer differenslikninger i tur og orden, bare avbrutt av et kapittel om komplekse tall og trigonometri. Dette vil vi trenge for å kunne løse og studere spesielle differenslikninger. Anvendelser av differenslikninger tar vi underveis, og vi avslutter med et kapittel der vi innfører noen flere matematiske objekter som passer inn i denne sammenhengen, og som det kan være meget nyttig å kjenne til. Kapittelet heter Trær og nettverk, og vi ser på et eksempel der vi kobler såkalte trær med noen spesielle tallfølger, og et annet eksempel der vi bruker såkalt boolsk algebra til å studere nevrale nettverk. Underveis i teksten gis det mange eksempler, og dessuten vil du få beskjed om å sjekke, tegne tegninger og regne ferdig i endel eksempler. Det er veldig viktig at du gjør dette mens du studerer teksten. Bak i kompendiet vil du finne oppgavesamling. Vi har prøvd å grave frem tidligere eksamensoppgaver i dette temaet også, og de kommer i kronologisk rekkefølge. Vi fant imidlertid ikke like mange tidligere eksamensoppgaver i dette emnet som i de to andre, så vi har dermed laget endel større oppii

3 gaver i oppgavesamlingen, spesielt med hensyn på stoff som ikke dekkes i tidligere eksamensoppgaver. Oppgavene varierer i vanskelighetsgrad, og noen er markert Ekstra vanskelig. Vårt motto er som før: Jobb med alle oppgavene og søk hjelp etterhvert! Fortsatt lykke til! Mine medspillere Erik Bédos, Arne B. Sletsjøe og Elisabeth Seland har fortsatt sine kontinuerlige innspill og kommentarer. Også her har Dina Haraldsson og Kari T. Hylland vært til stor hjelp med henholdsvis tidligere eksamensoppgaver og treningsoppgaver. Tusen takk alle sammen! Også takk til Tom Lindstrøm for oppgave-innspill. Send gjerne trykkfeil og kommentarer til Blindern, august 2008 Inger Christin Borge iii

4 Innhold Notasjon vi 1 Tallfølger Tallfølger og konvergens Differenslikninger Om anvendelser av differenslikninger Nå skal du kunne Første ordens lineære differenslikninger Homogene likninger Løsningsmetode Konvergens av løsninger Anvendelser Inhomogene likninger Løsningsmetode Konvergens av løsninger Anvendelser Nå skal du kunne Komplekse tall og trigonometri Komplekse tall Vinkler og radianer Trigonometri Polarform Nå skal du kunne Andre ordens lineære differenslikninger Homogene likninger iv

5 4.1.1 Løsningsmetode Konvergens av løsninger Anvendelser Inhomogene likninger Løsningsmetode Konvergens av løsninger Anvendelser Nå skal du kunne Trær og nettverk Trær og Fibonacci-følgen Boolsk algebra og nettverk Nå skal du kunne A Oppgaver 115 A.1 Kapittel A.2 Kapittel A.3 Kapittel A.4 Kapittel A.5 Kapittel B Tidligere eksamensoppgaver 136 C Fasit og løsningsforslag 149 C.1 Kapittel C.2 Kapittel C.3 Kapittel C.4 Kapittel C.5 Kapittel C.6 Tidligere eksamensoppgaver D Støtte- og tilleggslitteratur 176 E Det greske alfabetet 177 F Norsk-engelsk ordliste 178 Register 182 v

6 Notasjon {} mengde element i N de naturlige tallene 1,2,3,... Z de hele tallene..., 2, 1, 0, 1, 2,... Q de rasjonale tallene (brøker) R de reelle tallene (tallinjen) med ordet tall menes et reelt tall R 2 det reelle planet R 3 det reelle rommet R n det n-dimensjonale rommet C de komplekse tallene avslutter et Bevis avslutter et Eksempel eller en Bemerkning vi

7 Kapittel 1 Tallfølger 1, 2, 3, 4, 5, 6, 7, 8,... Det andre temaet i kurset MAT1001 er differenslikninger. I en differenslikning er den ukjente en tallfølge. I dette kapittelet skal vi legge grunnlaget for resten av kompendiet ved å se litt nærmere på tallfølger og generelle differenslikninger. 1.1 Tallfølger og konvergens Tallfølger er noe av det første vi treffer i matematikken, for eksempel når vi lærer å telle. Definisjon 1.1 En tallfølge er en uendelig oppramsing av tall x 0, x 1, x 2,..., x n,.... En tallfølge betegnes ofte ved {x n } n=0 Tallene x 0, x 1,... kalles leddene i tallfølgen, og tallet x n kalles det n-te leddet (eller det generelle leddet). Vi kjenner igjen symbolet som uendelig. Den uendelige oppramsingen av en tallfølge angis som oftest ved en regel som sier hvordan det n-te leddet i tallfølgen ser ut. Regelen er gjerne gitt ved en formel (når vi setter inn en verdi for n i formelen, kan vi regne ut hva det n-te leddet er). 1

8 Eksempel 1.2 Tallfølgen 0, 1, 2, 3,..., n,... kan forkortet skrives {n} n=0, dvs. formelen for det n-te leddet er x n = n. Bemerkning 1.3 Noen ganger starter tallfølgen med et annet ledd enn det 0-te leddet, og vi skriver ofte {x n } for en tallfølge. Hvis x n er angitt ved en formel er det da underforstått at vi starter med det første leddet der formelen for x n gir mening. Hvis vi ønsker å studere en tallfølge som starter med det k-te leddet, skriver vi {x n } n=k. Vi vil ofte bruke ordet følge istedenfor tallfølge. Eksempel 1.4 Følgen 0, 1, 2, 3,..., n,... kan også angis ved {n 1} n=1. Eksempel 1.5 Følgen { 1 } = 1, 1, 1,..., 1,... har det n-te leddet gitt ved n 2 3 n 1. Vi kan ikke sette inn n = 0 (siden vi ikke kan dele på 0), så det første n leddet i følgen her er x 1 = 1 = 1. 1 Vi har allerede møtt flere eksempler på følger i populasjonsdynamikken: Eksempel 1.6 I eksempelet om PiggAv-ordningen i Kompendium 1 fant vi at andel bilister som kjører piggfritt i år n etter 1990 er (tilnærmet) x n = 73 73(0.63) n (1.1) og andel som kjører med pigg i år n etter 1990 er (tilnærmet) y n = (0.63) n. (1.2) Dette er eksempler på to følger {x n } og {y n } der formlene for det n-te leddet er gitt ved henholdsvis (1.1) og (1.2). Vi regnet ut de 18 første leddene i hver av disse følgene i Kompendium 1. Vi tar med et par spesielle følger vi skal møte som har egne navn: En konstant følge er en følge der alle leddene er like, for eksempel følgen {7} = 7, 7, 7, 7,... 2

9 En alternerende følge er en følge der leddene har alternerende fortegn, dvs. fortegnet skifter fra et ledd til det neste. Vi gjenkjenner en alternerende følge ved at det n-te leddet har ( 1) n som faktor. For eksempel {( 1) n } = 1, 1, 1, 1, 1,... eller { ( 1)n n } = 1, 1 2, 1 3, 1 4, 1 5,... Siden en følge er en uendelig oppramsing, kan det være naturlig å stille spørsmålet: stopper følgen? Mer presist spør vi oss da om leddene x n i følgen nærmer seg et tall når n går mot uendelig (n blir større og større). Dette har vi allerede sett på i Kompendium 1: Eksempel 1.7 I Kompendium 1 så vi at følgene {x n } (1.1) og {y n } (1.2) (PiggAv-eksempelet) nærmer seg tallene x = 73 og y = 27, dvs. disse følgene stopper opp. Vi bruker språket vi innførte i Kompendium 1: Definisjon 1.8 Følgen {x n } konvergerer mot tallet x hvis leddene i følgen nærmer seg x når n går mot uendelig. Vi sier at grenseverdien til tallfølgen {x n } er x og skriver lim x n = x. n Hvis leddene i følgen ikke nærmer seg et bestemt tall når n går mot uendelig sier vi at følgen divergerer. Bemerkning 1.9 Det at leddene i følgen nærmer seg et tall x når n går mot uendelig betyr litt mer presist at bare n er stor nok, så kan vi få alle leddene i følgen fra denne n-en av til å være så nærme x vi bare vil. Eksempel 1.10 Følgen {n} i Eksempel 1.2 stopper ikke opp: Siden n blir så stor vi bare vil bare n er stor nok, dvs. lim n n =, så er {n} divergent. 3

10 Følgen { 1 } i Eksempel 1.5 stopper opp, siden leddene går mot 0, dvs. n 1 lim n n = 0. Dette betyr at vi kan få leddene i følgen { 1 } til å være så nærme 0 vi n bare vil, bare n er stor nok. For eksempel, hvis vi ønsker at leddene 1 skal ha avstand høyst minst fra 0, kan vi få til det ved å la n være Den konstante følgen {a} = a, a, a,... konvergerer mot a. I den alternerende følgen {( 1) n } hopper leddene frem og tilbake mellom 1 og 1, så denne følgen divergerer. Derimot konvergerer { ( 1)n n } mot 0 selv om leddene skifter fortegn fra et ledd til neste. 1.2 Differenslikninger Når vi har en formel for det n-te leddet i en følge, kan vi regne ut alle leddene (hvis vi ønsker) og vi kan ofte bestemme om den konvergerer eller divergerer. I anvendelser der en følge er løsning på et problem, får vi ofte oppgitt følgen på en annen måte, nemlig som en differenslikning (vi sparer forkor-telsen difflikning til vi kommer til Kompendium 3 og emnet Differensiallikninger): Eksempel 1.11 Den italienske matematikeren Leonardo Pisano (ca ), bedre kjent som Fibonacci, er blitt viden kjent for sin kaninmodell. Han beskrev utviklingen av en kaninpopulasjon som vokser etter følgende enkle prinsipp: Hvert par av kaniner føder et nytt par kaniner hver måned og de begynner med det når de er to måneder gamle. La oss anta at vi starter med ett par kaniner (og at vi ser bort fra at kaniner dør etterhvert!). Måneden etter har vi fortsatt bare ett par, men så begynner det å skje ting. Etter to måneder har det første paret fått barn og vi har to par kaniner, måneden etter får de et nytt par kaniner, mens de eldste ungene enda ikke har begynt å få unger slik at vi da har tre par kaniner. 4

11 Etter tre måneder får også de førstefødte ungene unger og tilveksten blir to par. Til sammen har vi da fem par kaniner. Vi kan lage en generell beskrivelse av det som skjer. Vi lar x n være antall kaniner etter n måneder. Da har vi likningen x n+2 = x n+1 + x n, n 0, (1.3) som vi kan forklare slik: Antall kaniner etter n+2 måneder består av samtlige kaniner vi hadde forrige måned (x n+1 ), i tillegg til at alle kaniner som levde for to måneder siden har fått unger og derfor tilført et tilsvarende antall (x n ) nye kaninpar. Starter vi med x 0 = x 1 = 1 får vi den såkalte Fibonacci-følgen 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987,... (1.4) Hvert ledd i følgen fremkommer altså som summen av de to foregående leddene: osv. x 2 = x 1 + x 0 = = 2, x 3 = x 2 + x 1 = = 3, x 4 = x 3 + x 2 = = 5, x 5 = x 4 + x 3 = = 8, Likningen (1.3) er et eksempel på en differenslikning. Vi kan strengt tatt regne ut alle leddene i følgen (kalt Fibonacci-tallene) ved hjelp av likningen, men da må vi starte fra x 0 og x 1 og regne oss oppover. Hvor mange kaniner er det etter 4 år (48 måneder)? Hadde vi hatt formelen for denne følgen, kunne vi bare ha satt inn n = 48 istedenfor å regne ut alle de foregående leddene før vi kom til x 48. Det er ikke helt enkelt å se for seg hva slags formel som beskriver det n-te leddet i denne følgen, men det viser seg at Fibonacci-følgen er beskrevet av formelen x n = 5 5 [(1 + 5 ) n+1 ( 1 5 ) n+1 ]. (1.5) 2 2 Du synes kanskje ikke det blir noe enklere å sette inn n = 48 i denne formelen? 5

12 Men er det ikke litt rart at dette uttrykket med flere rottuttrykk er et helt tall (antall kaniner) hver gang vi setter inn et naturlig tall n? Sjekk dette for noen verdier (f.eks. at n = 2 gir 2)! Vi skal utlede formelen (1.5) senere i kompendiet. Definisjon 1.12 En differenslikning (for en følge) er en likning som angir hvordan hvert ledd i en følge (fra et visst ledd av) kan beregnes ved hjelp av de foregående leddene i følgen. Hvis man bare trenger de k foregående leddene (der k N) kalles den en k-te ordens differenslikning. For eksempel er (1.3) en andre ordens differenslikning: (1.3) sier jo at hvert ledd (fra ledd 2 og oppover) fås ved å addere de to foregående leddene. Det vil være uendelig mange følger som oppfyller likningen (1.3). I tillegg til Fibonacci-følgen vil for eksempel følgen 1, 3, 4, 7, 11, 18, 39,... også oppfylle likningen (1.3) (finn flere!). Eksempel 1.13 Likningen x n+1 = 3x 2 n n + 1, n 0, er en første ordens differenslikning. Hvis x 0 = 1 er da x 1 = = 4, x 2 = = 48, x 3 = = 6911, osv. en følge som oppfyller likningen. Det fins et hav av interessante differenslikninger som dukker opp i anvendelser. I MAT1001 skal vi stort sett studere differenslikninger av en bestemt type, nemlig de lineære: Definisjon 1.14 La k N. En k-te ordens lineær differenslikning (med konstante koeffisienter), er en likning på formen x n+k = a 1 x n+k 1 + a 2 x n+k a k x n + f(n), n 0, (1.6) der a 1,..., a k er reelle tall, f(n) er et gitt uttrykk i n og a k 0 (ellers ville likningen ha hatt lavere orden). 6

13 Det at a 1,..., a k alle er konstanter betyr at vi har konstante koeffisienter. Dersom a 1,..., a k tillates å avhenge av n vil likningen fremdeles være en k-te ordens lineær differenslikning, men disse mer generelle likningene skal vi ikke studere i MAT1001. Eksempel 1.15 Likningen (1.3) x n+2 = x n+1 + x n er en andre ordens lineær differenslikning: vi har k = 2, a 1 = 1, a 2 = 1 og f(n) = 0 i (1.6). Eksempel 1.16 Differenslikningen x n+1 = 5x n, n 0 er en første ordens lineær differenslikning (der k = 1, a 1 = 5 og f(n) = 0 i (1.6)). Den sier at leddene i følgene som er gitt ved denne likningen fås ved å multiplisere det umiddelbart foregående leddet med 5. Ordet lineær (som vi så på i Kompendium 1) kommer fra at leddene i følgen skal opptre på lineær form (vi skal ikke ha noen av leddene i 2. potens for eksempel). Eksempel 1.17 Likningen fra Eksempel 1.13 er ikke lineær siden uttrykket x 2 n opptrer i likningen. Derimot er differenslikningen x n+2 = 3x n x n + n 2 + 2, n 0, (1.7) lineær (og andre ordens). Definisjon 1.18 Vi løser en differenslikning ved å finne alle følgene som oppfyller likningen. Disse tallfølgene utgjør den generelle løsningen til differenslikningen. 7

14 For de differenslikningene vi skal møte i MAT1001 kan den generelle løsningen angis ved en formel for det n-te leddet: Eksempel 1.19 Differenslikningen x n+1 = 5x n, n 0 i Eksempel 1.16 har uendelig mange løsninger. For eksempel 1, 5, 25, 125, 625,... og 2, 10, 50, 250,.... Den generelle løsningen (som vi skal lære å finne) vil være alle følger {x n } slik at x n = C 5 n, for en C R (og alle n 0). Vi skriver vanligvis bare at den generelle løsningen er x n = C 5 n, C R (underforstått alle følger {x n } slik at x n =... ). Definisjon 1.20 Når vi plukker ut en av løsningene i den generelle løsningen, kaller vi denne løsningen en spesiell løsning (også kalt en partikulær løsning). Vi er ofte interessert i å finne én spesiell løsning, som er bestemt av at vi vet noe om de første leddene i følgen. Definisjon 1.21 En k-te ordens differenslikning der vi i tillegg vet verdiene på de k første tallene i følgen kalles en differenslikning med k initialbetingelser. Hvis vi har en k-te ordens differenslikning med k initialbetingelser vil vi alltid ha nøyaktig én løsning, siden vi da kan regne oss oppover og finne 8

15 alle leddene i denne spesielle følgen. Problemet da er at denne prosessen er tidkrevende, og at vi helst vil ha en formel for det n-te leddet, for eksempel for å kunne avgjøre om følgen konvergerer eller ikke. Eksempel 1.22 Likningen x n+2 = x n+1 + x n, x 1 = 1, x 2 = 1 er en andre ordens lineær differenslikning med to initialbetingelser, og det er kun én følge i hele verden som oppfyller dette, nemlig Fibonacci-følgen. Eksempel 1.23 Likningen x n+1 = 5x n, x 0 = 2 er en første ordens lineær differenslikning med én initialbetingelse, og følgen {x n } = 2, 10, 50,..., 2 5 n,... er den eneste løsningen til denne likningen. La oss ramse opp noen flere eksempler på differenslikninger: a) x n+1 = 4x n 7 n b) x n+2 x n = π c) x n+3 = x n+2 ln(n 2 + 1) + x n+1 3nx n Når vi skal igang med å løse differenslikninger, skal vi som sagt begrense oss litt, for eksempel skal vi ikke studere likningen gitt i c) ovenfor, og heller ikke løse likningen gitt i a). Derimot skal vi lære å finne alle løsninger til likning b). Det fins differenslikninger som er uløselige (i den forstand at man ikke vet hvordan man kan angi en formel for det generelle leddet). I MAT1001 skal vi lære å løse, og se på anvendelser av, følgende differenslikninger første ordens lineære homogene differenslikninger 9

16 noen typer første ordens lineære inhomogene differenslikninger andre ordens lineære homogene differenslikninger noen typer andre ordens lineære inhomogene differensliknigner Med lineære mener vi her alltid lineære med konstante koeffisienter. Ordet homogen traff vi også på i Kompendium 1. Det har en helt analog betydning her: Definisjon 1.24 En lineær differenslikning av typen (1.6) kalles homogen hvis f(n) = 0. Hvis f(n) 0 kalles likningen inhomogen. Eksempel 1.25 Likningen (1.7) er en andre ordens lineær inhomogen differenslikning, mens likningen i Eksempel 1.16 er en første ordens lineær homogen differenslikning. Vi skal ta for oss de ulike typene likninger i tur og orden. 1.3 Om anvendelser av differenslikninger For hver type differenslikning vi skal lære å løse vil vi ta for oss anvendelser. Da kan det være fint å ha følgende bemerkninger i bakhodet: Problemene vi skal studere i dette kompendiet vil gi opphav til en differenslikning der løsningen er en tallfølge. I denne typen problemer studerer vi et fenomen som skjer i milepæler (adskilte tidsrom), noe som kan måles i hver generasjon n der n er et naturlig tall. Vi har da at hvert ledd x n i tallfølgen vil svare til fenomenets tilstand i generasjon n, kort sagt leddet x n svarer til n-te generasjon. Antagelsen om adskilte tidsrom har vi allerede møtt i Kompendium 1, i populasjonsdynamikken. Her så vi på dynamikken mellom flere (under)populasjoner, som ga oss et system av likninger som kunne løses ved hjelp av matriser. Systemene vi møtte der er systemer av differenslikninger. Nå skal vi studere én differenslikning / ett fenomen om gangen. 10

17 Vi har brukt anførselstegn rundt generasjon siden det er et ord som naturlig hører til begrepet populasjon. I fenomenene vi nå skal studere, som for eksempel kan være utviklingen av en populasjon eller en ball som spretter opp og ned, tenker vi generelt på en generasjon som tidsrommet mellom hver milepæl. For eksempel vil et fenomen der det samme forholdet mellom tre etterfølgende generasjoner gjentas i det uendelige gi opphav til en andre ordens differenslikning (som for Fibonaccis kaniner). 1.4 Nå skal du kunne definisjonen av en tallfølge og vite hva det vil si at en tallfølge konvergerer eller divergerer definisjonen av en konstant tallfølge, alternerende tallfølge og Fibonaccifølgen forklare Fibonaccis kaninproblem og hvor Fibonacci-tallene kommer fra definisjonen av en differenslikning, herunder begrepene orden, lineær, konstante koeffisienter, homogen og inhomogen, og gi eksempler på ulike typer differenslikninger med hensyn på disse begrepene forskjellen på den generelle løsningen og en spesiell løsning av en differenslikning glede deg til fortsettelsen! 11

18 Kapittel 2 Første ordens lineære differenslikninger 2.1 Homogene likninger Et av de enkleste eksemplene på en følge fås ved å starte med et tall og for hvert nytt ledd multiplisere det forrige leddet med et fast tall. Denne måten å lage en følge på er den første differenslikningen vi skal se på. Definisjon 2.1 En første ordens lineær homogen differenslikning er en differenslikning på formen x n+1 = rx n, n 0 (2.1) der r er et reelt tall forskjellig fra 0. Bemerkning 2.2 Merk at (2.1) passer inn i den generelle formen for en homogen lineær differenslikning i Definisjon 1.24 med k = 1 og a 1 = r. Likning (2.1) kan også skrives på formen x n+1 rx n = 0. (2.2) I oppgaver vil du møte disse likningene enten på formen (2.1) eller (2.2). Vi tar utgangspunkt i formen (2.1). Vi bemerker også at når vi dropper n 0 er det underforstått at det første leddet er x 0. 12

19 Eksempel 2.3 Likningen 3x n+1 = 2x n, n 0 er en første ordens lineær homogen differenslikning siden den kan skrives på formen (2.1) ved å dividere med 3 på hver side: x n+1 = 2 3 x n. De to første leddene i denne følgen er x 0 og x 1 = 2x 3 0. En mulig løsning av likningen kan derfor starte med leddene 1 og 2 (når x 3 0 = 1), mens en annen løsning kan starte med leddene 3 og 2 (når x 0 = 3). Eksempel 2.4 Likningen x n+1 = 2x n, n 0 er en første ordens lineær homogen differenslikning. Leddene i følgene som oppfyller denne likningen fås ved å multiplisere det umiddelbart foregående leddet med 2. Hvis vi starter med x 0 = 1, får vi x 0 = 1 x 1 = 2x 0 = 2 1 = 2 x 2 = 2x 1 = 2 2 = 4 x 3 = 2x 2 = 2 4 = 8 x 4 = 2x 3 = 2 8 =

20 Starter vi imidlertid med x 0 = 3, får vi 2 x 0 = 3 2 x 1 = 2x 0 = x 2 = 2x 1 = 2 3 = 6 x 3 = 2x 2 = 2 6 = 12 x 4 = 2x 3 = 2 12 = 24. To mulige løsninger av likningen x n+1 = 2x n er altså følgene som starter med henholdsvis leddene 1, 2, 4, 8, 16,... og 3, 3, 6, 12, 24, Løsningsmetode La oss se hvordan vi finner alle løsningene til likningene på formen (2.1). Vi skal finne følger der leddene fås ved å multiplisere det umiddelbart foregående leddet med r. Hvis vi kaller det første leddet for x 0, får vi x 0 x 1 = rx 0 x 2 = rx 1 = r(rx 0 ) = r 2 x 0 x 3 = rx 2 = r(r 2 x 0 ) = r 3 x 0. Vi øyner nå et system som ser ut til å fortsette og gi at x n er gitt ved x n = r n x 0. Vi kan sjekke dette ved innsetting: Hvis x n = r n x 0, n 0, er da x n+1 = r n+1 x 0 = r(r n x 0 ) = rx n. Det n-te leddet i følgen er altså x n = r n x 0. Siden det første leddet x 0 kan være hvilket som helst tall, får vi uendelig mange løsninger (en for hvert valg 14

21 av x 0 ), og formelen x n = r n x 0 vil gi oss den generelle løsningen til en første ordens lineær homogen differenslikning. For å presentere den generelle løsningen, kaller vi x 0 for C, der C R. Da får vi at (vi setter C-en foran r n istedenfor bak, siden det ser penere ut): Teorem 2.5 Den generelle løsningen til en første ordens lineær homogen differenslikning x n+1 = rx n er følgene x n = Cr n, C R. (2.3) Husk at når vi velger en verdi for C, eventuelt når vi er gitt en initialbetingelse og bruker den til å regne ut C, så får vi en spesiell løsning. Bemerkning 2.6 Grunnen til at vi innførte en generell konstant C for x 0 er at det ikke spiller noen rolle om n 0, n 1 eller n k i Teorem 2.5. Den generelle løsningen kan alltid angis ved (2.3). Eksempel 2.7 For å løse likningen x n+1 = 2 3 x n, n 0 (2.4) setter vi inn 2 3 for r i (2.3), og får generell løsning x n = C( 2 3 )n, C R. Hvis for eksempel C = 1, får vi den spesielle løsningen {( 2 3 )n } = 1, 2 3, 4 9, 8 27,... Hvis vi ønsker en følge som oppfyller likningen (2.4) og i tillegg betingelsen x 1 = 3, finner vi denne ved å regne ut C: Betingelsen x 1 = 3 gir at C 2 3 = 3, 15

22 dvs. C = 9, dermed får vi den spesielle løsningen 2 {( 9 2 )(2 3 )n } = 9 2, 3, 2, 4 3,... Eksempel 2.8 Likningen x n+1 = 2x n, n 0 i Eksempel 2.4 har generell løsning x n = C 2 n, C R. Setter vi C = 1 for vi den spesielle løsningen x n = 2 n = 1, 2, 4, 8, 16, 32,..., mens C = 3 2 gir den spesielle løsningen x n = ( 3 2 )2n = 3, 2, 6, 12, 24, Konvergens av løsninger Hva skjer når n går mot uendelig for følgene som er løsninger av første ordens lineære homogene differenslikninger? Løsningene er på formen og grenseverdien vil avhenge av hva C og r er. x n = Cr n, lim x n = lim Cr n n n Vi minner om at dere har sett dette i 2MX i forbindelse med eksponen- 16

23 tialfunksjoner. Selv om vi nå ser på følger, og ikke funksjoner, vil følger og funksjoner oppføre seg likt med hensyn på å vokse og avta. Konstanten C er lik x 0, som er det første tallet i følgen, så vi kan anta at C 0 (ellers er følgen lik 0, 0, 0,...). Leddene i følgen multipliseres med r for hvert ledd, og hvis dette tallet er mindre enn 1 i absoluttverdi (som skrives r < 1, dvs. 1 < r < 1, fra 2MX), vil leddene bli mindre og mindre, og det n-te leddet vil gå mot 0, noe du kan sjekke ved å eksperimentere litt med kalkulatoren. Hvis r er negativ, vil vi ha en alternerende følge der fortegnet skifter fra ledd til ledd, men leddene blir uansett mindre og mindre i absoluttverdi. Dermed konvergerer følgene mot 0 når r < 1 for alle C. Når r > 1, multipliserer vi med et tall større enn 1 i absoluttverdi for hvert ledd, så leddene blir bare større og større og nærmer seg uendelig. Igjen, hvis r er negativ, vil vi ha en alternerende følge, men leddene blir uansett større og større i absoluttverdi. Dermed divergerer følgene når r > 1 for alle C. Når r = 1, har vi den konstante følgen C, C, C,... som konvergerer mot C. Når r = 1 har vi den alternerende konstante følgen C, C, C, C,... som divergerer (siden C 0). Eksempel 2.9 Løsningene av likningen i Eksempel 2.7 var følgene x n = C( 2 3 )n. Siden r = 2 3 < 1, vil alle løsningene konvergere (mot 0). Følgende tabell oppsummerer denne seksjonen (vi antar at C 0): r < 1 r > 1 r = 1 r = 1 x n = Cr n konvergerer mot 0 divergerer konvergerer mot C divergerer 17

24 2.1.3 Anvendelser La oss se på et par eksempler på problemer som gir opphav til første ordens lineære homogene differenslikning (flere er gitt i oppgavene): Eksempel 2.10 TVBorge forsøker en nysatsning: Reality-TV-programmet 1001 NATT, der vi følger hverdagen til MAT1001-studentene på Blindern. Nysatsningen settes opp på sendeskjemaet hver dag. Antall seere måles hver dag, og vi lar x n være antallet seere den n-te dagen. Den første dagen er det stor oppslutning, og x 1 er svimlende seere! Dessverre viser det seg at interessen daler jevnt og trutt, og antall seere synker med 10% hver dag. TVBorge bestemmer seg for at programmet må tas av skjermen når antall seere er mindre enn Hvor mange dager er MAT1001-studentene TV-stjerner? Følgen {x n } som gir oss antall seere for hver dag vil oppfylle en differenslikning. Siden antallet synker med 10% hver dag, vil vi hver dag sitte igjen med 90% av de seerne vi hadde dagen før, dvs. følgen {x n } vil oppfylle likningen x n+1 = 0.9x n, n 1. (2.5) Dette er en første ordens lineær homogen differenslikning som har generell løsning x n = C(0.9) n, C R. Siden x 1 = , får vi = C 0.9, dvs. C = , så antall seere ved dag n er x n = (0.9) n. Vi vil vite hvilken dag vi har mindre enn seere, dvs. vi må finne n slik at vi har (0.9) n < Ved å dele på får vi ulikheten (0.9) n <

25 For å løse denne, bruker vi logaritmer. (Husk disse fra 2MX. Logaritmer brukes ofte, og spesielt i forbindelse med følger, som vi ser og har sett. Vi bruker den naturlige logaritmen ln, men kunne like godt ha brukt titallslogaritmen log.) Vi tar logaritmen på begge sider, og bruker regneregler for logaritmer som gir n ln(0.9) < ln(0.04) Siden ln til et tall mindre enn 1 er negativt, må vi snu ulikheten når vi deler med ln(0.9): Kalkulatorbruk gir nå n > ln(0.04) ln(0.9). n > 30.1, dvs. n = 31 gir færre enn seere, og MAT1001-studentene er TVstjerner ganske nøyaktig 1 måned! Tenk over dette og de neste eksemplene i sammenheng med det vi skrev i Seksjon 1.3! Neste eksempel viser litt om hvordan det jobbes og tenkes rundt mange av oppgavene dere får (ferdig servert). Vi sier også litt om modellering, noe vi skal si mer om i Kompendium 3. Eksempel 2.11 Vi skal nå studere hvordan en viss type bladlus formerer seg, nærmere bestemt arten pemphigus bursarius, eller poppel-punggallerotlus. De angriper bladene og røttene på salaten vi trenger til smørbrødene våre, men angrepene har faktisk ikke så stor betydning at denne bladlusa bør utryddes. Kort fortalt skjer følgende: På våren føder hunnen levende avkom (med vinger) inne i en galle på bladene på poppel(-trær). Når gallen åpnes flyr lusene til salatplantene. På høsten flyr de tilbake til poplene der de parrer seg, legger egg og overvintrer. Vi lurer på: Hvor mange avkom må hver hunn produsere under gitte betingelser for at ikke bladlusa utryddes? Bladlusa vil utryddes hvis antall hunnkjønn blir mindre og mindre for hver 19

26 generasjon. Dermed må vi først finne et uttrykk for antall hunnkjønn, og så analysere når dette uttrykket blir mindre og mindre. For å finne dette uttrykket må vi enten selv studere bladlusa eller hente inn informasjon fra noen som allerede har gjort det. Vi velger det siste siden vi jobber med matematikk. Det viser seg at alle avkom fra én hunn er inneholdt i én galle, hvorav en viss andel overlever og blir voksne. Hvor mange avkom som produseres og sannsynligheten for overlevelse er tall vi må anta noe om. Disse tallene er parametere (varierer innenfor problemet vi studerer) som vil avhenge av flere faktorer, som for eksempel miljøutfordringer og næringskvalitet. Det enkleste (og mest teoretiske) er å anta at disse tallene ikke forandres, dvs. vi velger en modell der parameterne er konstante. For å gjøre om alt dette til matematikk slik at vi kan regne og finne svar på det vi lurer på, må vi innføre noen symboler: Vi innfører først: x n : antall voksne hunnkjønn i generasjon n Dette er en følge som vi er interessert i og som vil avhenge av flere faktorer: antall avkom som produseres i generasjon n, andel av disse som overlever og andel hunnkjønn blant totalt antall voksne bladlus. Vi trenger dermed også: a n : antall avkom i generasjon n d: andel avkom som dør h: andel hunnkjønn av totalt antall voksne bladlus Da får vi en andel på 1 d som overlever, og antall hunnkjønn i generasjon n + 1 er x n+1 = h(1 d)a n+1. (2.6) Vi vil gjerne finne en differenslikning for følgen {x n }, så uttrykket for a n+1 må helst erstattes med noe, og det får vi til: Siden antall avkom avhenger av antall hunnkjønn i forrige generasjon og antall avkom per hunnkjønn, innfører vi r: antall avkom per hunnkjønn 20

x n+1 rx n = 0. (2.2)

x n+1 rx n = 0. (2.2) Kapittel 2 Første ordens lineære differenslikninger 2.1 Homogene likninger Et av de enkleste eksemplene på en følge fås ved å starte med et tall og for hvert nytt ledd multiplisere det forrige leddet med

Detaljer

Tallfølger er noe av det første vi treffer i matematikken, for eksempel når vi lærer å telle.

Tallfølger er noe av det første vi treffer i matematikken, for eksempel når vi lærer å telle. Kapittel 1 Tallfølger 1, 2, 3, 4, 5, 6, 7, 8,... Det andre temaet i kurset MAT1001 er differenslikninger. I en differenslikning er den ukjente en tallfølge. I dette kapittelet skal vi legge grunnlaget

Detaljer

Komplekse tall og trigonometri

Komplekse tall og trigonometri Kapittel Komplekse tall og trigonometri Grunnen til at vi har dette kapittelet midt i temaet Differenslikninger er for å kunne løse andre ordens differenslikninger. Da vil vi trenge å løse andregradslikninger.

Detaljer

Differenslikninger. Inger Christin Borge. Matematisk institutt, UiO. Kompendium 2 i MAT1001 Matematikk 1. Våren 2009

Differenslikninger. Inger Christin Borge. Matematisk institutt, UiO. Kompendium 2 i MAT1001 Matematikk 1. Våren 2009 Differenslikninger Kompendium 2 i MAT1001 Matematikk 1 Våren 2009 Inger Christin Borge Matematisk institutt, UiO Forord Trilogien fortsetter, og du tar nå fatt på Kompendium 2 i MAT1001. Her skal vi ta

Detaljer

Tiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver.

Tiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver. Kapittel 4 Anvendelser av lineære likningssystemer Tiden går og alt forandres, selv om vi stopper klokka Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver 4 Populasjonsdynamikk

Detaljer

Lineære likningssystemer og matriser

Lineære likningssystemer og matriser Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger

Detaljer

Avdeling for lærerutdanning. Lineær algebra. for allmennlærerutdanningen. Inger Christin Borge

Avdeling for lærerutdanning. Lineær algebra. for allmennlærerutdanningen. Inger Christin Borge Avdeling for lærerutdanning Lineær algebra for allmennlærerutdanningen Inger Christin Borge 2006 Innhold Notasjon iii 1 Lineære ligningssystemer 1 1.1 Lineære ligninger......................... 1 1.2 Løsningsmengde

Detaljer

Differenslikninger. Inger Christin Borge. Matematisk institutt, UiO. Kompendium 2 i MAT1001 Matematikk 1. Våren 2009

Differenslikninger. Inger Christin Borge. Matematisk institutt, UiO. Kompendium 2 i MAT1001 Matematikk 1. Våren 2009 Differenslikninger Kompendium 2 i MAT1001 Matematikk 1 Våren 2009 Inger Christin Borge Matematisk institutt, UiO Forord Trilogien fortsetter, og du tar nå fatt på Kompendium 2 i MAT1001. Her skal vi ta

Detaljer

Lineære likningssystemer

Lineære likningssystemer Kapittel 1 Lineære likningssystemer Jeg tenker på et tall slik at π ganger tallet er 12. 1.1 Lineære likninger Matematikk dreier seg om å løse problemer. Problemene gjøres ofte om til likninger som så

Detaljer

Komplekse tall og komplekse funksjoner

Komplekse tall og komplekse funksjoner KAPITTEL Komplekse tall og komplekse funksjoner. Komplekse tall.. Definisjon av komplekse tall. De komplekse tallene er en utvidelse av de reelle tallene. Dvs at de komplekse tallene er en tallmengde som

Detaljer

Sammendrag R1. Sandnes VGS 19. august 2009

Sammendrag R1. Sandnes VGS 19. august 2009 Sammendrag R1 Sandnes VGS 19. august 2009 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A

Detaljer

Sammendrag R1. 26. januar 2011

Sammendrag R1. 26. januar 2011 Sammendrag R1 26. januar 2011 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A B hvis to påstander

Detaljer

Rekurrens. MAT1030 Diskret matematikk. Rekurrens. Rekurrens. Eksempel. Forelesning 16: Rekurrenslikninger. Dag Normann

Rekurrens. MAT1030 Diskret matematikk. Rekurrens. Rekurrens. Eksempel. Forelesning 16: Rekurrenslikninger. Dag Normann MAT1030 Diskret matematikk Forelesning 16: likninger Dag Normann Matematisk Institutt, Universitetet i Oslo INGEN PLENUMSREGNING 6/3 og 7/3 5. mars 008 MAT1030 Diskret matematikk 5. mars 008 Mandag ga

Detaljer

Notater fra forelesning i MAT1100 mandag

Notater fra forelesning i MAT1100 mandag Notater fra forelesning i MAT00 mandag 3.08.09 Amandip Sangha, amandips@math.uio.no 8. august 009 Følger og konvergens (seksjon 4.3 i Kalkulus) Definisjon.. En følge er en uendelig sekvens av tall {a,a,a

Detaljer

Løsningsforslag til utvalgte oppgaver i kapittel 3

Løsningsforslag til utvalgte oppgaver i kapittel 3 Løsningsforslag til utvalgte oppgaver i kapittel 3 I dette kapittelet har mange av oppgavene et mindre teoretisk preg enn i de foregående kapitlene, og jeg regner derfor med at lærebokas eksempler og fasit

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

3.1 Første ordens lineære difflikninger. y + f(x)y = g(x) (3.1)

3.1 Første ordens lineære difflikninger. y + f(x)y = g(x) (3.1) Kapittel 3 Differensiallikninger 3.1 Første ordens lineære difflikninger Definisjon 3.1 En første ordens lineær difflikning er en likning på formen y + f(x)y = g(x) (3.1) der f og g er kjente funksjoner.

Detaljer

Komplekse tall: definisjon og regneregler

Komplekse tall: definisjon og regneregler Komplekse tall: definisjon og regneregler Eugenia Malinnikova, NTNU, Institutt for matematiske fag 22. august 2011 Komplekse tall fra Wikipedia Et komplekst tall er tall på formen x + iy, der x og y er

Detaljer

Heldagsprøve i matematikk. Svar og løsningsforslag

Heldagsprøve i matematikk. Svar og løsningsforslag Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være

Detaljer

MAT UiO mai Våren 2010 MAT 1012

MAT UiO mai Våren 2010 MAT 1012 200 MAT 02 Våren 200 UiO 0-2. 200 / 48 200 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar)

Detaljer

Løsningsforslag. 7(x + 1/2) 5 = 5/6. 7x = 5/ /2 = 5/6 + 3/2 = 14/6 = 7/3. Løsningen er x = 1/3. b) Finn alle x slik at 6x + 1 x = 5.

Løsningsforslag. 7(x + 1/2) 5 = 5/6. 7x = 5/ /2 = 5/6 + 3/2 = 14/6 = 7/3. Løsningen er x = 1/3. b) Finn alle x slik at 6x + 1 x = 5. Prøve i FO99A - Matematikk Dato: 3. desember 01 Målform: Bokmål Antall oppgaver: 5 (0 deloppgaver) Antall sider: Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

MAT UiO. 10. mai Våren 2010 MAT 1012

MAT UiO. 10. mai Våren 2010 MAT 1012 MAT Våren UiO. / 7 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar) og D (diagonal) som diagonaliserer

Detaljer

MA1410: Analyse - Notat om differensiallikninger

MA1410: Analyse - Notat om differensiallikninger Høgskolen i Agder Avdeling for realfag MA40: Analyse - Notat om differensiallikninger Dato: Høsten 2000 Merknader: Dette notatet kommer i tillegg til 4.2 og 6. i læreboka. Ma 40: Analyse skal inneholde

Detaljer

Kapittel 1. Funksjoner. 1.1 Definisjoner

Kapittel 1. Funksjoner. 1.1 Definisjoner Kapittel 1 Funksjoner Kurset MAT1001 dreier seg kort sagt om å lage matematiske problemer av virkeligheten og deretter løse problemene. Hittil i kurset har vi allerede møtt mange problemer, og de har så

Detaljer

1 Mandag 1. februar 2010

1 Mandag 1. februar 2010 Mandag. februar 200 I dag skal vi fortsette med rekkeutviklinger som vi begynte med forrige uke. Vi skal se på litt mer generell rekker og vurdere når de konvergerer, bl.a. gi et enkelt kriterium. Dette

Detaljer

Forkurshefte i matematikk variant 1

Forkurshefte i matematikk variant 1 Forkurshefte i matematikk variant 1 2014 Inger Christin Borge Matematisk institutt, UiO (Plan for kurset: se side 3) Forord Velkommen til Universitetet i Oslo (UiO), og til forkurs i matematikk! Dette

Detaljer

Oppfriskningskurs i matematikk 2008

Oppfriskningskurs i matematikk 2008 Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-

Detaljer

I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer.

I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer. Kapittel 2 Matriser I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer. 2.1 Definisjoner og regneoperasjoner

Detaljer

Kapittel 2. Antiderivering. 2.1 Derivasjon

Kapittel 2. Antiderivering. 2.1 Derivasjon Kapittel 2 Antiderivering I dette og neste kapittel skal vi bli kjent med noen typer difflikninger og lære hvordan disse kan løses. Til dette trenger vi derivering og antiderivering. 2.1 Derivasjon I Kapittel

Detaljer

SAMMENDRAG OG FORMLER

SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER Nye Mega 8A Kapittel A GEOMETRI LINJE, LINJESTYKKE OG STRÅLE linje stråle linjestykke VINKLER VINKELBEIN OG TOPPUNKT En vinkel har et toppunkt. Denne vinkelen

Detaljer

Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K

Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K ORDINÆR EKSAMEN 11.1.009 Oppgave 1 a) En følge av parallellaksiomet er at samsvarende vinkler ved parallelle linjer er like store.

Detaljer

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3 Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2

Detaljer

Tidligere eksamensoppgaver

Tidligere eksamensoppgaver Tillegg B Tidligere eksamensoppgaver Her følger et kronologisk utvalg av tidligere eksamensoppgaver innenfor temaet differenslikninger, og noen om komplekse tall, gitt ved UiO. Den første oppgaven gir

Detaljer

Tallregning og algebra

Tallregning og algebra 30 Tallregning og algebra Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer

Detaljer

Løsningsforslag. a) Løs den lineære likningen (eksakt!) 11,1x 1,3 = 2 7. LF: Vi gjør om desimaltallene til brøker: x =

Løsningsforslag. a) Løs den lineære likningen (eksakt!) 11,1x 1,3 = 2 7. LF: Vi gjør om desimaltallene til brøker: x = Prøve i FO99A - Matematikk Dato: 1. desember 014 Målform: Bokmål Antall oppgaver: 8 (0 deloppgaver) Antall sider: 3 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

INNHOLD SAMMENDRAG ALGEBRA OG FUNKSJONER

INNHOLD SAMMENDRAG ALGEBRA OG FUNKSJONER INNHOLD ALGEBRA OG FUNKSJONER... PARENTESER... USYNLIGE PARENTESER... USYNLIGE MULTIPLIKASJONSTEGN... DE TI GRUNNLEGGENDE ALGEBRAISKE LOVENE... REGNEUTTRYKK INNSATT FOR VARIABLER... 3 SETTE OPP FORMLER...

Detaljer

4_Komplekse_tall.odt tg. Kap.4 Komplekse tall

4_Komplekse_tall.odt tg. Kap.4 Komplekse tall 4_Komplekse_tall.odt 04.09.015 tg Kap.4 Komplekse tall e i π +1=0 Innledning... Egenskaper...4 Geometrisk form...5 Regneregler...6 Lengde og argument...8 Polar form...9 Eksponentform - Eulers formel...1

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

Tall SKOLEPROSJEKT MAT VÅR 2014 AUTHORS: ASTRI STRAND LINDBÆCK CAMILLA HELVIG PIA LINDSTRØM. Date: March 31,

Tall SKOLEPROSJEKT MAT VÅR 2014 AUTHORS: ASTRI STRAND LINDBÆCK CAMILLA HELVIG PIA LINDSTRØM. Date: March 31, Tall SKOLEPROSJEKT MAT400 - VÅR 204 AUTHORS: ASTRI STRAND LINDBÆCK CAMILLA HELVIG PIA LINDSTRØM Date: March 3, 204. 2. Innledning Vårt skoleprosjekt omhandler ulike konsepter innenfor det matematiske området

Detaljer

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B SAMMENDRAG OG FORMLER Nye Mega 9A og 9B 1 Sammendrag og formler Nye Mega 9A Kapittel A GEOMETRI Regulære mangekanter Når alle sidene er like lange og alle vinklene er like store i en mangekant, sier vi

Detaljer

n-te røtter av komplekse tall

n-te røtter av komplekse tall . 29. august 2011 Eksponentialform Forrige gang så vi at e iθ = cos θ + i sin θ Dette kan vi bruke til å gjøre polarfremstillingen av komplekse tall mer kompakt: z = a + ib = r(cos θ + i sin θ) = re iθ

Detaljer

Tempoplan: Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 4: Algebra

Tempoplan: Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 4: Algebra Tempoplan: Kapittel 5: /1 1/. Kapittel 6: 1/ 1/. Kapittel 7: 1/ 1/4. Resten av tida repetisjon og prøver. 4: Algebra Algebra omfatter tall- og bokstavregninga i matematikken. Et viktig grunnlag for dette

Detaljer

6: Trigonometri. Formlikhet bør kanskje repeteres. Og Pytagoras læresetning. Se nettsidene! Oppgaver Innhold Dato

6: Trigonometri. Formlikhet bør kanskje repeteres. Og Pytagoras læresetning. Se nettsidene! Oppgaver Innhold Dato Plan for hele året: - Kapittel 7: Mars - Kapittel 8: Mars/april 6: Trigonometri - Repetisjon: April/mai - Økter, prøver, prosjekter: Mai - juni Ordet geometri betyr egentlig jord- (geos) måling (metri).

Detaljer

(a) R n defineres som mengden av kolonnevektorer. a 1 a 2. a n. (b) R n defineres som mengden av radvektorer

(a) R n defineres som mengden av kolonnevektorer. a 1 a 2. a n. (b) R n defineres som mengden av radvektorer 5 Vektorrom Et vektorrom er en mengde V med tre algebraiske operasjoner (addisjon, negasjon og skalærmultiplikasjon) som tilfredsstiller de 10 betingelsene fra Def. 4.1.1. Jeg vil ikke gi en eksamensoppgave

Detaljer

TRIGONOMETRI KRISTIN LÅGEIDE OG THEA-KAROLINE NOMERSTAD

TRIGONOMETRI KRISTIN LÅGEIDE OG THEA-KAROLINE NOMERSTAD TRIGONOMETRI KRISTIN LÅGEIDE OG THEA-KAROLINE NOMERSTAD Abstract. Oppgaven tar for seg utvalgte temaer innenfor trigonometri, og retter seg mot lærere som skal undervise i fagene 1T og R2. Date: May 7,

Detaljer

UNIVERSITETET I OSLO. Løsningsforslag

UNIVERSITETET I OSLO. Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT00 Kalkulus Eksamensdag: Fredag 4. oktober 20 Tid for eksamen: 5.00 7.00 Oppgavesettet er på 8 sider. Vedlegg: Tillatte

Detaljer

Analyse og metodikk i Calculus 1

Analyse og metodikk i Calculus 1 Analyse og metodikk i Calculus 1 Fredrik Göthner og Raymi Eldby Norges teknisk-naturvitenskapelige universitet 3. desember 01 1 Innhold Forord 3 1 Vurdering av grafer og funksjoner 4 1.1 Hva er en funksjon?.........................

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 11 Modellering og beregninger. Eksamensdag: Torsdag 12. oktober 26. Tid for eksamen: 9: 11:. Oppgavesettet er på 8 sider.

Detaljer

Løsningsforslag. a) i. b) (1 i) 2. e) 1 i 3 + i LF: a) Tallet er allerede på kartesisk form. På polar form er tallet gitt ved

Løsningsforslag. a) i. b) (1 i) 2. e) 1 i 3 + i LF: a) Tallet er allerede på kartesisk form. På polar form er tallet gitt ved Innlevering ELFE KJFE MAFE Matematikk 000 HIOA Obligatorisk innlevering Innleveringsfrist Mandag 3. august 05 før forelesningen :30 Antall oppgaver: 5 Løsningsforslag Uttrykk følgende komplekse tall både

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: 15. oktober 004 Tid for eksamen: 11:00 13:00 Oppgavesettet er på 8 sider.

Detaljer

MAT 1001, høsten 2015 Oblig 2

MAT 1001, høsten 2015 Oblig 2 MAT 1001, høsten 2015 Oblig 2 Innleveringsfrist: Torsdag 5. november kl. 14:30 Det er lov til å samarbeide om løsning av oppgavene, men alle skal levere inn sin egen versjon. Husk å skrive på navn og kurskode

Detaljer

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x).

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Funksjoner En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Mengden D kalles definisjonsmengden (eng.: domain) til f. Merknad Dersom

Detaljer

Geometriske avbildninger og symmetri. A2A/A2B Høgskolen i Vestfold

Geometriske avbildninger og symmetri. A2A/A2B Høgskolen i Vestfold Geometriske avbildninger og symmetri A2A/A2B Høgskolen i Vestfold 6. november 2009 Innhold 1. Symmetri 2. Avbildninger 3. Isometrier 4. Egenskaper ved avbildninger 5. Symmetrigrupper Kilde for forelesningen:

Detaljer

Løsningsforslag til prøveunderveiseksamen i MAT-INF 1100, H-03

Løsningsforslag til prøveunderveiseksamen i MAT-INF 1100, H-03 Løsningsforslag til prøveunderveiseksamen i MAT-INF 1100, H-03 Denne prøveeksamenen har samme format som den virkelige underveiseksamenen, og inneholder oppgaver av samme type og vanskelighetsgrad. De

Detaljer

11 Nye geometriske figurer

11 Nye geometriske figurer 11 Nye geometriske figurer Det gylne snitt 1 a) Mål lengden og bredden på et bank- eller kredittkort. Regn ut forholdet mellom lengden og bredden. Hvilket tall er forholdet nesten likt, og hva kaller vi

Detaljer

Oppgavesett med fasit

Oppgavesett med fasit TIL ENT3R ELEVENE Oppgavesett med fasit Tommy Odland Sist oppdatert: 1. november 2013 http://is.gd/ent3rknarvik http://tommyodland.com/ent3r 1 INNHOLD 1 Om dette dokumentet 3 1.1 Formål og oppbygging..................................

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

MAT Grublegruppen Uke 37

MAT Grublegruppen Uke 37 MAT00 - Grublegruppen Uke 37 Jørgen O. Lye Bemerkning: Mye av stoffet i dette notatet er å finne i Kalkulus, kapittel. Dette kapittelet er leselig etter man vet hva følger er, men er ikke pensum før i

Detaljer

Løsningsforslag Eksamen R1 - REA3022-28.05.2008

Løsningsforslag Eksamen R1 - REA3022-28.05.2008 Løsningsforslag Eksamen R1 - REA3022-28.05.2008 eksamensoppgaver.org September 14, 2008 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i R1 er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts.

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts. Gauss-Jordan eliminasjon; redusert echelonform Forelesning, TMA4110 Fredag 18/9 Martin Wanvik, IMF MartinWanvik@mathntnuno En matrise vil normalt være radekvivalent med flere echelonmatriser; med andre

Detaljer

DAFE BYFE Matematikk 1000 HIOA Obligatorisk innlevering 1 Innleveringsfrist Fredag 22. januar :00 Antall oppgaver: 5.

DAFE BYFE Matematikk 1000 HIOA Obligatorisk innlevering 1 Innleveringsfrist Fredag 22. januar :00 Antall oppgaver: 5. Innlevering DAFE BYFE Matematikk 000 HIOA Obligatorisk innlevering Innleveringsfrist Fredag. januar 06 4:00 Antall oppgaver: 5 Vi anbefaler at dere regner oppgaver fra boken først. Det er en liste med

Detaljer

Mer om kvadratiske matriser

Mer om kvadratiske matriser Kapittel 2 Mer om kvadratiske matriser Vi lader opp til anvendelser, og skal bli enda bedre kjent med matriser. I mange anvendelser er det ofte de kvadratiske matrisene som dukker opp, så fra nå skal vi

Detaljer

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform 1 10 Tall og tallregning Studentene skal kunne gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall definere og benytte de anerkjente skrivemåtene for åpne, halvåpne og lukkede intervaller

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 16: Rekursjon og induksjon Roger Antonsen Institutt for informatikk, Universitetet i Oslo 17. mars 009 (Sist oppdatert: 009-03-17 11:4) Forelesning 16 MAT1030 Diskret

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at Ekstranotat, 7 august 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser og brøker... Funksjoner...3 Tilvekstform (differensialregning)...4 Telleregelen...7 70-regelen...8

Detaljer

Mer om kvadratiske matriser

Mer om kvadratiske matriser Kapittel 2 Mer om kvadratiske matriser Vi lader opp til anvendelser, og skal bli enda bedre kjent med matriser. I mange anvendelser er det ofte de kvadratiske matrisene som dukker opp, så fra nå skal vi

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger del 1 Eksamensdag: Tirsdag 7. desember 2004 Tid for eksamen: 14:30 17:30 Oppgavesettet

Detaljer

Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt Antall oppgaver 6. Tillatte hjelpemidler Godkjent kalkulator

Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt Antall oppgaver 6. Tillatte hjelpemidler Godkjent kalkulator Oppgave 1 Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt 09.00-14.00 Antall oppgaver 6 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag a) Likningen

Detaljer

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015 Ekstranotat, februar 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser, brøk og potenser... Funksjoner...4 Tilvekstform (differensialregning)...5 Nyttige tilnærminger...8

Detaljer

Egenverdier for 2 2 matriser

Egenverdier for 2 2 matriser Egenverdier for matriser (Bearbeidet versjon av tidligere notat på nett-sidene til MA101 - Lineær algebra og geometri Versjon oppdatert med referanser til 10utg av læreboken) Egenvektorer og egenverdier

Detaljer

Lineære likningssystemer, vektorer og matriser

Lineære likningssystemer, vektorer og matriser Lineære likningssystemer, vektorer og matriser Kompendium 1 i MAT1001 Matematikk 1 Høsten 2008 Inger Christin Borge Matematisk institutt, UiO Forord Velkommen til Universitetet i Oslo, og til MAT1001!

Detaljer

1.1 Tall- og bokstavregning, parenteser

1.1 Tall- og bokstavregning, parenteser MATEMATIKK: 1 Algebra 1 Algebra 1.1 Tall- og bokstavregning, parenteser Matematikk er et morsomt fag hvis vi får det til. Som på de fleste områder er det er morsomt og givende når vi lykkes. Skal en f.eks.

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

De hele tall har addisjon, multiplikasjon, subtraksjon og lineær ordning, men ikke divisjon.

De hele tall har addisjon, multiplikasjon, subtraksjon og lineær ordning, men ikke divisjon. Innledning til Matematikk Hans Petter Hornæs, hans.hornaes@hig.no Det er ofte vanskelig å komme i gang et fag. Innledningsvis er det gjerne en del grunnleggende begreper som må på plass. Mange studenter

Detaljer

Brukerveiledning for webapplikasjonen. Mathemateria 01.02.2015. Terje Kolderup

Brukerveiledning for webapplikasjonen. Mathemateria 01.02.2015. Terje Kolderup Brukerveiledning for webapplikasjonen Mathemateria 01.02.2015 Terje Kolderup Innhold Brukerveiledning for webapplikasjonen...1 Mathemateria...1 Introduksjon...3 Typisk eksempel og bryterstyring...3 Innlogging...4

Detaljer

Løsningsforslag AA6516 Matematikk 2MX - 5. mai eksamensoppgaver.org

Løsningsforslag AA6516 Matematikk 2MX - 5. mai eksamensoppgaver.org Løsningsforslag AA6516 Matematikk 2MX - 5. mai 2004 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

Øving 3 Determinanter

Øving 3 Determinanter Øving Determinanter Determinanten til en x matrise er definert som Clear@a, b, c, dd K a b OF c d ad -bc Determinanten til en matrise er derfor et tall. Du skal se at det viktige for oss er om tallet er

Detaljer

Mer om mengder: Tillegg til Kapittel 1. 1 Regneregler for Booleske operasjoner

Mer om mengder: Tillegg til Kapittel 1. 1 Regneregler for Booleske operasjoner MAT1140, H-16 Mer om mengder: Tillegg til Kapittel 1 Vi trenger å vite litt mer om mengder enn det som omtales i første kapittel av læreboken. I dette tillegget skal vi først se på regneregler for Booleske

Detaljer

R1 Eksamen høsten 2009 Løsning

R1 Eksamen høsten 2009 Løsning R1 Eksamen, høsten 009 Løsning R1 Eksamen høsten 009 Løsning Del 1 Oppgave 1 3 a) Deriver funksjonen f( x) 5e x f( x) 5e 3 15e 3 x 3x b) Deriver funksjonen gx x 3 ln x x x g( x) 3x ln x x 3 x 3ln 1 3 c)

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 3 Geometri

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 3 Geometri QED 5 0 Matematikk for grunnskolelærerutdanningen Bind Fasit kapittel Geometri Kapittel Oppgave a) ( +, + 7) = (4, 9) b) (0, 4 + 5) = (, ) c) ( + 0, + 6) = (, 9) Oppgave a) Vi får vektoren [4, ]. b) Vi

Detaljer

TALL. 1 De naturlige tallene. H. Fausk

TALL. 1 De naturlige tallene. H. Fausk TALL H. Fausk 1 De naturlige tallene De naturlige tallene er 1, 2, 3, 4, 5,... (og så videre). Disse tallene brukes til å telle med, og de kalles også telletallene. Listen med naturlige tall stopper ikke

Detaljer

Løsningsforslag til underveiseksamen i MAT 1100

Løsningsforslag til underveiseksamen i MAT 1100 Løsningsforslag til underveiseksamen i MAT 00 Dato: Tirsdag /0, 00 Tid: Kl. 9.00-.00 Vedlegg: Formelsamling Tillatte hjelpemidler: Ingen Oppgavesettet er på sider Eksamen består av 0 spørsmål. De 0 første

Detaljer

MAUMAT644 ALGEBRA vår 2016 Første samling Runar Ile

MAUMAT644 ALGEBRA vår 2016 Første samling Runar Ile MAUMAT644 ALGEBRA vår 2016 Første samling Runar Ile 1 Introduksjon: Grupper og ringer Ringer En ring er et sted hvor du kan addere, subtrahere og multiplisere. Hvis du også kan dividere kalles ringen for

Detaljer

Kapittel 5. Trær og nettverk. 5.1 Trær og Fibonacci-følgen

Kapittel 5. Trær og nettverk. 5.1 Trær og Fibonacci-følgen Kapittel 5 Trær og nettverk Vi har sett at anvendelser av differenslikninger studerer fenomener som skjer i adskilte tidsrom, dvs. vi ser på diskrete anvendelser (jfr. Seksjon 1.3). I dette kapittelet

Detaljer

Oppgave 1. Del A. (i) Skriv de to desimaltallene 0, 7 og 3, 12 som vanlig brøk og forkort hvis mulig. som desimaltall. 3x 6

Oppgave 1. Del A. (i) Skriv de to desimaltallene 0, 7 og 3, 12 som vanlig brøk og forkort hvis mulig. som desimaltall. 3x 6 Oppgave 1 (i) Skriv de to desimaltallene 0, 7 og 3, 12 som vanlig brøk og forkort hvis mulig. (ii) Skriv 314 100 og 4 5 (iii) Forkort brøkene som desimaltall. 12 15 og 3x 6 9x. (iv) Sorter disse seks tallene

Detaljer

Løsningsforslag AA6524 Matematikk 3MX 3. juni 2005. eksamensoppgaver.org

Løsningsforslag AA6524 Matematikk 3MX 3. juni 2005. eksamensoppgaver.org Løsningsforslag AA654 Matematikk 3MX 3. juni 005 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

Trigonometriske funksjoner (notat til MA0003)

Trigonometriske funksjoner (notat til MA0003) Trigonometriske funksjoner (notat til MA0003) 0. mars 2005 Radianer Gitt et punkt A på en sirkel med radius og sentrum O. La punktet P v flytte seg fra punktet A slik at det beveger seg langs en sirkelbue

Detaljer

Lineære likningssystemer, vektorer og matriser

Lineære likningssystemer, vektorer og matriser Lineære likningssystemer, vektorer og matriser Kompendium i MAT00 Matematikk Høsten 2008 Inger Christin Borge Matematisk institutt, UiO Forord Velkommen til Universitetet i Oslo, og til MAT00! Selv om

Detaljer

3.9 Teori og praksis for Minste kvadraters metode.

3.9 Teori og praksis for Minste kvadraters metode. 3.9 Teori og praksis for Minste kvadraters metode. Vi fortsetter med minste kvadraters problem. Nå skal vi se nærmere på noen teoretiske spørsmål, bl.a. hvordan normallikningene utledes. Minner om MK problemstillingen:

Detaljer

Forberedelseskurs i matematikk

Forberedelseskurs i matematikk Forberedelseskurs i matematikk Formålet med kurset er å friske opp matematikkunnskapene før et år med realfag. Temaene for kurset er grunnleggende algebra med regneregler, regnerekkefølgen, brøk, ligninger

Detaljer

Oppgavehefte om komplekse tall

Oppgavehefte om komplekse tall Oppgavehefte om komplekse tall Tore August Kro, tore.a.kro@hiof.no 11. august 009 1 Aritmetikk Eksempel 1.1 Vi skriver komplekse tall på kartesisk form z = a + ib. Tenk på i som et symbol som oppfyller

Detaljer

Emne 9. Egenverdier og egenvektorer

Emne 9. Egenverdier og egenvektorer Emne 9. Egenverdier og egenvektorer Definisjon: Vi starter med en lineær transformasjon fra til, hvor Dersom, hvor, sier vi at: er egenverdiene til A er tilhørende egenvektorer. betyr at er et reelt eller

Detaljer

Husk at minustegn foran et tall eller en variabel er å tenke på som tallet multiplisert med det som kommer etter:

Husk at minustegn foran et tall eller en variabel er å tenke på som tallet multiplisert med det som kommer etter: Økonomisk Institutt, november 2006 Robert G. Hansen, rom 1207 ECON 1210: Noen regneregler og løsningsprosedyrer som brukes i kurset (A) Faktorisering og brøkregning (1) Vi kan sette en felles faktor utenfor

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 1 1,8 10 0,0005 Oppgave (3 poeng) A B C D E F G H I J K L På tallinjen ovenfor er det merket av 1 punkter. Hvert av tallene

Detaljer

Notat 05 for MAT Relasjoner, operasjoner, ringer. 5.1 Relasjoner

Notat 05 for MAT Relasjoner, operasjoner, ringer. 5.1 Relasjoner Notat 05 for MAT1140 5 Relasjoner, operasjoner, ringer 5.1 Relasjoner Når R er en relasjon som er veldefinert på A B, slik at R(x, y) er en påstand når x A og B B, tenker vi på relasjonen som noe som lever

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Løsningsforslag Eksamen eksempeloppgave R1 - REA3022 - Desember 2007

Løsningsforslag Eksamen eksempeloppgave R1 - REA3022 - Desember 2007 Løsningsforslag Eksamen eksempeloppgave R1 - REA022 - Desember 200 eksamensoppgaver.org October 2, 2008 eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksempeloppgave i R1

Detaljer

Lineære likningssett.

Lineære likningssett. Lineære likningssett. Forelesningsnotater i matematikk. Lineære likningssystemer. Side 1. 1. Innledning. La x 1, x, x n være n ukjente størrelser. La disse størrelsene være forbundet med m lineære likninger,

Detaljer