Differenslikninger. Inger Christin Borge. Matematisk institutt, UiO. Kompendium 2 i MAT1001 Matematikk 1. Høsten 2008

Størrelse: px
Begynne med side:

Download "Differenslikninger. Inger Christin Borge. Matematisk institutt, UiO. Kompendium 2 i MAT1001 Matematikk 1. Høsten 2008"

Transkript

1 Differenslikninger Kompendium 2 i MAT1001 Matematikk 1 Høsten 2008 Inger Christin Borge Matematisk institutt, UiO

2 Forord Trilogien fortsetter, og du tar nå fatt på Kompendium 2 i MAT1001. Her skal vi ta for oss det andre temaet i kurset, nemlig Differenslikninger (herunder følger, grenseverdier, komplekse tall, enkel grafteori, trær, nettverk og boolsk algebra). Utgangspunktet for stoffvalg og presentasjon har vært som i Kompendium 1 om lineære likningssystemer; 2MX eller 2MY og 3MY, og vi fortsetter å bake inn matematikken du har med fra videregående i en større sammenheng. Sørg fortsatt for å repetere stoff fra videregående så fort det dukker opp ting du føler du ikke husker godt nok! Løsningene til differenslikninger er tallfølger, og vi starter med å se litt nærmere på tallfølger. Deretter tar vi for oss visse typer differenslikninger i tur og orden, bare avbrutt av et kapittel om komplekse tall og trigonometri. Dette vil vi trenge for å kunne løse og studere spesielle differenslikninger. Anvendelser av differenslikninger tar vi underveis, og vi avslutter med et kapittel der vi innfører noen flere matematiske objekter som passer inn i denne sammenhengen, og som det kan være meget nyttig å kjenne til. Kapittelet heter Trær og nettverk, og vi ser på et eksempel der vi kobler såkalte trær med noen spesielle tallfølger, og et annet eksempel der vi bruker såkalt boolsk algebra til å studere nevrale nettverk. Underveis i teksten gis det mange eksempler, og dessuten vil du få beskjed om å sjekke, tegne tegninger og regne ferdig i endel eksempler. Det er veldig viktig at du gjør dette mens du studerer teksten. Bak i kompendiet vil du finne oppgavesamling. Vi har prøvd å grave frem tidligere eksamensoppgaver i dette temaet også, og de kommer i kronologisk rekkefølge. Vi fant imidlertid ikke like mange tidligere eksamensoppgaver i dette emnet som i de to andre, så vi har dermed laget endel større oppii

3 gaver i oppgavesamlingen, spesielt med hensyn på stoff som ikke dekkes i tidligere eksamensoppgaver. Oppgavene varierer i vanskelighetsgrad, og noen er markert Ekstra vanskelig. Vårt motto er som før: Jobb med alle oppgavene og søk hjelp etterhvert! Fortsatt lykke til! Mine medspillere Erik Bédos, Arne B. Sletsjøe og Elisabeth Seland har fortsatt sine kontinuerlige innspill og kommentarer. Også her har Dina Haraldsson og Kari T. Hylland vært til stor hjelp med henholdsvis tidligere eksamensoppgaver og treningsoppgaver. Tusen takk alle sammen! Også takk til Tom Lindstrøm for oppgave-innspill. Send gjerne trykkfeil og kommentarer til Blindern, august 2008 Inger Christin Borge iii

4 Innhold Notasjon vi 1 Tallfølger Tallfølger og konvergens Differenslikninger Om anvendelser av differenslikninger Nå skal du kunne Første ordens lineære differenslikninger Homogene likninger Løsningsmetode Konvergens av løsninger Anvendelser Inhomogene likninger Løsningsmetode Konvergens av løsninger Anvendelser Nå skal du kunne Komplekse tall og trigonometri Komplekse tall Vinkler og radianer Trigonometri Polarform Nå skal du kunne Andre ordens lineære differenslikninger Homogene likninger iv

5 4.1.1 Løsningsmetode Konvergens av løsninger Anvendelser Inhomogene likninger Løsningsmetode Konvergens av løsninger Anvendelser Nå skal du kunne Trær og nettverk Trær og Fibonacci-følgen Boolsk algebra og nettverk Nå skal du kunne A Oppgaver 115 A.1 Kapittel A.2 Kapittel A.3 Kapittel A.4 Kapittel A.5 Kapittel B Tidligere eksamensoppgaver 136 C Fasit og løsningsforslag 149 C.1 Kapittel C.2 Kapittel C.3 Kapittel C.4 Kapittel C.5 Kapittel C.6 Tidligere eksamensoppgaver D Støtte- og tilleggslitteratur 176 E Det greske alfabetet 177 F Norsk-engelsk ordliste 178 Register 182 v

6 Notasjon {} mengde element i N de naturlige tallene 1,2,3,... Z de hele tallene..., 2, 1, 0, 1, 2,... Q de rasjonale tallene (brøker) R de reelle tallene (tallinjen) med ordet tall menes et reelt tall R 2 det reelle planet R 3 det reelle rommet R n det n-dimensjonale rommet C de komplekse tallene avslutter et Bevis avslutter et Eksempel eller en Bemerkning vi

7 Kapittel 1 Tallfølger 1, 2, 3, 4, 5, 6, 7, 8,... Det andre temaet i kurset MAT1001 er differenslikninger. I en differenslikning er den ukjente en tallfølge. I dette kapittelet skal vi legge grunnlaget for resten av kompendiet ved å se litt nærmere på tallfølger og generelle differenslikninger. 1.1 Tallfølger og konvergens Tallfølger er noe av det første vi treffer i matematikken, for eksempel når vi lærer å telle. Definisjon 1.1 En tallfølge er en uendelig oppramsing av tall x 0, x 1, x 2,..., x n,.... En tallfølge betegnes ofte ved {x n } n=0 Tallene x 0, x 1,... kalles leddene i tallfølgen, og tallet x n kalles det n-te leddet (eller det generelle leddet). Vi kjenner igjen symbolet som uendelig. Den uendelige oppramsingen av en tallfølge angis som oftest ved en regel som sier hvordan det n-te leddet i tallfølgen ser ut. Regelen er gjerne gitt ved en formel (når vi setter inn en verdi for n i formelen, kan vi regne ut hva det n-te leddet er). 1

8 Eksempel 1.2 Tallfølgen 0, 1, 2, 3,..., n,... kan forkortet skrives {n} n=0, dvs. formelen for det n-te leddet er x n = n. Bemerkning 1.3 Noen ganger starter tallfølgen med et annet ledd enn det 0-te leddet, og vi skriver ofte {x n } for en tallfølge. Hvis x n er angitt ved en formel er det da underforstått at vi starter med det første leddet der formelen for x n gir mening. Hvis vi ønsker å studere en tallfølge som starter med det k-te leddet, skriver vi {x n } n=k. Vi vil ofte bruke ordet følge istedenfor tallfølge. Eksempel 1.4 Følgen 0, 1, 2, 3,..., n,... kan også angis ved {n 1} n=1. Eksempel 1.5 Følgen { 1 } = 1, 1, 1,..., 1,... har det n-te leddet gitt ved n 2 3 n 1. Vi kan ikke sette inn n = 0 (siden vi ikke kan dele på 0), så det første n leddet i følgen her er x 1 = 1 = 1. 1 Vi har allerede møtt flere eksempler på følger i populasjonsdynamikken: Eksempel 1.6 I eksempelet om PiggAv-ordningen i Kompendium 1 fant vi at andel bilister som kjører piggfritt i år n etter 1990 er (tilnærmet) x n = 73 73(0.63) n (1.1) og andel som kjører med pigg i år n etter 1990 er (tilnærmet) y n = (0.63) n. (1.2) Dette er eksempler på to følger {x n } og {y n } der formlene for det n-te leddet er gitt ved henholdsvis (1.1) og (1.2). Vi regnet ut de 18 første leddene i hver av disse følgene i Kompendium 1. Vi tar med et par spesielle følger vi skal møte som har egne navn: En konstant følge er en følge der alle leddene er like, for eksempel følgen {7} = 7, 7, 7, 7,... 2

9 En alternerende følge er en følge der leddene har alternerende fortegn, dvs. fortegnet skifter fra et ledd til det neste. Vi gjenkjenner en alternerende følge ved at det n-te leddet har ( 1) n som faktor. For eksempel {( 1) n } = 1, 1, 1, 1, 1,... eller { ( 1)n n } = 1, 1 2, 1 3, 1 4, 1 5,... Siden en følge er en uendelig oppramsing, kan det være naturlig å stille spørsmålet: stopper følgen? Mer presist spør vi oss da om leddene x n i følgen nærmer seg et tall når n går mot uendelig (n blir større og større). Dette har vi allerede sett på i Kompendium 1: Eksempel 1.7 I Kompendium 1 så vi at følgene {x n } (1.1) og {y n } (1.2) (PiggAv-eksempelet) nærmer seg tallene x = 73 og y = 27, dvs. disse følgene stopper opp. Vi bruker språket vi innførte i Kompendium 1: Definisjon 1.8 Følgen {x n } konvergerer mot tallet x hvis leddene i følgen nærmer seg x når n går mot uendelig. Vi sier at grenseverdien til tallfølgen {x n } er x og skriver lim x n = x. n Hvis leddene i følgen ikke nærmer seg et bestemt tall når n går mot uendelig sier vi at følgen divergerer. Bemerkning 1.9 Det at leddene i følgen nærmer seg et tall x når n går mot uendelig betyr litt mer presist at bare n er stor nok, så kan vi få alle leddene i følgen fra denne n-en av til å være så nærme x vi bare vil. Eksempel 1.10 Følgen {n} i Eksempel 1.2 stopper ikke opp: Siden n blir så stor vi bare vil bare n er stor nok, dvs. lim n n =, så er {n} divergent. 3

10 Følgen { 1 } i Eksempel 1.5 stopper opp, siden leddene går mot 0, dvs. n 1 lim n n = 0. Dette betyr at vi kan få leddene i følgen { 1 } til å være så nærme 0 vi n bare vil, bare n er stor nok. For eksempel, hvis vi ønsker at leddene 1 skal ha avstand høyst minst fra 0, kan vi få til det ved å la n være Den konstante følgen {a} = a, a, a,... konvergerer mot a. I den alternerende følgen {( 1) n } hopper leddene frem og tilbake mellom 1 og 1, så denne følgen divergerer. Derimot konvergerer { ( 1)n n } mot 0 selv om leddene skifter fortegn fra et ledd til neste. 1.2 Differenslikninger Når vi har en formel for det n-te leddet i en følge, kan vi regne ut alle leddene (hvis vi ønsker) og vi kan ofte bestemme om den konvergerer eller divergerer. I anvendelser der en følge er løsning på et problem, får vi ofte oppgitt følgen på en annen måte, nemlig som en differenslikning (vi sparer forkor-telsen difflikning til vi kommer til Kompendium 3 og emnet Differensiallikninger): Eksempel 1.11 Den italienske matematikeren Leonardo Pisano (ca ), bedre kjent som Fibonacci, er blitt viden kjent for sin kaninmodell. Han beskrev utviklingen av en kaninpopulasjon som vokser etter følgende enkle prinsipp: Hvert par av kaniner føder et nytt par kaniner hver måned og de begynner med det når de er to måneder gamle. La oss anta at vi starter med ett par kaniner (og at vi ser bort fra at kaniner dør etterhvert!). Måneden etter har vi fortsatt bare ett par, men så begynner det å skje ting. Etter to måneder har det første paret fått barn og vi har to par kaniner, måneden etter får de et nytt par kaniner, mens de eldste ungene enda ikke har begynt å få unger slik at vi da har tre par kaniner. 4

11 Etter tre måneder får også de førstefødte ungene unger og tilveksten blir to par. Til sammen har vi da fem par kaniner. Vi kan lage en generell beskrivelse av det som skjer. Vi lar x n være antall kaniner etter n måneder. Da har vi likningen x n+2 = x n+1 + x n, n 0, (1.3) som vi kan forklare slik: Antall kaniner etter n+2 måneder består av samtlige kaniner vi hadde forrige måned (x n+1 ), i tillegg til at alle kaniner som levde for to måneder siden har fått unger og derfor tilført et tilsvarende antall (x n ) nye kaninpar. Starter vi med x 0 = x 1 = 1 får vi den såkalte Fibonacci-følgen 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987,... (1.4) Hvert ledd i følgen fremkommer altså som summen av de to foregående leddene: osv. x 2 = x 1 + x 0 = = 2, x 3 = x 2 + x 1 = = 3, x 4 = x 3 + x 2 = = 5, x 5 = x 4 + x 3 = = 8, Likningen (1.3) er et eksempel på en differenslikning. Vi kan strengt tatt regne ut alle leddene i følgen (kalt Fibonacci-tallene) ved hjelp av likningen, men da må vi starte fra x 0 og x 1 og regne oss oppover. Hvor mange kaniner er det etter 4 år (48 måneder)? Hadde vi hatt formelen for denne følgen, kunne vi bare ha satt inn n = 48 istedenfor å regne ut alle de foregående leddene før vi kom til x 48. Det er ikke helt enkelt å se for seg hva slags formel som beskriver det n-te leddet i denne følgen, men det viser seg at Fibonacci-følgen er beskrevet av formelen x n = 5 5 [(1 + 5 ) n+1 ( 1 5 ) n+1 ]. (1.5) 2 2 Du synes kanskje ikke det blir noe enklere å sette inn n = 48 i denne formelen? 5

12 Men er det ikke litt rart at dette uttrykket med flere rottuttrykk er et helt tall (antall kaniner) hver gang vi setter inn et naturlig tall n? Sjekk dette for noen verdier (f.eks. at n = 2 gir 2)! Vi skal utlede formelen (1.5) senere i kompendiet. Definisjon 1.12 En differenslikning (for en følge) er en likning som angir hvordan hvert ledd i en følge (fra et visst ledd av) kan beregnes ved hjelp av de foregående leddene i følgen. Hvis man bare trenger de k foregående leddene (der k N) kalles den en k-te ordens differenslikning. For eksempel er (1.3) en andre ordens differenslikning: (1.3) sier jo at hvert ledd (fra ledd 2 og oppover) fås ved å addere de to foregående leddene. Det vil være uendelig mange følger som oppfyller likningen (1.3). I tillegg til Fibonacci-følgen vil for eksempel følgen 1, 3, 4, 7, 11, 18, 39,... også oppfylle likningen (1.3) (finn flere!). Eksempel 1.13 Likningen x n+1 = 3x 2 n n + 1, n 0, er en første ordens differenslikning. Hvis x 0 = 1 er da x 1 = = 4, x 2 = = 48, x 3 = = 6911, osv. en følge som oppfyller likningen. Det fins et hav av interessante differenslikninger som dukker opp i anvendelser. I MAT1001 skal vi stort sett studere differenslikninger av en bestemt type, nemlig de lineære: Definisjon 1.14 La k N. En k-te ordens lineær differenslikning (med konstante koeffisienter), er en likning på formen x n+k = a 1 x n+k 1 + a 2 x n+k a k x n + f(n), n 0, (1.6) der a 1,..., a k er reelle tall, f(n) er et gitt uttrykk i n og a k 0 (ellers ville likningen ha hatt lavere orden). 6

13 Det at a 1,..., a k alle er konstanter betyr at vi har konstante koeffisienter. Dersom a 1,..., a k tillates å avhenge av n vil likningen fremdeles være en k-te ordens lineær differenslikning, men disse mer generelle likningene skal vi ikke studere i MAT1001. Eksempel 1.15 Likningen (1.3) x n+2 = x n+1 + x n er en andre ordens lineær differenslikning: vi har k = 2, a 1 = 1, a 2 = 1 og f(n) = 0 i (1.6). Eksempel 1.16 Differenslikningen x n+1 = 5x n, n 0 er en første ordens lineær differenslikning (der k = 1, a 1 = 5 og f(n) = 0 i (1.6)). Den sier at leddene i følgene som er gitt ved denne likningen fås ved å multiplisere det umiddelbart foregående leddet med 5. Ordet lineær (som vi så på i Kompendium 1) kommer fra at leddene i følgen skal opptre på lineær form (vi skal ikke ha noen av leddene i 2. potens for eksempel). Eksempel 1.17 Likningen fra Eksempel 1.13 er ikke lineær siden uttrykket x 2 n opptrer i likningen. Derimot er differenslikningen x n+2 = 3x n x n + n 2 + 2, n 0, (1.7) lineær (og andre ordens). Definisjon 1.18 Vi løser en differenslikning ved å finne alle følgene som oppfyller likningen. Disse tallfølgene utgjør den generelle løsningen til differenslikningen. 7

14 For de differenslikningene vi skal møte i MAT1001 kan den generelle løsningen angis ved en formel for det n-te leddet: Eksempel 1.19 Differenslikningen x n+1 = 5x n, n 0 i Eksempel 1.16 har uendelig mange løsninger. For eksempel 1, 5, 25, 125, 625,... og 2, 10, 50, 250,.... Den generelle løsningen (som vi skal lære å finne) vil være alle følger {x n } slik at x n = C 5 n, for en C R (og alle n 0). Vi skriver vanligvis bare at den generelle løsningen er x n = C 5 n, C R (underforstått alle følger {x n } slik at x n =... ). Definisjon 1.20 Når vi plukker ut en av løsningene i den generelle løsningen, kaller vi denne løsningen en spesiell løsning (også kalt en partikulær løsning). Vi er ofte interessert i å finne én spesiell løsning, som er bestemt av at vi vet noe om de første leddene i følgen. Definisjon 1.21 En k-te ordens differenslikning der vi i tillegg vet verdiene på de k første tallene i følgen kalles en differenslikning med k initialbetingelser. Hvis vi har en k-te ordens differenslikning med k initialbetingelser vil vi alltid ha nøyaktig én løsning, siden vi da kan regne oss oppover og finne 8

15 alle leddene i denne spesielle følgen. Problemet da er at denne prosessen er tidkrevende, og at vi helst vil ha en formel for det n-te leddet, for eksempel for å kunne avgjøre om følgen konvergerer eller ikke. Eksempel 1.22 Likningen x n+2 = x n+1 + x n, x 1 = 1, x 2 = 1 er en andre ordens lineær differenslikning med to initialbetingelser, og det er kun én følge i hele verden som oppfyller dette, nemlig Fibonacci-følgen. Eksempel 1.23 Likningen x n+1 = 5x n, x 0 = 2 er en første ordens lineær differenslikning med én initialbetingelse, og følgen {x n } = 2, 10, 50,..., 2 5 n,... er den eneste løsningen til denne likningen. La oss ramse opp noen flere eksempler på differenslikninger: a) x n+1 = 4x n 7 n b) x n+2 x n = π c) x n+3 = x n+2 ln(n 2 + 1) + x n+1 3nx n Når vi skal igang med å løse differenslikninger, skal vi som sagt begrense oss litt, for eksempel skal vi ikke studere likningen gitt i c) ovenfor, og heller ikke løse likningen gitt i a). Derimot skal vi lære å finne alle løsninger til likning b). Det fins differenslikninger som er uløselige (i den forstand at man ikke vet hvordan man kan angi en formel for det generelle leddet). I MAT1001 skal vi lære å løse, og se på anvendelser av, følgende differenslikninger første ordens lineære homogene differenslikninger 9

16 noen typer første ordens lineære inhomogene differenslikninger andre ordens lineære homogene differenslikninger noen typer andre ordens lineære inhomogene differensliknigner Med lineære mener vi her alltid lineære med konstante koeffisienter. Ordet homogen traff vi også på i Kompendium 1. Det har en helt analog betydning her: Definisjon 1.24 En lineær differenslikning av typen (1.6) kalles homogen hvis f(n) = 0. Hvis f(n) 0 kalles likningen inhomogen. Eksempel 1.25 Likningen (1.7) er en andre ordens lineær inhomogen differenslikning, mens likningen i Eksempel 1.16 er en første ordens lineær homogen differenslikning. Vi skal ta for oss de ulike typene likninger i tur og orden. 1.3 Om anvendelser av differenslikninger For hver type differenslikning vi skal lære å løse vil vi ta for oss anvendelser. Da kan det være fint å ha følgende bemerkninger i bakhodet: Problemene vi skal studere i dette kompendiet vil gi opphav til en differenslikning der løsningen er en tallfølge. I denne typen problemer studerer vi et fenomen som skjer i milepæler (adskilte tidsrom), noe som kan måles i hver generasjon n der n er et naturlig tall. Vi har da at hvert ledd x n i tallfølgen vil svare til fenomenets tilstand i generasjon n, kort sagt leddet x n svarer til n-te generasjon. Antagelsen om adskilte tidsrom har vi allerede møtt i Kompendium 1, i populasjonsdynamikken. Her så vi på dynamikken mellom flere (under)populasjoner, som ga oss et system av likninger som kunne løses ved hjelp av matriser. Systemene vi møtte der er systemer av differenslikninger. Nå skal vi studere én differenslikning / ett fenomen om gangen. 10

17 Vi har brukt anførselstegn rundt generasjon siden det er et ord som naturlig hører til begrepet populasjon. I fenomenene vi nå skal studere, som for eksempel kan være utviklingen av en populasjon eller en ball som spretter opp og ned, tenker vi generelt på en generasjon som tidsrommet mellom hver milepæl. For eksempel vil et fenomen der det samme forholdet mellom tre etterfølgende generasjoner gjentas i det uendelige gi opphav til en andre ordens differenslikning (som for Fibonaccis kaniner). 1.4 Nå skal du kunne definisjonen av en tallfølge og vite hva det vil si at en tallfølge konvergerer eller divergerer definisjonen av en konstant tallfølge, alternerende tallfølge og Fibonaccifølgen forklare Fibonaccis kaninproblem og hvor Fibonacci-tallene kommer fra definisjonen av en differenslikning, herunder begrepene orden, lineær, konstante koeffisienter, homogen og inhomogen, og gi eksempler på ulike typer differenslikninger med hensyn på disse begrepene forskjellen på den generelle løsningen og en spesiell løsning av en differenslikning glede deg til fortsettelsen! 11

18 Kapittel 2 Første ordens lineære differenslikninger 2.1 Homogene likninger Et av de enkleste eksemplene på en følge fås ved å starte med et tall og for hvert nytt ledd multiplisere det forrige leddet med et fast tall. Denne måten å lage en følge på er den første differenslikningen vi skal se på. Definisjon 2.1 En første ordens lineær homogen differenslikning er en differenslikning på formen x n+1 = rx n, n 0 (2.1) der r er et reelt tall forskjellig fra 0. Bemerkning 2.2 Merk at (2.1) passer inn i den generelle formen for en homogen lineær differenslikning i Definisjon 1.24 med k = 1 og a 1 = r. Likning (2.1) kan også skrives på formen x n+1 rx n = 0. (2.2) I oppgaver vil du møte disse likningene enten på formen (2.1) eller (2.2). Vi tar utgangspunkt i formen (2.1). Vi bemerker også at når vi dropper n 0 er det underforstått at det første leddet er x 0. 12

19 Eksempel 2.3 Likningen 3x n+1 = 2x n, n 0 er en første ordens lineær homogen differenslikning siden den kan skrives på formen (2.1) ved å dividere med 3 på hver side: x n+1 = 2 3 x n. De to første leddene i denne følgen er x 0 og x 1 = 2x 3 0. En mulig løsning av likningen kan derfor starte med leddene 1 og 2 (når x 3 0 = 1), mens en annen løsning kan starte med leddene 3 og 2 (når x 0 = 3). Eksempel 2.4 Likningen x n+1 = 2x n, n 0 er en første ordens lineær homogen differenslikning. Leddene i følgene som oppfyller denne likningen fås ved å multiplisere det umiddelbart foregående leddet med 2. Hvis vi starter med x 0 = 1, får vi x 0 = 1 x 1 = 2x 0 = 2 1 = 2 x 2 = 2x 1 = 2 2 = 4 x 3 = 2x 2 = 2 4 = 8 x 4 = 2x 3 = 2 8 =

20 Starter vi imidlertid med x 0 = 3, får vi 2 x 0 = 3 2 x 1 = 2x 0 = x 2 = 2x 1 = 2 3 = 6 x 3 = 2x 2 = 2 6 = 12 x 4 = 2x 3 = 2 12 = 24. To mulige løsninger av likningen x n+1 = 2x n er altså følgene som starter med henholdsvis leddene 1, 2, 4, 8, 16,... og 3, 3, 6, 12, 24, Løsningsmetode La oss se hvordan vi finner alle løsningene til likningene på formen (2.1). Vi skal finne følger der leddene fås ved å multiplisere det umiddelbart foregående leddet med r. Hvis vi kaller det første leddet for x 0, får vi x 0 x 1 = rx 0 x 2 = rx 1 = r(rx 0 ) = r 2 x 0 x 3 = rx 2 = r(r 2 x 0 ) = r 3 x 0. Vi øyner nå et system som ser ut til å fortsette og gi at x n er gitt ved x n = r n x 0. Vi kan sjekke dette ved innsetting: Hvis x n = r n x 0, n 0, er da x n+1 = r n+1 x 0 = r(r n x 0 ) = rx n. Det n-te leddet i følgen er altså x n = r n x 0. Siden det første leddet x 0 kan være hvilket som helst tall, får vi uendelig mange løsninger (en for hvert valg 14

21 av x 0 ), og formelen x n = r n x 0 vil gi oss den generelle løsningen til en første ordens lineær homogen differenslikning. For å presentere den generelle løsningen, kaller vi x 0 for C, der C R. Da får vi at (vi setter C-en foran r n istedenfor bak, siden det ser penere ut): Teorem 2.5 Den generelle løsningen til en første ordens lineær homogen differenslikning x n+1 = rx n er følgene x n = Cr n, C R. (2.3) Husk at når vi velger en verdi for C, eventuelt når vi er gitt en initialbetingelse og bruker den til å regne ut C, så får vi en spesiell løsning. Bemerkning 2.6 Grunnen til at vi innførte en generell konstant C for x 0 er at det ikke spiller noen rolle om n 0, n 1 eller n k i Teorem 2.5. Den generelle løsningen kan alltid angis ved (2.3). Eksempel 2.7 For å løse likningen x n+1 = 2 3 x n, n 0 (2.4) setter vi inn 2 3 for r i (2.3), og får generell løsning x n = C( 2 3 )n, C R. Hvis for eksempel C = 1, får vi den spesielle løsningen {( 2 3 )n } = 1, 2 3, 4 9, 8 27,... Hvis vi ønsker en følge som oppfyller likningen (2.4) og i tillegg betingelsen x 1 = 3, finner vi denne ved å regne ut C: Betingelsen x 1 = 3 gir at C 2 3 = 3, 15

22 dvs. C = 9, dermed får vi den spesielle løsningen 2 {( 9 2 )(2 3 )n } = 9 2, 3, 2, 4 3,... Eksempel 2.8 Likningen x n+1 = 2x n, n 0 i Eksempel 2.4 har generell løsning x n = C 2 n, C R. Setter vi C = 1 for vi den spesielle løsningen x n = 2 n = 1, 2, 4, 8, 16, 32,..., mens C = 3 2 gir den spesielle løsningen x n = ( 3 2 )2n = 3, 2, 6, 12, 24, Konvergens av løsninger Hva skjer når n går mot uendelig for følgene som er løsninger av første ordens lineære homogene differenslikninger? Løsningene er på formen og grenseverdien vil avhenge av hva C og r er. x n = Cr n, lim x n = lim Cr n n n Vi minner om at dere har sett dette i 2MX i forbindelse med eksponen- 16

23 tialfunksjoner. Selv om vi nå ser på følger, og ikke funksjoner, vil følger og funksjoner oppføre seg likt med hensyn på å vokse og avta. Konstanten C er lik x 0, som er det første tallet i følgen, så vi kan anta at C 0 (ellers er følgen lik 0, 0, 0,...). Leddene i følgen multipliseres med r for hvert ledd, og hvis dette tallet er mindre enn 1 i absoluttverdi (som skrives r < 1, dvs. 1 < r < 1, fra 2MX), vil leddene bli mindre og mindre, og det n-te leddet vil gå mot 0, noe du kan sjekke ved å eksperimentere litt med kalkulatoren. Hvis r er negativ, vil vi ha en alternerende følge der fortegnet skifter fra ledd til ledd, men leddene blir uansett mindre og mindre i absoluttverdi. Dermed konvergerer følgene mot 0 når r < 1 for alle C. Når r > 1, multipliserer vi med et tall større enn 1 i absoluttverdi for hvert ledd, så leddene blir bare større og større og nærmer seg uendelig. Igjen, hvis r er negativ, vil vi ha en alternerende følge, men leddene blir uansett større og større i absoluttverdi. Dermed divergerer følgene når r > 1 for alle C. Når r = 1, har vi den konstante følgen C, C, C,... som konvergerer mot C. Når r = 1 har vi den alternerende konstante følgen C, C, C, C,... som divergerer (siden C 0). Eksempel 2.9 Løsningene av likningen i Eksempel 2.7 var følgene x n = C( 2 3 )n. Siden r = 2 3 < 1, vil alle løsningene konvergere (mot 0). Følgende tabell oppsummerer denne seksjonen (vi antar at C 0): r < 1 r > 1 r = 1 r = 1 x n = Cr n konvergerer mot 0 divergerer konvergerer mot C divergerer 17

24 2.1.3 Anvendelser La oss se på et par eksempler på problemer som gir opphav til første ordens lineære homogene differenslikning (flere er gitt i oppgavene): Eksempel 2.10 TVBorge forsøker en nysatsning: Reality-TV-programmet 1001 NATT, der vi følger hverdagen til MAT1001-studentene på Blindern. Nysatsningen settes opp på sendeskjemaet hver dag. Antall seere måles hver dag, og vi lar x n være antallet seere den n-te dagen. Den første dagen er det stor oppslutning, og x 1 er svimlende seere! Dessverre viser det seg at interessen daler jevnt og trutt, og antall seere synker med 10% hver dag. TVBorge bestemmer seg for at programmet må tas av skjermen når antall seere er mindre enn Hvor mange dager er MAT1001-studentene TV-stjerner? Følgen {x n } som gir oss antall seere for hver dag vil oppfylle en differenslikning. Siden antallet synker med 10% hver dag, vil vi hver dag sitte igjen med 90% av de seerne vi hadde dagen før, dvs. følgen {x n } vil oppfylle likningen x n+1 = 0.9x n, n 1. (2.5) Dette er en første ordens lineær homogen differenslikning som har generell løsning x n = C(0.9) n, C R. Siden x 1 = , får vi = C 0.9, dvs. C = , så antall seere ved dag n er x n = (0.9) n. Vi vil vite hvilken dag vi har mindre enn seere, dvs. vi må finne n slik at vi har (0.9) n < Ved å dele på får vi ulikheten (0.9) n <

25 For å løse denne, bruker vi logaritmer. (Husk disse fra 2MX. Logaritmer brukes ofte, og spesielt i forbindelse med følger, som vi ser og har sett. Vi bruker den naturlige logaritmen ln, men kunne like godt ha brukt titallslogaritmen log.) Vi tar logaritmen på begge sider, og bruker regneregler for logaritmer som gir n ln(0.9) < ln(0.04) Siden ln til et tall mindre enn 1 er negativt, må vi snu ulikheten når vi deler med ln(0.9): Kalkulatorbruk gir nå n > ln(0.04) ln(0.9). n > 30.1, dvs. n = 31 gir færre enn seere, og MAT1001-studentene er TVstjerner ganske nøyaktig 1 måned! Tenk over dette og de neste eksemplene i sammenheng med det vi skrev i Seksjon 1.3! Neste eksempel viser litt om hvordan det jobbes og tenkes rundt mange av oppgavene dere får (ferdig servert). Vi sier også litt om modellering, noe vi skal si mer om i Kompendium 3. Eksempel 2.11 Vi skal nå studere hvordan en viss type bladlus formerer seg, nærmere bestemt arten pemphigus bursarius, eller poppel-punggallerotlus. De angriper bladene og røttene på salaten vi trenger til smørbrødene våre, men angrepene har faktisk ikke så stor betydning at denne bladlusa bør utryddes. Kort fortalt skjer følgende: På våren føder hunnen levende avkom (med vinger) inne i en galle på bladene på poppel(-trær). Når gallen åpnes flyr lusene til salatplantene. På høsten flyr de tilbake til poplene der de parrer seg, legger egg og overvintrer. Vi lurer på: Hvor mange avkom må hver hunn produsere under gitte betingelser for at ikke bladlusa utryddes? Bladlusa vil utryddes hvis antall hunnkjønn blir mindre og mindre for hver 19

26 generasjon. Dermed må vi først finne et uttrykk for antall hunnkjønn, og så analysere når dette uttrykket blir mindre og mindre. For å finne dette uttrykket må vi enten selv studere bladlusa eller hente inn informasjon fra noen som allerede har gjort det. Vi velger det siste siden vi jobber med matematikk. Det viser seg at alle avkom fra én hunn er inneholdt i én galle, hvorav en viss andel overlever og blir voksne. Hvor mange avkom som produseres og sannsynligheten for overlevelse er tall vi må anta noe om. Disse tallene er parametere (varierer innenfor problemet vi studerer) som vil avhenge av flere faktorer, som for eksempel miljøutfordringer og næringskvalitet. Det enkleste (og mest teoretiske) er å anta at disse tallene ikke forandres, dvs. vi velger en modell der parameterne er konstante. For å gjøre om alt dette til matematikk slik at vi kan regne og finne svar på det vi lurer på, må vi innføre noen symboler: Vi innfører først: x n : antall voksne hunnkjønn i generasjon n Dette er en følge som vi er interessert i og som vil avhenge av flere faktorer: antall avkom som produseres i generasjon n, andel av disse som overlever og andel hunnkjønn blant totalt antall voksne bladlus. Vi trenger dermed også: a n : antall avkom i generasjon n d: andel avkom som dør h: andel hunnkjønn av totalt antall voksne bladlus Da får vi en andel på 1 d som overlever, og antall hunnkjønn i generasjon n + 1 er x n+1 = h(1 d)a n+1. (2.6) Vi vil gjerne finne en differenslikning for følgen {x n }, så uttrykket for a n+1 må helst erstattes med noe, og det får vi til: Siden antall avkom avhenger av antall hunnkjønn i forrige generasjon og antall avkom per hunnkjønn, innfører vi r: antall avkom per hunnkjønn 20

x n+1 rx n = 0. (2.2)

x n+1 rx n = 0. (2.2) Kapittel 2 Første ordens lineære differenslikninger 2.1 Homogene likninger Et av de enkleste eksemplene på en følge fås ved å starte med et tall og for hvert nytt ledd multiplisere det forrige leddet med

Detaljer

Tiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver.

Tiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver. Kapittel 4 Anvendelser av lineære likningssystemer Tiden går og alt forandres, selv om vi stopper klokka Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver 4 Populasjonsdynamikk

Detaljer

Komplekse tall og komplekse funksjoner

Komplekse tall og komplekse funksjoner KAPITTEL Komplekse tall og komplekse funksjoner. Komplekse tall.. Definisjon av komplekse tall. De komplekse tallene er en utvidelse av de reelle tallene. Dvs at de komplekse tallene er en tallmengde som

Detaljer

Sammendrag R1. Sandnes VGS 19. august 2009

Sammendrag R1. Sandnes VGS 19. august 2009 Sammendrag R1 Sandnes VGS 19. august 2009 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A

Detaljer

Sammendrag R1. 26. januar 2011

Sammendrag R1. 26. januar 2011 Sammendrag R1 26. januar 2011 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A B hvis to påstander

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

Forkurshefte i matematikk variant 1

Forkurshefte i matematikk variant 1 Forkurshefte i matematikk variant 1 2014 Inger Christin Borge Matematisk institutt, UiO (Plan for kurset: se side 3) Forord Velkommen til Universitetet i Oslo (UiO), og til forkurs i matematikk! Dette

Detaljer

MA1410: Analyse - Notat om differensiallikninger

MA1410: Analyse - Notat om differensiallikninger Høgskolen i Agder Avdeling for realfag MA40: Analyse - Notat om differensiallikninger Dato: Høsten 2000 Merknader: Dette notatet kommer i tillegg til 4.2 og 6. i læreboka. Ma 40: Analyse skal inneholde

Detaljer

SAMMENDRAG OG FORMLER

SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER Nye Mega 8A Kapittel A GEOMETRI LINJE, LINJESTYKKE OG STRÅLE linje stråle linjestykke VINKLER VINKELBEIN OG TOPPUNKT En vinkel har et toppunkt. Denne vinkelen

Detaljer

Kapittel 2. Antiderivering. 2.1 Derivasjon

Kapittel 2. Antiderivering. 2.1 Derivasjon Kapittel 2 Antiderivering I dette og neste kapittel skal vi bli kjent med noen typer difflikninger og lære hvordan disse kan løses. Til dette trenger vi derivering og antiderivering. 2.1 Derivasjon I Kapittel

Detaljer

Tallregning og algebra

Tallregning og algebra 30 Tallregning og algebra Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer

Detaljer

Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K

Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K ORDINÆR EKSAMEN 11.1.009 Oppgave 1 a) En følge av parallellaksiomet er at samsvarende vinkler ved parallelle linjer er like store.

Detaljer

TRIGONOMETRI KRISTIN LÅGEIDE OG THEA-KAROLINE NOMERSTAD

TRIGONOMETRI KRISTIN LÅGEIDE OG THEA-KAROLINE NOMERSTAD TRIGONOMETRI KRISTIN LÅGEIDE OG THEA-KAROLINE NOMERSTAD Abstract. Oppgaven tar for seg utvalgte temaer innenfor trigonometri, og retter seg mot lærere som skal undervise i fagene 1T og R2. Date: May 7,

Detaljer

n-te røtter av komplekse tall

n-te røtter av komplekse tall . 29. august 2011 Eksponentialform Forrige gang så vi at e iθ = cos θ + i sin θ Dette kan vi bruke til å gjøre polarfremstillingen av komplekse tall mer kompakt: z = a + ib = r(cos θ + i sin θ) = re iθ

Detaljer

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B SAMMENDRAG OG FORMLER Nye Mega 9A og 9B 1 Sammendrag og formler Nye Mega 9A Kapittel A GEOMETRI Regulære mangekanter Når alle sidene er like lange og alle vinklene er like store i en mangekant, sier vi

Detaljer

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform 1 10 Tall og tallregning Studentene skal kunne gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall definere og benytte de anerkjente skrivemåtene for åpne, halvåpne og lukkede intervaller

Detaljer

Tempoplan: Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 4: Algebra

Tempoplan: Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 4: Algebra Tempoplan: Kapittel 5: /1 1/. Kapittel 6: 1/ 1/. Kapittel 7: 1/ 1/4. Resten av tida repetisjon og prøver. 4: Algebra Algebra omfatter tall- og bokstavregninga i matematikken. Et viktig grunnlag for dette

Detaljer

6: Trigonometri. Formlikhet bør kanskje repeteres. Og Pytagoras læresetning. Se nettsidene! Oppgaver Innhold Dato

6: Trigonometri. Formlikhet bør kanskje repeteres. Og Pytagoras læresetning. Se nettsidene! Oppgaver Innhold Dato Plan for hele året: - Kapittel 7: Mars - Kapittel 8: Mars/april 6: Trigonometri - Repetisjon: April/mai - Økter, prøver, prosjekter: Mai - juni Ordet geometri betyr egentlig jord- (geos) måling (metri).

Detaljer

Analyse og metodikk i Calculus 1

Analyse og metodikk i Calculus 1 Analyse og metodikk i Calculus 1 Fredrik Göthner og Raymi Eldby Norges teknisk-naturvitenskapelige universitet 3. desember 01 1 Innhold Forord 3 1 Vurdering av grafer og funksjoner 4 1.1 Hva er en funksjon?.........................

Detaljer

Lineære likningssystemer, vektorer og matriser

Lineære likningssystemer, vektorer og matriser Lineære likningssystemer, vektorer og matriser Kompendium 1 i MAT1001 Matematikk 1 Høsten 2008 Inger Christin Borge Matematisk institutt, UiO Forord Velkommen til Universitetet i Oslo, og til MAT1001!

Detaljer

Lineære likningssystemer, vektorer og matriser

Lineære likningssystemer, vektorer og matriser Lineære likningssystemer, vektorer og matriser Kompendium i MAT00 Matematikk Høsten 2008 Inger Christin Borge Matematisk institutt, UiO Forord Velkommen til Universitetet i Oslo, og til MAT00! Selv om

Detaljer

1.1 Tall- og bokstavregning, parenteser

1.1 Tall- og bokstavregning, parenteser MATEMATIKK: 1 Algebra 1 Algebra 1.1 Tall- og bokstavregning, parenteser Matematikk er et morsomt fag hvis vi får det til. Som på de fleste områder er det er morsomt og givende når vi lykkes. Skal en f.eks.

Detaljer

TALL. 1 De naturlige tallene. H. Fausk

TALL. 1 De naturlige tallene. H. Fausk TALL H. Fausk 1 De naturlige tallene De naturlige tallene er 1, 2, 3, 4, 5,... (og så videre). Disse tallene brukes til å telle med, og de kalles også telletallene. Listen med naturlige tall stopper ikke

Detaljer

11 Nye geometriske figurer

11 Nye geometriske figurer 11 Nye geometriske figurer Det gylne snitt 1 a) Mål lengden og bredden på et bank- eller kredittkort. Regn ut forholdet mellom lengden og bredden. Hvilket tall er forholdet nesten likt, og hva kaller vi

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 3 Geometri

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 3 Geometri QED 5 0 Matematikk for grunnskolelærerutdanningen Bind Fasit kapittel Geometri Kapittel Oppgave a) ( +, + 7) = (4, 9) b) (0, 4 + 5) = (, ) c) ( + 0, + 6) = (, 9) Oppgave a) Vi får vektoren [4, ]. b) Vi

Detaljer

Løsningsforslag Eksamen R1 - REA3022-28.05.2008

Løsningsforslag Eksamen R1 - REA3022-28.05.2008 Løsningsforslag Eksamen R1 - REA3022-28.05.2008 eksamensoppgaver.org September 14, 2008 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i R1 er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

De hele tall har addisjon, multiplikasjon, subtraksjon og lineær ordning, men ikke divisjon.

De hele tall har addisjon, multiplikasjon, subtraksjon og lineær ordning, men ikke divisjon. Innledning til Matematikk Hans Petter Hornæs, hans.hornaes@hig.no Det er ofte vanskelig å komme i gang et fag. Innledningsvis er det gjerne en del grunnleggende begreper som må på plass. Mange studenter

Detaljer

Løsningsforslag til underveiseksamen i MAT 1100

Løsningsforslag til underveiseksamen i MAT 1100 Løsningsforslag til underveiseksamen i MAT 00 Dato: Tirsdag /0, 00 Tid: Kl. 9.00-.00 Vedlegg: Formelsamling Tillatte hjelpemidler: Ingen Oppgavesettet er på sider Eksamen består av 0 spørsmål. De 0 første

Detaljer

Tiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver.

Tiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver. Kapittel 4 Anvendelser av lineære likningssystemer Tiden går og alt forandres, selv om vi stopper klokka Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver 4 Populasjonsdynamikk

Detaljer

Komplekse tall og Eulers formel

Komplekse tall og Eulers formel Komplekse tall og Eulers formel Harald Hanche-Olsen 2011-03-24 1. Oppvarming Jeg vil anta at leseren er kjent med komplekse tall, men vil likevel si noen ord om temaet. Naivt kan man starte med bare å

Detaljer

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at Ekstranotat, 7 august 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser og brøker... Funksjoner...3 Tilvekstform (differensialregning)...4 Telleregelen...7 70-regelen...8

Detaljer

Kapittel 5. Trær og nettverk. 5.1 Trær og Fibonacci-følgen

Kapittel 5. Trær og nettverk. 5.1 Trær og Fibonacci-følgen Kapittel 5 Trær og nettverk Vi har sett at anvendelser av differenslikninger studerer fenomener som skjer i adskilte tidsrom, dvs. vi ser på diskrete anvendelser (jfr. Seksjon 1.3). I dette kapittelet

Detaljer

Løsningsforslag 1T Eksamen. Høst 27.01.2012. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag 1T Eksamen. Høst 27.01.2012. Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag 1T Eksamen 6 Høst 27.01.2012 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

Emne 11 Differensiallikninger

Emne 11 Differensiallikninger Emne 11 Differensiallikninger Differensiallikninger er en dynamisk beskrivelse av et system eller en prosess, basert på de balanselikningene vi har satt opp for prosessen. (Matematisk modellering). Vi

Detaljer

Løsningsforslag AA6524 Matematikk 3MX 3. juni 2005. eksamensoppgaver.org

Løsningsforslag AA6524 Matematikk 3MX 3. juni 2005. eksamensoppgaver.org Løsningsforslag AA654 Matematikk 3MX 3. juni 005 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

Brukerveiledning for webapplikasjonen. Mathemateria 01.02.2015. Terje Kolderup

Brukerveiledning for webapplikasjonen. Mathemateria 01.02.2015. Terje Kolderup Brukerveiledning for webapplikasjonen Mathemateria 01.02.2015 Terje Kolderup Innhold Brukerveiledning for webapplikasjonen...1 Mathemateria...1 Introduksjon...3 Typisk eksempel og bryterstyring...3 Innlogging...4

Detaljer

REGEL 1: Addisjon av identitetselementer

REGEL 1: Addisjon av identitetselementer REGEL 1: Addisjon av identitetselementer Addisjon av identitetselementer a + 0 = a x + 0 = x Et identitetselement (nøytralt element) er et element som ikke medfører noen endring når det kombineres med

Detaljer

Regelbok i matematikk 1MX og 1MY

Regelbok i matematikk 1MX og 1MY Regelbok i matematikk 1MX og 1MY Utgave 1.4 Skrevet av Bjørnar Tollaksen. Hele regelboka er et sammendrag av læreboka. Dette er ment som et supplement til formelheftet, ikke en erstatning. Skrivefeil kan

Detaljer

Oppgaver i matematikk 19-åringer, spesialistene

Oppgaver i matematikk 19-åringer, spesialistene Oppgaver i matematikk 19-åringer, spesialistene I TIMSS 95 var elever i siste klasse på videregående skole den eldste populasjonen som ble testet. I matematikk ble det laget to oppgavetyper: en for elever

Detaljer

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015 Ekstranotat, februar 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser, brøk og potenser... Funksjoner...4 Tilvekstform (differensialregning)...5 Nyttige tilnærminger...8

Detaljer

Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009. Hossein Rostamzadeh

Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009. Hossein Rostamzadeh Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009 Hossein Rostamzadeh 5. mai 2009 2 Kapittel 1 Algebra 1.1 Brøkregler 1.1.1 Addisjon av brøker a b + c d =

Detaljer

KRITISK BLIKK PÅ NOEN SKOLEBØKER I MATEMATIKK.

KRITISK BLIKK PÅ NOEN SKOLEBØKER I MATEMATIKK. KRITISK BLIKK PÅ NOEN SKOLEBØKER I MATEMATIKK. Som foreleser/øvingslærer for diverse grunnkurs i matematikk ved realfagstudiet på NTNU har jeg prøvd å skaffe meg en viss oversikt over de nye studentenes

Detaljer

H. Aschehoug & Co www.lokus.no Side 1

H. Aschehoug & Co www.lokus.no Side 1 1 Bli kjent med GeoGebra GeoGebra er et dynamisk geometriprogram. Det vil si at vi kan gjøre en del endringer på figurene vi tegner, uten å måtte tegne dem på nytt, figuren endres dynamisk. Dette gir oss

Detaljer

Løsningsforslag Eksamen eksempeloppgave R1 - REA3022 - Desember 2007

Løsningsforslag Eksamen eksempeloppgave R1 - REA3022 - Desember 2007 Løsningsforslag Eksamen eksempeloppgave R1 - REA022 - Desember 200 eksamensoppgaver.org October 2, 2008 eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksempeloppgave i R1

Detaljer

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 2014 kl. 14 Antall oppgaver: 13

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 2014 kl. 14 Antall oppgaver: 13 Innlevering FO99A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 014 kl. 14 Antall oppgaver: 13 Løsningsforslag 1 Finn volumet til tetraederet med hjørner O(0,

Detaljer

Løsningsforslag heldagsprøve våren 2010 1T

Løsningsforslag heldagsprøve våren 2010 1T Løsningsforslag heldagsprøve våren 00 T DEL OPPGAVE a) Regn ut x x x x x x x x x x 9x x x x x 6x x x x 6x x 6x b) Løs likninga x x 6 x x 6 x x 6 x x 6 x x x x c) Løs likningssettet ved regning x y x y

Detaljer

3.9 Teori og praksis for Minste kvadraters metode.

3.9 Teori og praksis for Minste kvadraters metode. 3.9 Teori og praksis for Minste kvadraters metode. Vi fortsetter med minste kvadraters problem. Nå skal vi se nærmere på noen teoretiske spørsmål, bl.a. hvordan normallikningene utledes. Minner om MK problemstillingen:

Detaljer

Sammendrag kapittel 9 - Geometri

Sammendrag kapittel 9 - Geometri Sammendrag kapittel 9 - Geometri Absolutt vinkelmål (radianer) Det absolutte vinkelmålet til en vinkel v, er folholdet mellom buelengden b, og radien r. Buelengde v = b r Med v i radianer! b = r v Omregning

Detaljer

Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat. Av Sigbjørn Hals

Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat. Av Sigbjørn Hals Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat Av Sigbjørn Hals 1 Innhold Hva er matematikktillegget for Word?... 2 Nedlasting og installasjon av matematikktillegget for Word...

Detaljer

Løsningsforslag 1T Eksamen. Høst 24.11.2011. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag 1T Eksamen. Høst 24.11.2011. Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag 1T Eksamen 6 Høst 4.11.011 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

Forelesning 22 MA0003, Mandag 5/11-2012 Invertible matriser Lay: 2.2

Forelesning 22 MA0003, Mandag 5/11-2012 Invertible matriser Lay: 2.2 Forelesning 22 M0003, Mandag 5/-202 Invertible matriser Lay: 2.2 Invertible matriser og ligningssystemet x b Ligninger på formen ax b, a 0 kan løses ved å dividere med a på begge sider av ligninger, noe

Detaljer

Velkommen til eksamenskurs i matematikk 1

Velkommen til eksamenskurs i matematikk 1 Velkommen til eksamenskurs i matematikk 1 Haakon C. Bakka Institutt for matematiske fag 4.-5. desember 2010 Program I dag og i morgen skal vi holde på fra 10-16 med en pause fra 13-14. Vi skal gjennom:

Detaljer

Programmering i Java med eksempler

Programmering i Java med eksempler Simulering av differenslikninger Programmering i Java med eksempler Forelesning uke 39, 2006 MAT-INF1100 Differenslikn. p. 1 Løsning av differenslikninger i formel Mulig for lineære likninger med konst.

Detaljer

I Katalog velger du: Ny eksamensordning i matematikk våren 2015

I Katalog velger du: Ny eksamensordning i matematikk våren 2015 CAS teknikker H-P Ulven 10.12.2014 Innledning Våren 2015 gjelder nye regler for bruk av digitale hjelpemidler: Når det står "Bruk CAS", så må kandidaten bruke CAS, og når det står "Bruk graftegner", så

Detaljer

wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue

wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, også regner symbolsk. Det vil si

Detaljer

Tempoplan: Kapittel 4: 8/11 14/12. Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver.

Tempoplan: Kapittel 4: 8/11 14/12. Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. Tempoplan: Kapittel 4: 8/11 14/1. Kapittel 5: /1 1/. Kapittel 6: 1/ 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 3: Vektorer Dette kapitlet er meget spesielt og annerledes enn den matematikken

Detaljer

Emne 9. Egenverdier og egenvektorer

Emne 9. Egenverdier og egenvektorer Emne 9. Egenverdier og egenvektorer Definisjon: Vi starter med en lineær transformasjon fra til, hvor Dersom, hvor, sier vi at: er egenverdiene til A er tilhørende egenvektorer. betyr at er et reelt eller

Detaljer

Forord. Molde, august 2011. Per Kristian Rekdal. Copyright c Høyskolen i Molde, 2011.

Forord. Molde, august 2011. Per Kristian Rekdal. Copyright c Høyskolen i Molde, 2011. 1 13. august 011 Forord Høgskolen i Molde gjennomfører forkurs i matematikk for studenter som har svakt grunnlag i dette faget, eller som ønsker å friske opp gamle kunnskaper. Formål: Målet med forkurset

Detaljer

Vi anbefaler at elevene blir introdusert for likninger via en praktisk problemstilling. Det kan for eksempel være:

Vi anbefaler at elevene blir introdusert for likninger via en praktisk problemstilling. Det kan for eksempel være: Likninger og algebra Det er større sprang fra å regne med tall til å regne med bokstaver enn det vi skulle tro. Vi tror at både likninger og bokstavregning (som er den algebraen elevene møter i grunnskolen)

Detaljer

Eksamensoppgavehefte 2. MAT1012 Matematikk 2: Mer lineær algebra

Eksamensoppgavehefte 2. MAT1012 Matematikk 2: Mer lineær algebra Eksamensoppgavehefte 2 MAT1012 Matematikk 2: Mer lineær algebra Matematisk institutt, UiO, våren 2010 I dette heftet er det samlet et utvalg av tidligere eksamensoppgaver innenfor temaet Lineær algebra

Detaljer

Matematikk 01 - Matematikk for data- og grafiske fag.

Matematikk 01 - Matematikk for data- og grafiske fag. Høgskolen i Gjøvik Avdeling for teknologi Versjon per. juni 004 Matematikk 0 - Matematikk for data- og grafiske fag. y x Hans Petter Hornæs hans.hornaes@hig.no Forord Dette kompendiet er skrevet for faget

Detaljer

Sinus 1T > Tallregning og algebra

Sinus 1T > Tallregning og algebra 8 Sinus T book.indb 8 Sinus T > Tallregning og algebra 04-0- 6:7:0 Tallregning og algebra MÅL for opplæringen er at eleven skal kunne regne med rotuttrykk, potenser med rasjonal eksponent og tall på standardform,

Detaljer

Potensrekker. Binomialrekker

Potensrekker. Binomialrekker Potensrekker Potensrekker er rekker på formen: Potensrekker kan brukes på en rekke områder for å finne tilnærmede eller eksakte løsninger på problemer som ellers kanskje må løses numerisk eller krever

Detaljer

Eksamensoppgavehefte 1. MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler

Eksamensoppgavehefte 1. MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler Eksamensoppgavehefte 1 MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler Matematisk institutt, UiO, våren 2010 I dette heftet er det samlet et utvalg av tidligere eksamensoppgaver innenfor

Detaljer

Kapittel 5. Lengder og areal

Kapittel 5. Lengder og areal Kapittel 5. Lengder og areal Dette kapitlet handler om å: Beregne sider i rettvinklede trekanter med Pytagoras setning. Beregne omkrets av trekanter, firkanter og sirkler. Beregne areal av enkle figurer,

Detaljer

Krasjkurs MAT101 og MAT111

Krasjkurs MAT101 og MAT111 Krasjkurs MAT101 og MAT111 Forord Disse notatene ble skrevet under et åtte timer (to firetimers forelesninger) i løpet av 10. og 11. desember 2012. Det er mulig at noen av utregningene ikke stemmer, enten

Detaljer

Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1

Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1 Eksamen i BYPE2000 - Matematikk 2000 Dato: 6. juni 2014 Målform: Bokmål Antall oppgaver: 7 (20 deloppgaver) Antall sider: 4 Vedlegg: Noen formler Hjelpemiddel: Ingen Alle svarene skal grunngis. Alle deloppgavene

Detaljer

Algebra. Likningsløsning. tasten) for å komme ned til S, og bla videre nedover til du finner solve(.

Algebra. Likningsløsning. tasten) for å komme ned til S, og bla videre nedover til du finner solve(. Algebra Algebra blir ofte referert til som bokstavregning, selv om man nok mister noe av det helhetlige bildet ved å holde seg til en slik oppfatning. Vi velger her å ta med ting som likningsløsning og

Detaljer

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1008 Matematikk T Eksamen 30.11.009 Bokmål MAT1008 Matematikk T HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en

Detaljer

Prøveinformasjon. Høsten 2014 Bokmål

Prøveinformasjon. Høsten 2014 Bokmål Høsten 2014 Bokmål Navn: Gruppe: Prøveinformasjon Prøvetid: Hjelpemidler på Del 1 og Del 2: Framgangsmåte og forklaring: 5 timer totalt. Del 1 og Del 2 blir utdelt samtidig. Del 1 skal du levere innen

Detaljer

SINUS R1, kapittel 5-8

SINUS R1, kapittel 5-8 Løsning av noen oppgaver i SINUS R1, kapittel 5-8 Digital pakke B TI-Nspire Enkel kalkulator (Sharp EL-506, TI 30XIIB eller Casio fx-82es) Oppgaver og sidetall i læreboka: 5.43 c side 168 5.52 side 173

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Innstillinger................................... 5 2 Regning 5 2.1 Tallregning...................................

Detaljer

Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009. Hossein Rostamzadeh

Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009. Hossein Rostamzadeh Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009 Hossein Rostamzadeh 6. mai 2009 2 Kapittel 1 Algebra 1.1 Brøkregler 1.1.1 Addisjon av brøker a b + c d =

Detaljer

Kapittel 7. Lengder og areal

Kapittel 7. Lengder og areal Kapittel 7. Lengder og areal Dette kapitlet handler om å: Beregne sider i rettvinklede trekanter med Pytagoras setning. Beregne omkrets av trekanter, firkanter og sirkler. Beregne areal av enkle figurer,

Detaljer

KURSHEFTE TIL FORKURS I MATEMATIKK

KURSHEFTE TIL FORKURS I MATEMATIKK KURSHEFTE TIL FORKURS I MATEMATIKK Variant av Magnus Dehli Vigeland UNIVERSITETET I OSLO MATEMATISK INSTITUTT Innhold Oppvarming 3. Noen viktige tallmengder. Notasjon.................... 3. Mer om mengder.............................

Detaljer

ÅRSPLAN. Grunnleggende ferdigheter

ÅRSPLAN. Grunnleggende ferdigheter ÅRSPLAN Skoleåret: 2015/16 Trinn: 5 Fag: Matematikk Utarbeidet av: Trine og Ulf Mnd. Kompetansemål Læringsmål (delmål) kriterier for måloppnåelse Aug Sep Okt Nov Beskrive og bruke plassverdisystemet for

Detaljer

plassere negative hele tall på tallinje

plassere negative hele tall på tallinje Kompetansemål etter 7. trinn Tall og algebra: 1. beskrive plassverdisystemet for desimaltall, regne med positive og negative hele tall, desimaltall, brøker og prosent, og plassere dem på tallinje 2. finne

Detaljer

Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 2003

Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 2003 Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 003 Denne prøveeksamenen har samme format som den virkelige eksamenen, og inneholder oppgaver av samme type og vanskelighetsgrad. Første del av eksamen

Detaljer

Mer om likninger og ulikheter

Mer om likninger og ulikheter Mer om likninger og ulikheter Studentene skal kunne utføre polynomdivisjon anvende nullpunktsetningen og polynomdivisjon til faktorisering av polynomer benytte polynomdivisjon til å løse likninger av høyere

Detaljer

0.1 Kort introduksjon til komplekse tall

0.1 Kort introduksjon til komplekse tall Enkel introduksjon til matnyttig matematikk Vi vil i denne innledningen introdusere litt matematikk som kan være til nytte i kurset. I noen tilfeller vil vi bare skrive opp uttrykk uten å komme inn på

Detaljer

Kalkulus 1. Et sentralt begrep i kalkulus (matematisk analyse) er grensebegrepet. Ofte ser vi på grenser for funksjoner eller grenser for tallfølger.

Kalkulus 1. Et sentralt begrep i kalkulus (matematisk analyse) er grensebegrepet. Ofte ser vi på grenser for funksjoner eller grenser for tallfølger. Kalkulus 1 Grenser Et sentralt begrep i kalkulus (matematisk analyse) er grensebegrepet. Ofte ser vi på grenser for funksjoner eller grenser for tallfølger. Vi sier at funksjonen f(x) har en grense f(a)

Detaljer

EKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014

EKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014 EKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014 Matematikk R2 Oversikt over hovedområdene: Programfag Hovedområder Matematikk R1 Geometri Algebra Funksjoner Matematikk R2 Geometri Algebra Funksjoner

Detaljer

Kort innføring i polynomdivisjon for MAT 1100

Kort innføring i polynomdivisjon for MAT 1100 Kort innføring i polynomdivisjon for MAT 1100 I dette notatet skal vi se litt på polynomdivisjon. Mange vil kjenne denne teknikken fra før, men etter siste læreplanomlegning er den ikke lenger pensum i

Detaljer

Hovedtema Kompetansemål Delmål Arbeidsmetode Vurdering

Hovedtema Kompetansemål Delmål Arbeidsmetode Vurdering Kyrkjekrinsen skole Plan for perioden: 2012-2013 Fag: Matematikk År: 2012-2013 Trinn og gruppe: 9. trinn Lærer: Torill Birkeland Uke Årshjul Geometri Hovedtema Kompetansemål Delmål Arbeidsmetode Vurdering

Detaljer

Matematikk og fysikk RF3100

Matematikk og fysikk RF3100 DUMMY Matematikk og fysikk RF300 Løsningsforslag 23. januar 205 Tidsfrist: 30.januar 205 Oppgave a) Gjør om til kanoniske polarkoordinater, d.v.s. (r, θ)-koordinater innenfor området r 0 og 80 < θ < 80.

Detaljer

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning Lineær Algebra og Vektorrom Eivind Eriksen Høgskolen i Oslo, Avdeling for Ingeniørutdanning c Eivind Eriksen 2005. Innhold Kapittel 1. Lineære likningssystemer 1 1.1. Lineære likningssystemer i to variable

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR Side 1 av 9

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR Side 1 av 9 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2016-2017 Side 1 av 9 Periode 1: UKE 33-UKE 39 Tema: Tall og tallforståelse sammenligne og omregne hele tall,

Detaljer

Sammendrag kapittel 1 - Aritmetikk og algebra

Sammendrag kapittel 1 - Aritmetikk og algebra Smmendrg kpittel 1 - Aritmetikk og lgebr Regneregler for brøker Utvide brøk: Gng med smme tll i teller og nevner. b = k b k Forkorte brøk: del med smme tll i teller og nevner. b = : k b : k Summere brøker:

Detaljer

Finn volum og overateareal til følgende gurer. Tegn gjerne gurene.

Finn volum og overateareal til følgende gurer. Tegn gjerne gurene. Innlevering FO99A - Matematikk forkurs HIOA Obligatorisk innlevering Innleveringsfrist Fredag oktober 01 kl 1:00 Antall oppgaver: 16 Løsningsforslag 1 Finn volum og overateareal til følgende gurer Tegn

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015 Periode 1: UKE 34-38 Tema: Kap.1 «Tall og tallforståelse» sammenligne og omregne hele tall ( ) og tall på standardform,

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO929A Matematikk Prøve-eksamen Dato 13. desember 2007 Tidspunkt 09.00-1.00 Antall oppgaver Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 a) Likningen

Detaljer

ARBEIDSHEFTE I MATEMATIKK

ARBEIDSHEFTE I MATEMATIKK ARBEIDSHEFTE I MATEMATIKK Temahefte nr 4 Hvordan du regner med bokstaver, likninger og formler (elementær algebra) Detaljerte forklaringer Av Matthias Lorentzen mattegrisenforlag.com 1 Opplsning: Faste,

Detaljer

Geometri Verktøylinja i GeoGebra Konstruksjon / tegning Konstruksjonsforklaring Normaler, paralleller og vinkler Mangekant, areal og omkrets

Geometri Verktøylinja i GeoGebra Konstruksjon / tegning Konstruksjonsforklaring Normaler, paralleller og vinkler Mangekant, areal og omkrets 2 Geometri Verktøylinja i GeoGebra Konstruksjon / tegning Konstruksjonsforklaring Normaler, paralleller og vinkler Mangekant, areal og omkrets Eksamensoppgaver 0 Innholdsfortegnelse INTRODUKSJON GEOGEBRA...

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2015-2016. Side 1 av 9

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2015-2016. Side 1 av 9 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2015-2016 Side 1 av 9 Periode 1: UKE 34-UKE 39 Tema: Statistikk gjennomføre undersøkelser og bruke databaser

Detaljer

Løsningsforslag til utvalgte oppgaver i Kalkulus. Øyvind Ryan

Løsningsforslag til utvalgte oppgaver i Kalkulus. Øyvind Ryan Løsningsforslag til utvalgte oppgaver i Kalkulus Øyvind Ryan. november 4 Innhold Kapittel 3 Seksjon.................................. 3 Seksjon.................................. 3 Seksjon.4.................................

Detaljer

1T og 1P på Studiespesialiserende

1T og 1P på Studiespesialiserende 1T og 1P på Studiespesialiserende Snart skal du velge hvilket matematikkurs du ønsker å følge på VG1. Valget ditt på VG1, kommer også å påvirke dine valgmulighetene på VG2 og VG3. Vi ønsker derfor å informere

Detaljer

1T 2014 høst LØSNING 25000000000 0, 0005 = 2, 5 10 10 5 10 4 = 12, 5 10 6 = 1, 25 10 7. 2 2+ x 2 = 2 4 x 2 4 + x = 8 x = 4

1T 2014 høst LØSNING 25000000000 0, 0005 = 2, 5 10 10 5 10 4 = 12, 5 10 6 = 1, 25 10 7. 2 2+ x 2 = 2 4 x 2 4 + x = 8 x = 4 3/8/06 T 0 høst LØSNING - matematikk.net T 0 høst LØSNING Contents Diskusjon av denne oppgaven Løsning av del Matteprat spørsmål om oppgave 6 del DEL EN Oppgave 5000000000 0, 0005 =, 5 0 0 5 0 =, 5 0 6

Detaljer

Manual for wxmaxima tilpasset R2

Manual for wxmaxima tilpasset R2 Manual for wxmaxima tilpasset R Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, også regner symbolsk. Det vil si at den kan forenkle uttrykk,

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte Dato: vår 5 ENDRE Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver ar lik vekt. Oppgave a Gitt matrisene A regn ut A + B, AB. Løsningsforslag 4 og B 7 5 Vi

Detaljer