EKSAMENSOPPGÅVER Haust 1995 FRAMLEGG TIL LØYSING Erling Berge

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "EKSAMENSOPPGÅVER Haust 1995 FRAMLEGG TIL LØYSING Erling Berge"

Transkript

1 1 EKSAMENSOPPGÅVER Haust 1995 FRAMLEGG TIL LØYSING Erling Berge Norges Teknisk Naturvitskapelege Universitet «Bruksanvisning» Når ein går igang med å løyse oppgåver må ein ha i minnet at oppgåvene ofte er problematiske i høve til modellbygginga sitt krav om at modellen må vere fundert på den best tilgjengelege teorien. Mangelen på teoretisk fundament for oppgåvene kan forsvarast ut frå to perspektiv. Det avgjerande er rett og slett mangelen på tid og høvelege data for å lage eksamensoppgåver av den «realistiske» typen det er tale om her. Men tar ein for gitt at oppgåvene sjeldan kan seiast å vere teoretisk velfundert, gir jo dette studentane lettare gode poeng i arbeidet med å vurdere modellane kritisk ut frå spesifikasjonskravet. Når ein studerer framlegga til løysingar er det viktig å vere klar over at det som er presentert ikkje er nokon fasit. Dei fleste oppgåvene kan løysast på mange måtar. Dei tekniske sidene av oppgåvene er sjølvsagt eintydige. Men i dei mange vurderingane (som t.d. «Er denne residualen tilstrekkeleg nær normalfordelinga til at vi kan tru på testane?») er det nett vurderingane og argumentasjonen som er det sentrale. På eksamen er tida knapp. Svært få rekk i eksamenssituasjonen å gjere grundig arbeid på heile oppgåvesettet. I arbeidet med dette løysingsframlegget har det vore gjort meir arbeid enn det som ein ventar å finne til eksamen. Somme stader er det teke med meir detaljar i utrekningar og tilleggsstoff som kan vere relevant, men ikkje nødvendig. Men det er ikkje gjort like grundig alle stader. Det må takast atterhald om feil og lite gjennomtenkte vurderingar. Underteikna har like stor kapasitet til å gjere feil som andre. Kritisk lesning av studentar er den beste kvalitetskontroll ein kan ønskje seg. Den som finn feil eller som meiner andre vurderingar vil vere betre, er hermed oppfordra til å seie frå (t.d. på ) Erling Berge 2000

2 2 Oppgåve 1 a) Når ein utfører regresjonsanalysar vert ofte Gauss-Markov krava og føresetnaden om normalitet stikkordsmessig referert til ved "ein går ut frå at den lineære modellen er korrekt med normale, uavhengige og identisk fordelte feil". Forklar kva dette tyder. Dette tyder stikkordmessig: i. Modellen er korrekt *alle relevante variablar er med *ingen irrelevante er med *lineær i parametrane ii. Gauss-Markov krava *Faste x-verdiar *Feilleddet har forventning 0 for alle i,dvs: E(ε i )=0 for alle i *Feilleddet har konstant varians (homoskedastisitet) dvs: var(ε i )=σ 2 for alle i *Feilledda er ukorrelerte med kvarandre (ikkje autokorrelasjon) dvs: cov(ε i,ε j ) = 0 for i j iii. Normalitetskravet *Feilleddet er normalfordelt, dvs: ε i ~ N(0, σ 2 ) for alle i

3 3 b) Forklar kva som er meint med heteroskedastisitet, kva for konsekvensar det har for OLS-regresjonar, kva som kan gjerast for å oppdage det og korleis ein kan ta omsyn til det i analysen. definisjon *Feilleddet sin varians endrar seg systematisk med nivået på X variablane konsekvensar *Skeivt estimat av standardfeilen på koeffesientane *Testane gjelds ikkje *(+ høg varians på estimatet av koeffesientane ) oppdagast *Absoluttverdi av residual mot estimert verdi på avhengig variabel (eventuelt i band regresjon ) *Leverage plott tiltak *Dersom H. skuldast ikkje-linearitet eller annan feilspesifikasjon kan transformasjonar eller inklusjon av utelatt variabel betre situasjonen *Dersom H. skuldast innflytesesrike case bør desse drøftast og eventuelt korrigerast, vektast ned (robust regresjon) eller utelatast *Dersom H. skuldast avgrensa variasjon i avhengig variabel kan 2-stegs OLS-regresjon - eller logistisk regresjon - betre situasjonen (om den gir meining). *2-stegs OLS regresjon og somme teknikkar for robust regresjon kan nyttast generelt

4 4 Oppgåve 2 Nedanfor er det kopi av utskrifter frå ein regresjonsanalyse av Eiga inntekt på variablane Kvinne, Alder, Eiga utdanning, Mors utdanning og Fars utdanning. a) Skriv opp modellen som er estimert, og forklar kva resultatet tyder. La Y=Eiga innt X 1 =Kvinne X 2 =Alder X 3 =Alder** 2 X 4 =Fars utd X 5 =Mors utd X 6 =Eiga utd X 7 =Kvinne*FU X 8 =Kvinne*MU Modellen som er estimert kan skrivast Y i = β 0 + β 1 X i1 + β 2 X i2 + β 3 X i3 + β 4 X i4 + β 5 X i5 + β 6 X i6 + β 7 X i7 + β 8 X i8 + ε ι Ein går i denne modellen ut frå alle relevante forklaringsvariablar er med i regresjonen og at ε i er uavhengige og identisk normalfordelte for alle i som er med i populasjonen. Tabellvedlegget viser oss at regresjonskoeffesientane er signifikant ulik null på 1% nivå for alle variablar unntatt X 4 og X 7. Vi kan dermed sette at β 4 og β 7 må vere lik 0. Strengt tatt kan ein seie at dei to variablane X 4 og X 7 ikkje burde vore teke med i modellen. At dei er med har imidlertid ikkje substansielle konsekvensar for analysen ut over det at variansestimata for dei andre parametrane blir noko større enn dei ville vore i ein modell der desse var utelatt. Den estimerte modellen viser at estimert eiga inntekt for person i, _ Y(i) = * Kvinne (i) * Alder (i) * Alder** 2 (i) * Mors utd (i) * Eiga utd (i) * Kvinne*MU (i), i= 1,..., 2434

5 5 Det tyder t.d. * at kvinner som har mor med 0 års utdanning i gjennomsnitt tener kr kroner mindre enn menn i same situasjon om alt anna er likt * at kvinner som har mor i lågaste utdanningsgruppa, 7 års utdanning, tener kr kroner mindre enn menn om alt anna er likt * at når alt anna er likt vil inntekta variere med alder etter polynomet * Alder (i) * Alder**2 (i) (alder i år og inntekt i tusen) * at når alt anna er likt vil ein auke i eiga utdanning med eitt år føre til at inntekta i gjennomsnitt aukar med kr * at når alt anna er likt og mors utdanning aukar med eitt år, vil inntekta i gjennomsnitt minke med for menn. Den signifikante koeffesienten for X 8 viser at det er ein interaksjon mellom kjønn og mors utdanning slik at når mors utdanning veks med eitt år vil kvinners lønn auke med ( )=30 om alt anna er likt. Effekten av mors utdanning er totalt sett liten for kvinner (for kvart år mors utdanning aukar, veks kvinnas inntekt med 30 kroner), medan menn si inntekt minkar til høgare utdanning mor har. Justert for talet på variablar forklarer denne modellen ca 39% av variasjonen i inntekt. Resultata er basert på svara til 2434 personar. I gjennomsnitt har desse personane ei inntekt på ,90. Svara er imidlertid gitt i form av ordinalskalaer slik at vi har mindre variasjon i den avhengige variabelen og i utdanningsvariablane enn det ein ideelt ville vente. Dette gir mindre korrelasjonar og svakare effektar enn det vi ville vente med vanlege variablar. Det fører også til at modellen vil vere påverka av heteroskedastisitet. Testobservatorane som er rapportert (t-verdiar og F-vardiar) er dermed upålitelege. Storleiken på utvalet og det faktum at parameterestimata framleis er forventningsrett estimert gir eit visst grunnlag for å akseptere dei meir generelle resultata som t.d. forteiknet på effektane og storleiken av parametrane. Heile modellen testa mot nullhypotesen om ingen effekt av inkluderte variablar gir ein F-verdi på 196,37 med 8 og 2425 fridomsgrader.

6 6 b) Finn forventa inntekt for ein 34 år gammal mann med 14 års utdanning når far hans hadde 7 års utdanning og mor hans hadde 9. Forklar korleis interaksjonstermen Kvinne*FU verkar på forventa inntekt for denne personen. Forventa inntekt for ein 34 år gammal mann med 14 års udanning når far hans hadde 7 års utdanning og mor hans hadde 9. Forklar korleis interaksjonstermen Kvinne*FU verkar på forventa inntekt for denne personen. _ y = * Kvinne (i) * Alder (i) * Alder**2 (i) * Mors utd (i) * Eiga utd (i) * Kvinne*MU (i) = * * * 34** * * * 0*9 = * * * * 14 = ,74-127,16-45, ,66 = 204,29 Forventa inntekt for denne personen er kroner. Dersom Fars utd er inkludert får vi eit tillegg på 1.13*7=9,1; dvs 9100 kroner. Da får vi Andre avrundingar av koeffesientane vil gi andre tal. Interaksjonstermen har ikkje verknad for menn sidan variabelen Kvinne har verdien 0 for alle menn. Heile termen vert derfor lik 0.

7 7 c) Finn eit 95% konfidensintervall for regresjonskoeffesienten til Eiga utdanning. Finn også den standardiserte regresjonskoeffesienten frå Eiga utdanning til Eiga inntekt. Regresjonskoeffesienten for Eiga utdanning er på 9.68 med ein standardfeil på Under føresetnaden om tilnærma normalfordelte feil og at den sanne parameterverdien er β k, vil observatoren t = (b k - β k )/ SE bk vere t-fordelt med n-k fridomsgrader, der K=talet på parametrar i modellen. I modellen her har vi n=2434 og K=9, dvs 2525 fridomsgrader. Dette tyder at i det lange løp, med utrekning av t ved hjelp av b k og SE bk i mange utval, vil vi finne at 2,5% av t-verdiane vil vere større enn enn 1,96 og 2,5% mindre enn -1,96. I 95% av situasjonane vil vi finne at den verkelege parameterverdien β k vil ligge mellom b k *SE bk og b k *SE bk, dvs.: b k *SE bk < β k <b k *SE bk For Eiga utdanning tyder det at regresjonskoeffesienten vil ligge mellom *0.57 og *0.57 eller med andre ord: Intervallet 8,56 til 10,80 er eit 95% konfidensintervall for regresjonskoeffesienten til Eiga utdanning. Den standardiserte regresjonskoeffesienten frå Eiga utdanning til Eiga inntekt blir p k = b k* (s x /s y ) = 9,69*2,78/85,22=0,3161 d) Forklar kvifor både Alder og alder kvadrert (Alder **2) er inkludert i regresjonen og korleis dette verkar på analysen. Dersom det var tvil om at begge aldersledda ytte ein signifikant del til å forklare variasjonen i inntekt, korleis kunne ein teste det? Når ein legg inn i regresjonen både alder og alder kvadrert tyder det at samanhengen mellom eiga inntekt og alder vert modellert med eit andregradspolynom, y = * Alder (i) * Alder** 2 (i), der den partielle samanhengen mellom alder og inntekt når eit toppunkt når den partielt deriverte, y' = * Alder = 0, dvs for Alder = 48,2 år. Mellom ein 20 åring og ein 48 åring vil vi vente å finne ein skilnad i inntekt på om alt anna er likt. Med eit slikt polynom vil ein bygge inn multikollinearitet i modellen, standardfeilen til koeffesientestimata blir stor og testane for koeffesientestimata for alder og alder kvadrert vil dermed bli upresise.

8 8 Oppgåve 3 På same datamaterialet som i oppgåve 2 er det gjort ein regresjon av Eiga inntekt på Kvinne, Alder, Fars utdanning, Mors utdanning og Eiga utdanning, og ein regresjon av Eiga utdanning på Kvinne, Alder, Fars utdanning og Mors utdanning. Resultata kan nyttast til lage ein enkel strukturmodell for variablane i analysen. a) Skriv opp dei likningane som vil definere strukturmodellen. Bruk dei symbola som er nytta i Ringdal si bok. Skriv på grunnlag av vedlagde tabell opp korrelasjonsmatrisa for variablane i modellen og lag eit stidiagram som viser signifikante stiar saman med uspesifiserte korrelasjonar over 0,3. La Y 2 =Eiga innt Y 1 =Eiga utd X 1 =Kvinne X 2 =Alder X 3 =Fars utd X 4 =Mors utd Vi går ut frå at variablane her er standardiserte. Likningane som definerer strukturmodellen kan då skrivast Y 2 = β 21 Y 1 + γ 21 X 1 + γ 22 X 2 + γ 23 X 3 + γ24x 4 + ζ 2 Y 1 = γ 11 X 1 + γ 12 X 2 + γ 13 X 3 + γ14x 4 + ζ 1 Vi går ut frå at krava til OLS regresjon er oppfyllt og at feilledda er ukorrelerte med kvarandre. Korrelasjonsmatrisa som høyrer saman med modellen er gitt ved følgande utdrag fra den vedlagte tabellen: Variable Kvinne Alder Fars utd Mors utd Eiga utd Alder -0,0440 Fars utd 0,0130-0,3588 Mors utd 0,0280-0,4337 0,6558 Eiga utd -0,0277-0,3699 0,4105 0,3940 Eiga innt -0,3387 0,0437-0,0003-0,0676 0,3107

9 9 Med signifikansnivå på 1% for sti-koeffeseientane vert sti-diagrammet X2 = Alder 0.10 ζ X1 = Kvinne Y2 = Eiga inntekt X4 = Mors utd X3 = Fars utd Y1 = Eiga utdanning ζ 1 Signifikant på 5% nivå Signifikant på 1% nivå

10 10 b) Finn direkte og indirekte effekt frå Mors utdanning på Eiga inntekt. Finn felleseffektane som Mors utdanning har med andre variablar. Finn dei spuriøse ledda i korrelasjonen mellom Eiga inntekt og Eiga utdanning. Direkte effekt av Mors utd på Eiga inntekt γ 24 = Indirekte effekt av Mors utd på Eiga inntekt γ 14 β 21 = 0.41*0.14 = 0,0574 Dette gir ein total effekt på Felleseffekt med Fars utdanning på eiga inntekt ρ 34 γ 13 β 21 = 0.66*0.41*0.24 = 0,0649 Felleseffekt med Alder på eiga inntekt ρ 42 γ 22 = -0.43*0.10 = -0, ρ 42 γ 12 β 21 = -0.43*-0.23*0.41 = sum felleseffektar = 0,0624 Vi kan også finne residualen. Ifølge Ringdal sida 101 har vi at korrelasjon ρ( x,y ) - total effekt = sum av (residual + spuriøse ledd + felleseffektar) For korrelasjon mellom Mors utd og Eiga inntekt finn vi da at sum (residual, spuriøse ledd og felleseffektar) = ρ( x4 y2) - total effekt = ( ) = Sidan vi ikkje har spuriøse ledd her i denne korrelasjonen, vil residualen bli sum (residual + spuriøse ledd + felleseffektar) - felleseffektar = 0,0350-0,0624 =

11 11 Sidan det vart fokusert på effekten på eiga inntekt var det ikkje meininga å spørre etter dei felleseffektane Mors utd. har i høve til andre variable: Felleseffekt med Fars utdanning på eiga utdanning γ 13 ρ 34 = 0.24*0.66 = 0,1584 Felleseffekt med Alder på eiga utdanning ρ 42 γ 12 = -0.43*-0.23 = 0,0989 Spuriøse ledd i korrelasjonen mellom Eiga utdanning og Eiga Inntekt Wrights reglar (antar at felleseffekt er ein type spuriøsitet) fra Alder 0.10*-0.23 = fra Mors utdanning -0.16*0.14 = frå eventuelt 5% nivå:(fra Kvinne-0.32*-0.04= ) sum = eller felles fra Mors og Fars utdanning -0.16*0.66*0.24 = -0,02534 felles fra Alder og Mors utdanning 0.10*-0.43*0.14 = -0,00602 felles fra Alder og Fars utdanning 0.10*-0.36*0.24 = -0,00864 sum spuriøse ledd Iflg Ringdal s101 korrelasjon = total effekt = -( ) =sum spuriøse/felleseff. ledd og residual= spuriøse/fellesff. ledd= -( ) residual =

SOS 31 MULTIVARIAT ANALYSE

SOS 31 MULTIVARIAT ANALYSE 1 SOS 31 MULTIVARIAT ANALYSE Eksamensdag: Tysdag 28 november 1995 Eksamensstad: Dragvoll, paviljong C, rom 102 Tid til eksamen: 6 timar Vekttal: 4 Talet på sider med nynorsk: 7 Sensurdato: 20 desember

Detaljer

SOS3003 Eksamensoppgåver

SOS3003 Eksamensoppgåver SOS33 Eksamensoppgåver Gjennomgang våren 24 Erling Berge Vår 24 Gjennomgang av Oppgåve 2 gitt hausten 2 Vår 24 2 Haust 2 OPPGÅVE 2I tabellvedlegget til oppgåve 2 er det estimert 6 modellar av eiga inntekt

Detaljer

EKSAMENSOPPGÅVER Sommar 1996 FRAMLEGG TIL LØYSING Erling Berge

EKSAMENSOPPGÅVER Sommar 1996 FRAMLEGG TIL LØYSING Erling Berge 1 EKSAMENSOPPGÅVER Sommar 1996 FRAMLEGG TIL LØYSING Erling Berge Norges Teknisk Naturvitskapelege Universitet «Bruksanvisning» Når ein går igang med å løyse oppgåver må ein ha i minnet at oppgåvene ofte

Detaljer

FRAMLEGG TIL LØYSING AV EKSAMENOPPGÅVER I SOS301/ SOS311 8 DES 1997

FRAMLEGG TIL LØYSING AV EKSAMENOPPGÅVER I SOS301/ SOS311 8 DES 1997 1 EKSAMENSOPPGÅVER Haust 1997 FRAMLEGG TIL LØYSING Erling Berge Norges Teknisk Naturvitskapelege Universitet «Bruksanvisning» Når ein går igang med å løyse oppgåver må ein ha i minnet at oppgåvene ofte

Detaljer

SOS3003 Eksamensoppgåver

SOS3003 Eksamensoppgåver SOS3003 Eksamensoppgåver Gjennomgang våren 2004 Erling Berge Vår 2004 1 Gjennomgang av Oppgåve 3 gitt hausten 2001 Vår 2004 2 Haust 2001 Oppgåve 3 I tabellvedlegget til oppgåve 3 er det estimert 7 ulike

Detaljer

SOS3003 Eksamensoppgåver

SOS3003 Eksamensoppgåver SOS3003 Eksamensoppgåver Gjennomgang våren 2004 Erling Berge Gjennomgang av Oppgåve 1 gitt hausten 2003 Haust 2003 Oppgåve 1 Den avhengige variabelen i regresjonsanalysen er en skala (indeks) for tillit

Detaljer

FRAMLEGG TIL LØYSING AV EKSAMENSOPPGÅVER I SOS311 / SOS MAI 1998

FRAMLEGG TIL LØYSING AV EKSAMENSOPPGÅVER I SOS311 / SOS MAI 1998 1 EKSAMENSOPPGÅVER Vår 1998 FRAMLEGG TIL LØYSING Erling Berge Norges Teknisk Naturvitskapelege Universitet «Bruksanvisning» Når ein går igang med å løyse oppgåver må ein ha i minnet at oppgåvene ofte er

Detaljer

SOS3003 Eksamensoppgåver

SOS3003 Eksamensoppgåver SOS3003 Eksamensoppgåver Gjennomgang våren 2004 Erling Berge Gjennomgang av Oppgåve 2 gitt hausten 2003 Haust 2003 Oppgåve 2 Den avhengige variabelen i den logistiske regresjonsanalysen er freegl, som

Detaljer

EKSAMENSOPPGÅVER Vår 1997 FRAMLEGG TIL LØYSING Erling Berge

EKSAMENSOPPGÅVER Vår 1997 FRAMLEGG TIL LØYSING Erling Berge 1 EKSAMENSOPPGÅVER Vår 1997 FRAMLEGG TIL LØYSING Erling Berge Norges Teknisk Naturvitskapelege Universitet «Bruksanvisning» Når ein går igang med å løyse oppgåver må ein ha i minnet at oppgåvene ofte er

Detaljer

SOS 301 og SOS31/ SOS311 MULTIVARIAT ANALYSE

SOS 301 og SOS31/ SOS311 MULTIVARIAT ANALYSE 1 SOS 301 og SOS31/ SOS311 MULTIVARIAT ANALYSE Eksamensdag: 8 desember 1997 Eksamensstad: Dragvoll, paviljong C, rom 201 Tid til eksamen: 6 timar Vekt: 5 for SOS301 og 4 for SOS31/ SOS311 Talet på sider

Detaljer

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU SOS33 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår 23 Erling Berge Institutt for sosiologi og statsvitenskap NTNU Vår 24 Erling Berge 24 1 Forelesing VI Kritikk av regresjon

Detaljer

SOS3003 Eksamensoppgåver

SOS3003 Eksamensoppgåver SOS3003 Eksamensoppgåver Oppgåve 2 gitt våren 2003 Erling Berge Vår 2004 Erling Berge 1 OPPGAVE 2 Logistisk regresjon (teller 50%) Den avhengige variabelen i analysen er innvenn, som fanger opp om en har

Detaljer

NORGES TEKNISK NATURVITSKAPELEGE UNIVERSITET Institutt for sosiologi og statsvitenskap FRAMLEGG TIL LØYSING AV EKSAMENOPPGÅVER I SOS31 9 DES 1996

NORGES TEKNISK NATURVITSKAPELEGE UNIVERSITET Institutt for sosiologi og statsvitenskap FRAMLEGG TIL LØYSING AV EKSAMENOPPGÅVER I SOS31 9 DES 1996 1 EKSAMENSOPPGÅVER Haust 1996 FRAMLEGG TIL LØYSING Erling Berge Norges Teknisk Naturvitskapelege Universitet «Bruksanvisning» Når ein går igang med å løyse oppgåver må ein ha i minnet at oppgåvene ofte

Detaljer

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår 2003 Erling Berge Institutt for sosiologi og statsvitenskap NTNU Vår 2004 Erling Berge 2004 1 Kritikk av regresjon I Forelesing

Detaljer

Litt enkel matematikk for SOS3003

Litt enkel matematikk for SOS3003 Litt enkel matematikk for SOS3003 Erling Berge Fall 2009 Erling Berge 1 Om matematikk Matematikk er ikkje vanskeleg Det er eit språk for logikken. Det er lett å lære og å lese Det kan vere litt vanskelegare

Detaljer

SOS3003 Eksamensoppgåver

SOS3003 Eksamensoppgåver SOS3003 Eksamensoppgåver Oppgåve 1 gitt våren 2003 Erling Berge Vår 2004 Erling Berge 1 OPPGAVE 1 Regresjonsanalyse (teller 50%) Euronet/Cranfield undersøkelsen fra 1999 gir interessant informasjon om

Detaljer

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår 2003 Erling Berge Institutt for sosiologi og statsvitenskap NTNU Vår 2004 Erling Berge 2004 1 Forelesing III Multivariat

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b7 Oppgave 1 Automatisert laboratorium Eksamen november 2002, oppgave 3 av 3 I eit

Detaljer

Erling Berge Institutt for sosiologi og statsvitenskap Norges Teknisk Naturvitskapelege Universitet

Erling Berge Institutt for sosiologi og statsvitenskap Norges Teknisk Naturvitskapelege Universitet 1 Erling Berge EKSAMENSOPPGÅVER SVSOS316 VÅR 2000 FRAMLEGG TIL LØYSING Erling Berge Institutt for sosiologi og statsvitenskap Norges Teknisk Naturvitskapelege Universitet «Bruksanvisning» Når ein går igang

Detaljer

SOS 31 MULTIVARIAT ANALYSE

SOS 31 MULTIVARIAT ANALYSE 1 SOS 31 MULTIVARIAT ANALYSE Eksamensdag: Onsdag 22. mai 1996 Eksamensstad: Nidarøhallen, Hall A Tid til eksamen: 6 timar Vekttal: 4 Talet på sider med nynorsk: 18 Sensurdato: 23 juni 1996 Hjelpemiddel

Detaljer

Ref.: Fall SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 05

Ref.:  Fall SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 05 SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 05 Erling Berge Institutt for sosiologi og statsvitenskap NTNU Fall 2004 Erling Berge 2004 1 Forelesing V Kritikk av regresjon

Detaljer

Erling Berge Institutt for sosiologi og statsvitenskap Norges Teknisk Naturvitskapelege Universitet

Erling Berge Institutt for sosiologi og statsvitenskap Norges Teknisk Naturvitskapelege Universitet 1 EKSAMENSOPPGÅVER SVSOS316 Haust 1999 FRAMLEGG TIL LØYSING Institutt for sosiologi og statsvitenskap Norges Teknisk Naturvitskapelege Universitet «Bruksanvisning» Når ein går igang med å løyse oppgåver

Detaljer

Språk og skrift som er brukt i SOS3003

Språk og skrift som er brukt i SOS3003 Språk og skrift som er brukt i SOS3003 Erling Berge Erling Berge 2010 1 Ei typisk setning i regresjonsspråket: Y i = β 0 + β 1 x 1i + ε i, i=1,...,n Det vi må lære først er rett å slett å lese ei setning

Detaljer

FRAMLEGG TIL LØYSING AV EKSAMENOPPGÅVER I SOS301/ SOS311 4 AUG 1997

FRAMLEGG TIL LØYSING AV EKSAMENOPPGÅVER I SOS301/ SOS311 4 AUG 1997 1 EKSAMENSOPPGÅVER Sommar 1997 FRAMLEGG TIL LØYSING Erling Berge Norges Teknisk Naturvitskapelege Universitet «Bruksanvisning» Når ein går igang med å løyse oppgåver må ein ha i minnet at oppgåvene ofte

Detaljer

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 08. Erling Berge Institutt for sosiologi og statsvitenskap NTNU

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 08. Erling Berge Institutt for sosiologi og statsvitenskap NTNU SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 08 Erling Berge Institutt for sosiologi og statsvitenskap NTNU Erling Berge 2004 1 Manglande data Forelesing VIII Allison, Paul

Detaljer

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 03. Erling Berge Institutt for sosiologi og statsvitenskap NTNU

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 03. Erling Berge Institutt for sosiologi og statsvitenskap NTNU SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 03 Erling Berge Institutt for sosiologi og statsvitenskap NTNU Haust 2004 Erling Berge 2004 1 Forelesing III Multivariat regresjon

Detaljer

Kort overblikk over kurset sålangt

Kort overblikk over kurset sålangt Kort overblikk over kurset sålangt Kapittel 1: Deskriptiv statististikk for en variabel Kapittel 2: Deskriptiv statistikk for samvariasjon mellom to variable (regresjon) Kapittel 3: Metoder for å innhente

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 25. NOVEMBER 2003 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ

Detaljer

Eksamen 02.12.2009. REA3026 Matematikk S1

Eksamen 02.12.2009. REA3026 Matematikk S1 Eksamen 02.12.2009 REA3026 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:

Detaljer

Oppgave 1. og t α/2,n 1 = 2.262, så er et 95% konfidensintervall for µ D (se kap 9.9 i læreboka): = ( 0.12, 3.32).

Oppgave 1. og t α/2,n 1 = 2.262, så er et 95% konfidensintervall for µ D (se kap 9.9 i læreboka): = ( 0.12, 3.32). Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 16. november 2009 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir

Detaljer

SENSORVEILEDNING FOR DEN KVANTITATIVE DELEN AV EKSAMENSOPPGAVEN I SOS1002 VÅREN 2007

SENSORVEILEDNING FOR DEN KVANTITATIVE DELEN AV EKSAMENSOPPGAVEN I SOS1002 VÅREN 2007 SENSORVEILEDNING FOR DEN KVANTITATIVE DELEN AV EKSAMENSOPPGAVEN I SOS1002 VÅREN 2007 Oppgave 1 Nedenfor ser du en forenklet tabell basert på informasjon fra den norske delen av European Social Survey 2004.

Detaljer

MASTER I IDRETTSVITENSKAP 2014/2016. Individuell skriftlig eksamen. STA 400- Statistikk. Fredag 13. mars 2015 kl. 10.00-12.00

MASTER I IDRETTSVITENSKAP 2014/2016. Individuell skriftlig eksamen. STA 400- Statistikk. Fredag 13. mars 2015 kl. 10.00-12.00 MASTER I IDRETTSVITENSKAP 2014/2016 Individuell skriftlig eksamen i STA 400- Statistikk Fredag 13. mars 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator Eksamensoppgaven består av 10 sider inkludert forsiden

Detaljer

TMA4240 Statistikk Høst 2012

TMA4240 Statistikk Høst 2012 TMA424 Statistikk Høst 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving blokk II Oppgave 1 Oppgave 11.3 fra læreboka. Oppgave 2 Oppgave 11.19 fra læreboka. Oppgave

Detaljer

Litt enkel matematikk for SOS3003

Litt enkel matematikk for SOS3003 Litt enkel matematikk for SOS3003 Erling Berge 24 Aug 2004 Erling Berge 1 Om matematikk Matematikk er ikkje vanskeleg Det er eit språk for logikken. Det er lett å lære å lese Litt vanskelegare å forstå

Detaljer

Appendiks 5 Forutsetninger for lineær regresjonsanalyse

Appendiks 5 Forutsetninger for lineær regresjonsanalyse Appendiks 5 Forutsetninger for lineær regresjonsanalyse Det er flere krav til årsaksslutninger i regresjonsanalyse. En naturlig forutsetning er tidsrekkefølge og i andre rekke spiller variabeltype inn.

Detaljer

Prøveutviklere omfatter både de som utvikler og administrerer prøver, og de som tar politiske beslutninger for bestemte prøver.

Prøveutviklere omfatter både de som utvikler og administrerer prøver, og de som tar politiske beslutninger for bestemte prøver. Norsk bokmål og nynorsk ALTEs Praksiskodeks Innledning I 1994 bestemte ALTE-medlemmene at det var nødvendig å innføre en formell Praksiskodeks som både ville definere kvalitetskrav som nåværende og framtidige

Detaljer

Kausalanalyse og seleksjonsproblem

Kausalanalyse og seleksjonsproblem ERLING BERGE SOS316 REGESJONSANALYSE Kausalanalyse og seleksjonsproblem Institutt for sosiologi og statsvitenskap, NTNU, Trondheim Erling Berge 2001 Litteratur Breen, Richard 1996 Regression Models. Censored,

Detaljer

Sammenlikninger av gjennomsnitt. SOS1120 Kvantitativ metode. Kan besvare to spørsmål: Sammenlikning av to gjennomsnitt

Sammenlikninger av gjennomsnitt. SOS1120 Kvantitativ metode. Kan besvare to spørsmål: Sammenlikning av to gjennomsnitt SOS1120 Kvantitativ metode Forelesningsnotater 10. forelesning høsten 2005 Per Arne Tufte Sammenlikninger av gjennomsnitt Sammenlikner gjennomsnittet på avhengig variabel for ulike grupper av enheter Kan

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT310 STATISTISKE METODER VARIGHET: 4 TIMER DATO: 27. FEBRUAR 2004 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 5

Detaljer

NTNU Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap

NTNU Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap NTNU Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap EKSAMENSOPPGAVE I SOS100 SAMFUNNSVITENSKAPELIG FORSKNINGSMETODE Eksamensdato: 31. mai 007 Eksamenstid: 5 timer

Detaljer

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår 2003. Erling Berge Institutt for sosiologi og statsvitenskap NTNU

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår 2003. Erling Berge Institutt for sosiologi og statsvitenskap NTNU SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår 2003 Erling Berge Institutt for sosiologi og statsvitenskap NTNU Vår 2004 Erling Berge 2004 1 Forelesing IV Multivariat

Detaljer

Korleis kan det samarbeidast for eit best mogleg barnevern framover? Samarbeid mellom kommune og stat (BUFETAT)

Korleis kan det samarbeidast for eit best mogleg barnevern framover? Samarbeid mellom kommune og stat (BUFETAT) Korleis kan det samarbeidast for eit best mogleg barnevern framover? Samarbeid mellom kommune og stat (BUFETAT) Kort tilbakeblikk 2004 Dei statlige fagteama vart etablert og presentert som redninga for

Detaljer

I enkel lineær regresjon beskrev linja. μ y = β 0 + β 1 x

I enkel lineær regresjon beskrev linja. μ y = β 0 + β 1 x Multiple regresjon Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable.det er fortsatt en responsvariabel. Måten dette gjøre på er nokså naturlig. Prediktoren

Detaljer

Eksamensoppgave i SØK1004 - Statistikk for økonomer

Eksamensoppgave i SØK1004 - Statistikk for økonomer Institutt for samfunnsøkonomi Eksamensoppgave i SØK1004 - Statistikk for økonomer Faglig kontakt under eksamen: Hildegunn E. Stokke, tlf 73591665 Bjarne Strøm, tlf 73591933 Eksamensdato: 01.12.2014 Eksamenstid

Detaljer

+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1

+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1 Løsningsforslag for: MOT10 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 6. november 007 TILLATTE HJELPEMIDLER: Kalkulator: HP0S, Casio FX8 eller TI-0 Tabeller og formler i statistikk (Tapir forlag) MERKNADER:

Detaljer

EKSAMENSOPPGÅVER SVSOS316 HAUST 2000 FRAMLEGG TIL LØYSING

EKSAMENSOPPGÅVER SVSOS316 HAUST 2000 FRAMLEGG TIL LØYSING EKSAMENSOPPGÅVER SVSOS316 HAUST 2000 FRAMLEGG TIL LØYSING 1 Institutt for sosiologi og statsvitenskap Norges Teknisk Naturvitskapelege Universitet «Bruksanvisning» Når ein går igang med å løyse oppgåver

Detaljer

Kapittel 10: Hypotesetesting

Kapittel 10: Hypotesetesting Kapittel 10: Hypotesetesting TMA445 Statistikk 10.1, 10., 10.3: Introduksjon, 10.5, 10.6, 10.7: Test for µ i normalfordeling, 10.4: p-verdi Turid.Follestad@math.ntnu.no p.1/19 Estimering og hypotesetesting

Detaljer

Eksamen 27.05.2010. REA3026 Matematikk S1. Nynorsk/Bokmål

Eksamen 27.05.2010. REA3026 Matematikk S1. Nynorsk/Bokmål Eksamen 7.05.010 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på del 1: Hjelpemiddel på del : Vedlegg: Framgangsmåte: Rettleiing om vurderinga: 5 timar: Del

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Løsningsforslag: Statistiske metoder og dataanalys Eksamensdag: Fredag 9. desember 2011 Tid for eksamen: 14.30 18.30

Detaljer

Multippel regresjon. Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable x 1, x 2,, x p.

Multippel regresjon. Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable x 1, x 2,, x p. Multippel regresjon Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable x 1, x 2,, x p. Det er fortsatt en responsvariabel y. Måten dette gjøre på er nokså

Detaljer

PENSUM SOS 3003. Mål for kurset. SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Oversikt over Forelesingsnotat, vår 2003

PENSUM SOS 3003. Mål for kurset. SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Oversikt over Forelesingsnotat, vår 2003 SOS33 Anvendt statistisk dataanalyse i samfunnsvitenskap Oversikt over Forelesingsnotat, vår 23 Erling Berge Institutt for sosiologi og statsvitskap NTNU Vår 24 Erling Berge 24 1 PENSUM SOS 33 Hamilton,

Detaljer

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 06. Erling Berge Institutt for sosiologi og statsvitenskap NTNU

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 06. Erling Berge Institutt for sosiologi og statsvitenskap NTNU SOS33 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 6 Erling Berge Institutt for sosiologi og statsvitenskap NTNU Erling Berge 24 1 Forelesing VI Kritikk av regresjon II Hamilton

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 Ei bedrift produserer elektriske komponentar. Komponentane kan ha to typar

Detaljer

Spørsmål. 17 mars 2004. 1) Kan du gi enforklaring på hva som menes med "nullhypotese" og at denne forkastes? Vil bare ha det oppklart.

Spørsmål. 17 mars 2004. 1) Kan du gi enforklaring på hva som menes med nullhypotese og at denne forkastes? Vil bare ha det oppklart. Spørsmål 17 mars 2004 1) Kan du gi enforklaring på hva som menes med "nullhypotese" og at denne forkastes? Vil bare ha det oppklart. Nullhypotese er ein påstand vi gjer om ein parameter for å kunne teste

Detaljer

Høye skårer indikerer høye nivåer av selvkontroll.

Høye skårer indikerer høye nivåer av selvkontroll. Psykologisk institutt PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2015 Skriftlig skoleeksamen tirsdag 19. mai, 09:00 (4 timer) Resultater publiseres 10. juni Kalkulator

Detaljer

Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080.

Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080. EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 28. FEBRUAR 2005 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 4 OPPGAVER PÅ

Detaljer

Eksamen 28.05.2008. REA3026 Matematikk S1. Nynorsk/Bokmål

Eksamen 28.05.2008. REA3026 Matematikk S1. Nynorsk/Bokmål Eksamen 8.05.008 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Vedlegg: Framgangsmåte: Rettleiing om vurderinga: 5 timar: Del

Detaljer

ORDINÆR/UTSATT EKSAMEN 14.12.07. Sensur faller innen 11.01.08.

ORDINÆR/UTSATT EKSAMEN 14.12.07. Sensur faller innen 11.01.08. Høgskolen i Sør-Trøndelag Avdeling for lærer- og tolkeutdanning Individuell skriftlig eksamen i MATEMATIKK, MX30 ORDINÆR/UTSATT EKSAMEN 4..07. Sensur faller innen.0.08. BOKMÅL Resultatet blir tilgjengelig

Detaljer

Derivasjon. Kapittel 3. 3.1 Fart veg tid. 3.2 Kjerneregelen. Finn farten v(t) til ein bil når tilbakelagt strekning s(t) er

Derivasjon. Kapittel 3. 3.1 Fart veg tid. 3.2 Kjerneregelen. Finn farten v(t) til ein bil når tilbakelagt strekning s(t) er Kapittel 3 Derivasjon 3.1 Fart veg tid Finn farten v(t) til ein bil når tilbakelagt strekning s(t) er a) s(t) = 2t + 3 b) s(t) = 1 2 t + 4 c) s(t) = t2 + 2t Ein bil starter å køyre. Etter t sekund har

Detaljer

Inferens i regresjon

Inferens i regresjon Strategi som er fulgt hittil: Inferens i regresjon Deskriptiv analyse og dataanalyse først. Analyse av en variabel før studie av samvariasjon. Emne for dette kapittel er inferens når det er en respons

Detaljer

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0 Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir

Detaljer

SOS 31 MULTIVARIAT ANALYSE

SOS 31 MULTIVARIAT ANALYSE 1 SOS 31 MULTIVARIAT ANALYSE Eksamensdag: 9. desember 1996 Eksamensstad: Dragvoll Auditorium VIII og IX Tid til eksamen: 6 timar Vekttal: 4 Talet på sider med nynorsk: 33 Dato for sensur: 20 desember 1996

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere

Detaljer

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2. Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 17 november 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk Tapir

Detaljer

Fylkesprognose Sogn og Fjordane 2014

Fylkesprognose Sogn og Fjordane 2014 Fylkesprognose Sogn og Fjordane 214 www.sfj.no Samandrag Fylkeskommunen har utarbeidd ein prognose over folketal og bustadbehov i Sogn og Fjordane fram til 23. Prognosen viser at det i 23 vil vera 117

Detaljer

ØKONOMISTYRINGA I FYLKESKOMMUNEN

ØKONOMISTYRINGA I FYLKESKOMMUNEN ØKONOMISTYRINGA I FYLKESKOMMUNEN GENERELT Det er med fylkeskommunen som med ei privat hushaldning, at vi kan ikkje bruke meir enn vi har pengar til å betale med. Ei forsvarleg økonomistyring i fylkeskommunen

Detaljer

NTNU Fakultet for lærer- og tolkeutdanning

NTNU Fakultet for lærer- og tolkeutdanning NTNU Fakultet for lærer- og tolkeutdanning Emnekode(r): LGU52003 Emnenavn: Matematikk 2 (5-10), emne 2 Studiepoeng: 15 Eksamensdato: 23. mai 2016 Varighet/Timer: 6 Målform: Nynorsk Kontaktperson/faglærer:

Detaljer

10.1 Enkel lineær regresjon Multippel regresjon

10.1 Enkel lineær regresjon Multippel regresjon Inferens for regresjon 10.1 Enkel lineær regresjon 11.1-11.2 Multippel regresjon 2012 W.H. Freeman and Company Denne uken: Enkel lineær regresjon Litt repetisjon fra kapittel 2 Statistisk modell for enkel

Detaljer

SOS 301 og SOS31/ SOS311 MULTIVARIAT ANALYSE

SOS 301 og SOS31/ SOS311 MULTIVARIAT ANALYSE 1 SOS 301 og SOS31/ SOS311 MULTIVARIAT ANALYSE Eksamensdag: 22 mai 1998 Eksamensstad: Dragvoll, Aud. 3 Låven og Aud VIII+IX Tid til eksamen: 6 timar Vekt: 5 for SOS301 og 4 for SOS31/ SOS311 Talet på sider

Detaljer

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 02. Erling Berge Institutt for sosiologi og statsvitenskap NTNU

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 02. Erling Berge Institutt for sosiologi og statsvitenskap NTNU SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 02 Erling Berge Institutt for sosiologi og statsvitenskap NTNU Haust 2004 Erling Berge 2004 1 Bivariat regresjon II Forelesing

Detaljer

Statistikk og dataanalyse

Statistikk og dataanalyse Njål Foldnes, Steffen Grønneberg og Gudmund Horn Hermansen Statistikk og dataanalyse En moderne innføring Kapitteloversikt del 1 INTRODUKSJON TIL STATISTIKK Kapittel 1 Populasjon og utvalg 19 Kapittel

Detaljer

Omtaler av grunnlagsrapporten. I dette dokumentet finnes det tre uttalelser om grunnlagsrapporten til elevundersøkelsen 2007.

Omtaler av grunnlagsrapporten. I dette dokumentet finnes det tre uttalelser om grunnlagsrapporten til elevundersøkelsen 2007. Omtaler av grunnlagsrapporten I dette dokumentet finnes det tre uttalelser om grunnlagsrapporten til elevundersøkelsen 2007. 1 Gjennomgang av analyser i Læringslabens rapport 4/2007 Elevundersøkelsen 2007.

Detaljer

EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK

EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 BOKMÅL EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK Onsdag

Detaljer

EKSAMENSOPPGÅVER SVSOS316 HAUST 2001 FRAMLEGG TIL LØYSING

EKSAMENSOPPGÅVER SVSOS316 HAUST 2001 FRAMLEGG TIL LØYSING 1 EKSAMENSOPPGÅVER SVSOS316 HAUST 2001 FRAMLEGG TIL LØYSING Institutt for sosiologi og statsvitskap Norges Teknisk Naturvitskapelege Universitet «Bruksanvisning» Når ein går i gang med å løyse oppgåver

Detaljer

EKSAMEN I SOSIOLOGI SOS KVANTITATIV METODE. ORDINÆR SKOLEEKSAMEN 4. april 2011 (4 timer)

EKSAMEN I SOSIOLOGI SOS KVANTITATIV METODE. ORDINÆR SKOLEEKSAMEN 4. april 2011 (4 timer) EKSAMEN I SOSIOLOGI SOS4020 - KVANTITATIV METODE ORDINÆR SKOLEEKSAMEN 4. april 20 (4 timer) Tillatt hjelpemiddel: Ikke-programmerbar kalkulator. Opplysninger bakerst i oppgavesettet Sensur på eksamen faller

Detaljer

TMA4245 Statistikk Eksamen august 2014

TMA4245 Statistikk Eksamen august 2014 TMA4245 Statistikk Eksamen august 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Oppgave 1 Ei bedrift produserer ein type medisin i pulverform Medisinen seljast på flasker

Detaljer

Sensorveiledning: skoleeksamen i SOS Kvantitativ metode

Sensorveiledning: skoleeksamen i SOS Kvantitativ metode Sensorveiledning: skoleeksamen i SOS1120 - Kvantitativ metode Tirsdag 30. mai 2016 (4 timer) Poenggivning og karakter I del 1 gis det ett poeng for hvert riktige svar. Ubesvart eller feil svar gis 0 poeng.

Detaljer

Prognosemodeller for flytrafikken

Prognosemodeller for flytrafikken ammendrag: Prognosemodeller for flytrafikken TØI notat 1136/1999 Forfatter: Geir Thomas Knutheim Oslo 1999, 114 sider + vedlegg Bakgrunn Transportøkonomisk instutt (TØI) har utviklet to modeller som kan

Detaljer

Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/

Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/ Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator

Detaljer

Eksamen i emnet MAT111/M100 - Grunnkurs i matematikk I Mandag 15. desember 2003, kl. 09-13(15) LØYSINGSFORSLAG OPPGÅVE 2:

Eksamen i emnet MAT111/M100 - Grunnkurs i matematikk I Mandag 15. desember 2003, kl. 09-13(15) LØYSINGSFORSLAG OPPGÅVE 2: Eksamen i emnet MAT/M00 - Grunnkurs i matematikk I Mandag 5. desember 2003, kl. 09-3(5) LØYSINGSFORSLAG Finn dei deriverte til i) f(x) = x 2 ln x OPPGÅVE : exp(u 2 )du, x, ii) f(x) = x cos(x). i) d x 2

Detaljer

Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering

Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering TMA4245 Statistikk Kapittel 8.1-8.5. Kapittel 9.1-9.3+9.15 Turid.Follestad@math.ntnu.no p.1/21 Har sett

Detaljer

Dykkar ref: Dykkar dato: Vår ref: Vår saksbehandlar: Vår dato: 02.11.2011 110/2012/000/&00 Sverre Hollen, 71 25 80 57 02.01.2012

Dykkar ref: Dykkar dato: Vår ref: Vår saksbehandlar: Vår dato: 02.11.2011 110/2012/000/&00 Sverre Hollen, 71 25 80 57 02.01.2012 Kunnskapsdepartementet Postboks 8119 Dep 0032 Oslo Dykkar ref: Dykkar dato: Vår ref: Vår saksbehandlar: Vår dato: 02.11.2011 110/2012/000/&00 Sverre Hollen, 71 25 80 57 02.01.2012 Høyring - Forslag til

Detaljer

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt.

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt. EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir forlag) OPPGAVESETTET

Detaljer

MOT310 Statistiske metoder 1, høsten 2010 Løsninger til regneøving nr. 11 (s. 1) der

MOT310 Statistiske metoder 1, høsten 2010 Løsninger til regneøving nr. 11 (s. 1) der MOT310 Statistiske metoder 1, høsten 2010 Løsninger til regneøving nr. 11 (s. 1) Oppgave 13.1 Modell: Y ij = µ i + ε ij, der ε ij uavh. N(0, σ 2 ) Boka opererer her med spesialtilfellet der man har like

Detaljer

SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2002

SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2002 SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2002 Generell informasjon Dette er den siste eksamensoppgaven under overgangsordningen mellom gammelt og nytt pensum i SVSOS107. Eksamensoppgaven

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1100 Statistiske metoder og dataanalyse 1 - Løsningsforslag Eksamensdag: Mandag 30. november 2015. Tid for eksamen: 14.30

Detaljer

Ny kommunestruktur i indre Hordaland? Ein ny kommune i hjarta av fjord-noreg?

Ny kommunestruktur i indre Hordaland? Ein ny kommune i hjarta av fjord-noreg? Ny kommunestruktur i indre Hordaland? Ein ny kommune i hjarta av fjord-noreg? Litt om denne økta Intro og litt om tankane bak dette møtet Kva er stoda i dei ulike kommunane Moglege kommunemodellar i vårt

Detaljer

EKSAMEN I EMNE TMA4245 STATISTIKK

EKSAMEN I EMNE TMA4245 STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Bokmål Faglig kontakt under eksamen: John Tyssedal 73 59 35 34/ 41 64 53 76 Jo Eidsvik 73 59 01 53/ 90 12 74 72

Detaljer

Lammedødelegheit - genetiske parametre

Lammedødelegheit - genetiske parametre NSG - Norsk Sau og Geit Lammedødelegheit - genetiske parametre Forfatter Leiv Sigjørn Eikje, Norsk Sau og Geit Sammendrag Tal lam per vinterfôra sau, og slaktevekt og -kvalitet på lammeslakta, er dei økonomisk

Detaljer

Om eksamen. Never, never, never give up!

Om eksamen. Never, never, never give up! Plan vidare Onsdag Gjere ferdig kap 11 + repetisjon Fredag Rekning av eksamensoppgåver Eksamen Mai 2014, oppgåve 2 (inkl normal fordeling, lin.reg. og deskriptiv statistikk) Eksamen August 2012, oppgåve

Detaljer

Std. Error. ANOVA b. Sum of Squares df Square F Sig. 54048,151 2 27024,075 327,600,000 263063,943 3189 82,491 317112,094 3191.

Std. Error. ANOVA b. Sum of Squares df Square F Sig. 54048,151 2 27024,075 327,600,000 263063,943 3189 82,491 317112,094 3191. Samspill i regresjon Variables Entered/Removed b Variables Variables Entered Removed Method Kjønn,, Enter hjemmebo ende a a. All requested variables entered. Summary Std. Error Adjusted R of the R R Square

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Deleksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 12. oktober 2011. Tid for eksamen: 15:00 17:00. Oppgavesettet

Detaljer

EKSAMEN I TMA4245 STATISTIKK Tysdag 21. mai 2013 Tid: 09:00 13:00 (Korrigert )

EKSAMEN I TMA4245 STATISTIKK Tysdag 21. mai 2013 Tid: 09:00 13:00 (Korrigert ) Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag Side 1 av 5 Nynorsk Fagleg kontakt under eksamen: Håkon Tjelmeland 73593538/48221896 Ola Diserud 93218823 EKSAMEN I TMA4245 STATISTIKK

Detaljer

INSTITUTT FOR SOSIOLOGI OG SAMFUNNSGEOGRAFI EKSAMEN I SOSIOLOGI (MASTER) SOS KVANTITATIV METODE. SKOLEEKSAMEN 11. mai 2005 (4 timer)

INSTITUTT FOR SOSIOLOGI OG SAMFUNNSGEOGRAFI EKSAMEN I SOSIOLOGI (MASTER) SOS KVANTITATIV METODE. SKOLEEKSAMEN 11. mai 2005 (4 timer) EKSAMEN I SOSIOLOGI (MASTER) SOS400 - KVANTITATIV METODE SKOLEEKSAMEN 11. mai 005 (4 timer) Tillatt hjelpemiddel: Ikke-programmerbar kalkulator. Oppgavesettet består av 6 sider inkludert denne. Kandidaten

Detaljer

TMA4240 Statistikk Eksamen desember 2015

TMA4240 Statistikk Eksamen desember 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Eksamen desember 15 Oppgave 1 La den kontinuerlege stokastiske variabelen X ha fordelingsfunksjon (sannsynstettleik

Detaljer

Vurderingsrettleiing 2012

Vurderingsrettleiing 2012 Vurderingsrettleiing 2012 ENG0012 Engelsk 10.trinn Til sentralt gitt skriftleg eksamen Nynorsk ENG0012 Engelsk 10. trinn Vurderingsrettleiing til sentralt gitt skriftleg eksamen 2012 Denne vurderingsrettleiinga

Detaljer

Terminprøve i matematikk for 9. trinnet

Terminprøve i matematikk for 9. trinnet Terminprøve i matematikk for 9. trinnet Hausten 2006 nynorsk Til nokre av oppgåvene skal du bruke opplysningar frå informasjonsheftet. Desse oppgåvene er merkte med dette symbolet: Namn: DELPRØVE 1 Maks.

Detaljer

NTNU Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap

NTNU Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap NTNU Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap EKSAMENSOPPGAVE I SVSOS107 SAMFUNNSVITENSKAPELIG FORSKNINGSMETODE Eksamensdato: 18. mai 001 Eksamenssted: Idrettsbygget

Detaljer

Statistisk generalisering

Statistisk generalisering Statistisk generalisering Forelesningsnotat høsten 2005 (SOS1120 Kvantitativ metode) av Per Arne Tufte (1) Innledning Så langt har vi undersøkt om det er sammenheng og eventuelt hvor sterk sammenhengen

Detaljer