Les selv om matematikkens spennende verden

Størrelse: px
Begynne med side:

Download "Les selv om matematikkens spennende verden"

Transkript

1 Erik Bjerre og Pernille Pind Lærerveiledning til Les selv om matematikkens spennende verden Oversatt og tilrettelagt for norske forhold av Kari Haukås Lunde og Olav Lunde Info Vest Forlag, 2011

2 Om de fem heftene i boks 1 (med løsningsforslag) Målgruppe: 5-13 trinn Heftene kan også brukes i spesialpedagogisk sammenheng på ungdomstrinnet og i videregående skole. Formål: Formålet med Les selv om matematikkens spennende verden er å gi en annerledes og supplerende innfallsvinkel til matematikkundervisningen. Med Les selv- heftene vil elevene oppleve at Matematikken kan leses og være noe annet enn oppgaveløsninger og matematiske undersøkelser De selv kan sette seg inn i nytt matematikkstoff Matematikken inngår i sammenhenger med historie og samfunn Med Les selv- heftene vil læreren Få et alternativ til oppgaveark Gi elevene nye utfordringer og hvor det faglige er sentralt Få materiale til verkstedsaktiviteter Kunne gi nye bidrag til tverrfaglig samarbeid Matematikk kan leses For de aller fleste menneskene er matematikk det samme som å løse matematiske oppgaver. I de senere årene er dette blitt supplert med matematiske undersøkelser, hvor elevene selv definerer undersøkelsesområdene og selv utfører slike undersøkelser. Oppgaver og undersøkelser er en viktig del av det å arbeide med matematikk, men det gir ikke et helt bilde av matematikken. Matematikk er også kunnskap som kan leses, og denne kunnskapen kan være viktig for forståelsen og er ofte spennende. Dette kan elevene oppleve med Les selv- heftene : Eleven kan selv sette seg inn i ny matematikk De fleste elevene vet godt at hvis de vil vite mer om Titanics forlis eller H. C. Andersens liv enn det læreren har fortalt, kan de selv finne fram til det. En av måtene å gjøre det på, er å låne bøker om emnet. Men det er veldig få elever

3 som tenker på at de selv kan finne fram til mer matematisk viten enn den læreren har gitt dem. Matematikken er typisk gjennomtygget av læreren først. Les selv- heftene er et skritt i retning av å gi elevene følelsen av at de selv kan sette seg inn i matematikk uten hjelp av læreren! Matematikk i sammenheng Matematikkundervisningen i skolen er ofte uten noen kontekst og fylles av rene talloppgaver eller rene geometrioppgaver. I de siste årene er det heldigvis blitt større fokus på bruken av matematikk i hverdagen, i arbeidslivet og i samfunnet generelt. Les selv heftene følger denne tendensen. I materialet er det fokus på andre sammenhenger enn de rent bruksorienterte, nemlig historiske, kulturelle eller personlige sammenhenger. Vi kan kalle dette for deler av den matematiske kulturarven med små historier og fakta som er felles bakgrunnskunnskap for en stor gruppe matematikere. Flere av historiene beskriver også startskuddet til et nytt område innen matematikken. For eksempel var Eulers løsning på problemet med de sju bruene starten på grafteori 1 (heftet De sju bruene ), og diskusjonen mellom Laplace og d Alambert var med på å etablere sannsynlighetsteori som matematisk gren (heftet Mynt og krone ). Elevene klarer seg selv Det er viktig at elevene selv skal kunne lese heftene. De er ikke tenkt som lekser eller som del av et pensum. Elevene skal ikke høres i emnet, og de skal ikke få rettet de oppgavene som finnes bak i heftene. Elevene skal selv hente løsningsforslag (finnes i denne veiledningen, og kan kopieres fritt), og rette oppgavene selv. Det skal være elevens frie valg om han eller hun vil løse oppgavene eller om de bare vil lese dem og så se på løsningene. 1 Grafteori er en gren i matematikk og informatikk der man studerer egenskapene til grafer. Grafer er matematiske strukturer som brukes til å lage modeller for parvise relasjoner mellom objekter. I informatikken regnes graf som en abstrakt datastruktur, en teoretisk struktur som kan implementeres på ulike måter. Studier av algoritmer som behandler grafer er en viktig disiplin med mange praktiske anvendelser. I dag er dette i stor grad knyttet mot moderne datateknikk, men slike algoritmer var også utviklet før den digitale tidsalderen. Grafer og behandling av grafer er viktige verktøy i mange hverdagslige problemstillinger som f.eks. ruteplanlegging, datanettverk og design av mikrobrikker. (Wikipedia)

4 Bruksmuligheter Et alternativ til ekstra oppgaveark for elever som ønsker utfordringer. Heftene skal ligge framme i klasserommet, og når en elev er ferdig med dagens arbeidsoppgaver, kan han eller hun ta et hefte fra Les selv. En pause fra dagens oppgaver Heftene kan være en mulighet for elever som er blitt trøtte av den daglige rutine med arbeidsoppgaver. Kanskje svikter konsentrasjonen i forhold til mengden av oppgaver i matematikkboken. Les selv- heftene kan være et friminutt hvor elevene får ny energi samtidig som det faglige er i orden! En verkstedsaktivitet med individuell fordypelse Sammen med andre faglige bøker, kan Les selv- heftene være en av stasjonene i en stasjonsorientert undervisning. Stasjonsundervisning i matematikk har en tendens til å få en overvekt av arbeidsoppgaver som krever samarbeid, kommunikasjon og fingerferdighet. Et verksted med faglig frilesing kan utnytte og stimulere ferdigheter som konsentrasjon, fordypelse og selvstendig tilegnelse av kunnskap. Faglig samarbeid Les selv - konseptet er hentet fra samme didaktiske tenking som en finner i norskfaget. Der inngår også lesing av fagstoff som del av undervisningen. De enkelte heftene kan også inngå i temaer i for eksempel historie og samfunnsfag.

5 De enkelte heftene 1. Mynt og krone Å få oppleve og erfare at sannsynlighet er noe vi gjerne kan regne ut Innledende sannsynlighet: kunne telle antall muligheter. Begrepet dobbelt. Begrepet ca. 2. Når VI er et tall Å få oppleve et annet tallsystem enn vårt eget. Det bygger i tillegg på et helt annet matematisk prinsipp. Leseretningen. Addisjon. Subtraksjon. Multiplikasjon med 10. Halvdel av 10- er potenser. Hele tall fra 1 til f. eks Tegne stjerner Å gjøre oppmerksom på den symbolverdien som ligger i mye av geometrien. Å knytte matematikken til disse symbolene. Sirkler. Trekanter. Firkanter. Strek / linje mellom to punkter. 4. De sju bruene Det klassiske problemet med å tegne figurer i en strek blir her presentert knyttet til en historie. Det blir presentert en løsning som er forbløffende enkel! Partall og oddetall. 5. Tankeleseren Å få en opplevelse av at matematikk kan forklare det som tilsynelatende kan være tankelesning. Addisjon. Subtraksjon. Siffer. Gammeldags loddrett oppstilling av addisjons- og subtraksjonsalgoritmene. Tallområdet hele tall

6 Løsningsforslag til oppgavene 1. Mynt og krone Oppgave 1 Ja, det passer med Laplaces teori. Mette får 1 mynt og 1 krone ca. dobbelt så mange ganger som både 2 mynt og 2 krone. Hvis det skulle vært helt nøyaktig, hadde hun fått 25 kast med 2 mynt, 50 kast med 1 mynt og 1 krone og 25 kast med 2 kroner. Men når vi kaster med mynter eller terninger, kan vi ikke regne med å få helt nøyaktig det teorien sier. Oppgave 2 Mette har rett. Vi kan f. eks. få 7 på mange flere måter enn vi kan få 2: 1+6=7, 2+5=7, 3+4=7, 4+3=7, 5+2=7, 6+1=7, men bare 1+1=2. Det er faktisk 7 som er det beste tallet å satse på fordi det kan vi få på flest mulige kombinasjoner. Vi kan få 7 på seks ulike måter (se ovenfor), men vi kan bare få 6 eller 8 på fem forskjellige måter: 1+5=6, 2+4=6, 4+2=6, 5+1=6 2+6=8, 3+5=8, 4+4=8, 5+3=8, 6+2=8 (1+7 og 7+1 fungerer ikke, da vi jo ikke kan slå en 7- er!) Tallene 3, 4, 5, 9, 10, 11 og 12 får vi bare på enda færre måter. 2. Når IV er et tall Oppgave 1 Huset er fra Oppgave kan for eksempel skrives på følgende måter når vi trekker fra: CMXCIX IM Hvis vi ikke vil trekke fra, må vi skrive slik: DCCCCLXXXXVIIII

7 Oppgave 3 Du kan kanskje finne fødselsåret ditt i løsningen til oppgave 4. Oppgave 4 3. Tegne stjerner Oppgave 1 Det er to forskjellige sju- taggede stjerner som vi kan tegne med en strek: Hoppe over 1 prikk Hoppe over 2 prikker

8 Oppgave 2 Åtte- tagget stjerne tegnet av to firkanter Oppgave 3 Ni- tagget stjerne tegnet av tre trekanter 4. De sju bruene Oppgave 1 Antall streker til hvert punkt skal være et partall. Da kan en følge en strek bort fra punktet og en annen tilbake til punktet. En meget enkel løsning er denne hvor det er to streker til hvert punkt. Hvis du vil ha noen flere streker, kan du godt lage det. Her er f. eks. en løsning hvor det er seks streker til to av punktene og fire streker til det tredje punktet.

9 Oppgave 2 Antall linjer til minst ett av punktene må være et oddetall. Her er et eksempel hvor det ikke er mulig å gå en tur som tilfredsstiller kravene. Her er det tre streker til to av punktene og to streker til det tredje punktet. Oppgave 3 Ja! Hvis vi for eksempel starter i det øverste punktet, kan vi følge alle tre strekene og og slutte i det nederste punktet. Oppgave 4 Nei! I Königsberg var det tre punkter som hver hadde tre streker og et punkt med fem streker. Da kan en ikke gå en tur hvor en starter et sted og slutter et annet sted. Det kan vi bare hvis det er to punkter hvor antall streker er et oddetall, dvs. det punktet som vi starter i og det vi slutter i. 5. Tankeleseren Oppgave speilvendes til 532. Da 235 er mindre enn 532, skal vi regne 532 minus 235: = 297 Så skal 297 speilvendes til 792 og 297 og 792 skal legges sammen: = 1089 Oppgave 2 Når vi speilvender 610 er det viktig å huske 0- en. Det første regnestykket blir slik: = 594

10 OBS! Pass på at du ikke regner slik: 610 speilvendes til 160! Og deretter gjør du som før: = 1089 Oppgave = 99 Her dukker det egentlig opp en null som vi må huske på! Den korrekte fortsettelsen av regnestykket blir da: = 1089 Oppgave 4 Når 151 blir speilvendt, blir det jo det samme tallet. Og når vi trekker to like tall fra hverandre, blir det ikke noe tilbake. - Slutt på det regnestykket! Men hva blir det hvis de like tallene står ved siden av hverandre, f.eks. 115? = = 1089 Dette gikk jo bra! Men trikset er nok lettere å forklare hvis vi holder fast på regelen om at alle tallene skal være forskjellige.

11 Om de seks heftene i boks 2 (Løsningsforslag i heftene) Formålet med disse seks heftene er å gi mulighet for å lese om interessante matematiske emner uten å bruke avansert matematikk og i et lett språk med færrest mulig matematiske begreper. Med Les selv- heftene vil elevene oppleve at Matematikken kan leses og være noe annet enn oppgaver De selv kan sette seg inn i nytt matematikkstoff Matematikken inngår i sammenhenger med historie og samfunn Med Les selv- heftene vil læreren Få mulighet til å gi interesserte elever nye utfordringer et godt alternativ til flere oppgaveark Få materiale til verkstedsaktiviteter Kunne gi nye bidrag til tverrfaglig samarbeid Matematikk kan leses For de aller fleste menneskene er matematikk det samme som å løse matematiske oppgaver. I de senere årene er dette blitt supplert med matematiske undersøkelser, hvor elevene selv definerer undersøkelsesområdene og matematikkprosjekter hvor elevene selv utfører slike undersøkelser. Oppgaver, undersøkelser og prosjekter er en viktig del av det å arbeide med matematikk, men det gir ikke et helt bilde av matematikken. Matematikk er også kunnskap som kan leses, og denne kunnskapen kan være viktig for forståelsen og er ofte spennende. Dette kan elevene oppleve med Les selv- heftene : Eleven kan selv sette seg inn i ny matematikk De fleste elevene vet godt at hvis de vil vite mer om Titanics forlis eller H. C. Andersens liv enn det læreren har fortalt, kan de selv finne fram til det. Og en av måtene å gjøre det på, er å låne bøker om emnet. Men det er veldig få elever som tenker på at de selv kan finne fram til mer matematisk viten enn den læreren har gitt dem. Matematikken er typisk gjennomtygget av læreren først. Les selv- heftene er et skritt i retning av å gi elevene følelsen av at de selv kan sette seg inn i matematikk uten hjelp av læreren! Matematikk i sammenheng

12 Matematikkundervisningen i skolen er ofte uten noen kontekst og fylles av rene talloppgaver eller rene geometrioppgaver. I de siste årene er det heldigvis blitt større fokus på bruken av matematikk i hverdagen, i arbeidslivet og i samfunnet generelt. Les selv heftene følger denne tendensen. I materialet er det fokus på andre sammenhenger enn de rent bruksorienterte, nemlig historiske, kulturelle eller personlige sammenhenger. Vi kan kalle dette for deler av den matematiske kulturarven med små historier og fakta som er felles bakgrunnskunnskap for en stor gruppe matematikere. Elevene klarer seg selv Det er viktig at elevene selv skal kunne lese heftene. De er ikke tenkt som lekser eller som del av et pensum. Elevene skal ikke høres i emnene, og de skal ikke få rettet de oppgavene som finnes bak i heftene. Elevene kan selv se på løsningsforslagene som står bakerst i hvert hefte, og rette svarene selv. Det skal være elevens frie valg om han eller hun vil løse oppgavene, eller om de bare vil lese dem og så se på løsningene som står bakerst i hvert hefte.

13 Bruksmuligheter Et alternativ til ekstra oppgaveark for elever som ønsker utfordringer. Heftene skal ligge framme i klasserommet og når en elev er ferdig med dagens arbeidsoppgaver, kan han eller hun ta et hefte fra Les selv. Alternativt kan læreren henvise eleven til biblioteket hvor Les selv- heftene står. En pause fra dagens oppgaver Heftene kan være en mulighet for elever som er blitt trøtte av den daglige rutine med arbeidsoppgaver. Kanskje svikter konsentrasjonen i forhold til mengden av oppgaver i matematikkboken. Les selv- heftene kan være et friminutt hvor elevene får ny energi samtidig som det faglige er i orden! En verkstedsaktivitet med individuelle fordypelse Sammen med andre faglige bøker, kan Les selv- heftene være en av stasjonene i en stasjonsorientert undervisning. Stasjonsundervisning i matematikk har en tendens til å få en overvekt av arbeidsoppgaver som krever samarbeid, kommunikasjon og fingerferdighet. Et verksted med faglig frilesing kan utnytte og stimulere ferdigheter som konsentrasjon, fordypelse og selvstendig tilegnelse av kunnskap. Faglig samarbeid Les selv - konseptet er hentet fra samme didaktiske tenking som en finner i norskfaget. Der inngår også lesing av fagstoff som del av undervisningen. De enkelte heftene kan også inngå i temaer i for eksempel de naturvitenskapelige fagene, historie, samfunnsfag og norsk.

14 De enkelte heftene Tverrfaglig samarbeid med 6 Les selv om MÅL Å stifte bekjentskap med mål som ikke er basert på 10- talls systemet (gamle norske mål og nåværende amerikanske mål). På den måten kan elevene se fordelene i metersystemet. Desimaltall og potenser Norsk, historie, natur og teknikk, geografi Tverrfaglig samarbeid med 7 Les selv om KART Å stifte bekjentskap med det fundamentale problemet at jorden er en kule, mens kartene er flate. Fokus på hvordan matematikken kan hjelpe til med å håndtere dette problemet. Kule, sylinder, vinkelmål i grader, omkretsen av sirkel Natur og teknikk, geografi, fysikk Tverrfaglig samarbeid med 8. Les selv om LABYRINTER Å gjøre oppmerksom på geometrien i forskjellige labyrinter Sirkelbue, kvadrat, rektangel Historie, religion, livssyn og etikk. Tverrfaglig samarbeid med 9. Les selv om KORTTRIKS Å få en opplevelse av at matematikken kan forklare noe som mange betrakter som magi. Parenteser, bruk av bokstaver i regneuttrykk. Begrepet annenhver. Ingen

15 Tverrfaglig samarbeid med 10. Les selv om LOGIKK Er Morlille virkelig en stein? Hvordan logikk kan brukes og misbrukes. Ingen Norsk, historie Tverrfaglig samarbeid med 11. Les selv om UENDELIGHET Å få en første opplevelse av hva uendelighet er, og forsøk på å regne med uendelighet! Kjennskap til de naturlige tallene og brøkene (de rasjonelle tallene). Tabellene. Norsk.

Magisk Matematikk 9. - 10. trinn, Vg1 75 minutter

Magisk Matematikk 9. - 10. trinn, Vg1 75 minutter Lærerveiledning Passer for: Varighet: Magisk Matematikk 9. - 10. trinn, Vg1 75 minutter Magisk Matematikk er et skoleprogram som tar utgangspunkt i «magiske» talltriks i plenum som dere kan jobbe videre

Detaljer

ADDISJON FRA A TIL Å

ADDISJON FRA A TIL Å ADDISJON FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til addisjon 2 2 Grunnleggende om addisjon 3 3 Ulike tenkemåter 4 4 Hjelpemidler i addisjoner 9 4.1 Bruk av tegninger

Detaljer

Tall: Hovedområdet tall og algebra handler om å utvikle tallforståing og innsikt i hvordan tall og tallbehandling inngår i

Tall: Hovedområdet tall og algebra handler om å utvikle tallforståing og innsikt i hvordan tall og tallbehandling inngår i Lærebok: Tusen Millioner, Gjerdrum og Skovdahl Tallbok (rutebok i A5 format) Barn lærer matematikk gjennom spill, leik, utforsking og aktiv samhandling. Språkets betydning er veldig viktig for å forstå

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk Inspirasjon og motivasjon for matematikk Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? Bjørnar Alseth Høgskolen i Oslo Styremedlem i Lamis Lærebokforfatter; MULTI Mona Røsseland

Detaljer

Oppgave 1. Del A. (i) Skriv de to desimaltallene 0, 7 og 3, 12 som vanlig brøk og forkort hvis mulig. som desimaltall. 3x 6

Oppgave 1. Del A. (i) Skriv de to desimaltallene 0, 7 og 3, 12 som vanlig brøk og forkort hvis mulig. som desimaltall. 3x 6 Oppgave 1 (i) Skriv de to desimaltallene 0, 7 og 3, 12 som vanlig brøk og forkort hvis mulig. (ii) Skriv 314 100 og 4 5 (iii) Forkort brøkene som desimaltall. 12 15 og 3x 6 9x. (iv) Sorter disse seks tallene

Detaljer

DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK

DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK For elever fra 1. 5. trinn Del C: Notatark til kartleggingsleder Elev: Født: Skole: Klassetrinn: Kartleggingsleder: Andre til stede: Sted og dato for kartlegging:

Detaljer

OVERFLATE FRA A TIL Å

OVERFLATE FRA A TIL Å OVERFLATE FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til overflate... 2 2 Grunnleggende om overflate.. 2 3 Overflate til:.. 3 3 3a Kube. 3 3b Rett Prisme... 5 3c

Detaljer

Årsplan i matematikk for 3. trinn 2017/2018

Årsplan i matematikk for 3. trinn 2017/2018 Årsplan i matematikk for 3. trinn 2017/2018 Lærerverk og bøker: Tusen millioner, oppgavebok og tallbok Uke Mål: eleven skal kunne Tema Arbeidsform Vurdering 34,35,36 4-21 tallene, bruke positive og negative

Detaljer

ÅRSPLAN Øyslebø oppvekstsenter. Fag: KRLE. Lærer: Marit Valle. Tidsrom Tema Lærestoff / læremidler. Kompetansemål i læreplanen

ÅRSPLAN Øyslebø oppvekstsenter. Fag: KRLE. Lærer: Marit Valle. Tidsrom Tema Lærestoff / læremidler. Kompetansemål i læreplanen Øyslebø oppvekstsenter ÅRSPLAN 2016-2017 Fag: KRLE Trinn: 2 Lærer: Marit Valle Tidsrom Tema Lærestoff / læremidler Hele året Vi fokuserer hele tiden på matematiske sammenhenger og emnene vil dermed gå

Detaljer

matematikk? Arne B. Sletsjøe Gyldendal 04.11.2010 Universitetet i Oslo Trenger man digitale verktøy for å lære matematikk? A.B.

matematikk? Arne B. Sletsjøe Gyldendal 04.11.2010 Universitetet i Oslo Trenger man digitale verktøy for å lære matematikk? A.B. Trenger man Det er mange mulige forklaringer på hvorfor begynnerstudentene på universiteter og høgskoler har dårligere basisferdigheter i matematikk nå enn tidligere. Vi ser på denne problemstillingen

Detaljer

Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Geometri i skolen Geometri etter 4.

Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Geometri i skolen Geometri etter 4. Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI 15-Apr-07 Geometri i skolen dreier seg blant annet om å analysere egenskaper ved to- og tredimensjonale

Detaljer

Innhold DEL I MATEMATIKK SKOLEFAG OG KULTURARV 21

Innhold DEL I MATEMATIKK SKOLEFAG OG KULTURARV 21 Innhold Velkommen til studiet... 13 Oppbygning... 15 Sammenheng og helhet... 16 Pedagogisk struktur... 17 Lykke til med et spennende kurs... 19 DEL I MATEMATIKK SKOLEFAG OG KULTURARV 21 Kapittel 1 Tall...

Detaljer

Ny GIV 12. april 2012

Ny GIV 12. april 2012 Ny GIV 12. april 2012 1 «NY GIV I HEL KLASSE.» Den matematiske samtalen God matematikkundervisning skjer i møtet mellom læreren, elevene og det matematiske fagstoffet. 2 Aktivt språkbruk Grunnleggende

Detaljer

Tall: Hovedområdet tall og algebra handler om å utvikle tallforståing og innsikt i hvordan tall og tallbehandling inngår i

Tall: Hovedområdet tall og algebra handler om å utvikle tallforståing og innsikt i hvordan tall og tallbehandling inngår i Lærebok: Tusen Millioner, Gjerdrum og Skovdahl Tallbok (rutebok i A5 format) Barn lærer matematikk gjennom spill, leik, utforsking og aktiv samhandling. Språkets betydning er veldig viktig for å forstå

Detaljer

MATEMATIKK. September

MATEMATIKK. September MATEMATIKK Periode Hovedområde Kompetansemål Innhold / metode August Tall og algebra Sette sammen og dele opp tiergrupper Gjenkjenne, samtale om og videreføre September strukturer i enkle tallmønstre Bruke

Detaljer

Årsplan Matematikk Skoleåret 2015/2016

Årsplan Matematikk Skoleåret 2015/2016 Årsplan Matematikk Skoleåret 2015/2016 Mål for faget Elevene elsker matematikk og gleder seg over hver time de skal ha i faget. Elevene skal kjenne tallsymbolene fra 0 til 20. Elevene skal beherske å skrive

Detaljer

Kapittel 5: Mengdelære

Kapittel 5: Mengdelære MAT1030 Diskret Matematikk Forelesning 9: Mengdelære Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 5: Mengdelære 17. februar 2009 (Sist oppdatert: 2009-02-17 15:56) MAT1030 Diskret

Detaljer

Posisjonsystemet FRA A TIL Å

Posisjonsystemet FRA A TIL Å Posisjonsystemet FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til posisjonsystemet P - 2 2 Grunnleggende om posisjonsystemet P - 2 3 Titallsystemet P - 3 4 Posisjonsystemet

Detaljer

Du betyr en forskjell. (Fritt etter foredrag av Brynhild Farbrot)

Du betyr en forskjell. (Fritt etter foredrag av Brynhild Farbrot) Du betyr en forskjell (Fritt etter foredrag av Brynhild Farbrot) Dere foreldre, er like viktige som undervisningen. Gi barnet ditt allsidig erfaringer fra dagliglivet. Barn som har et godt begrepsinnhold

Detaljer

DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK

DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK For elever fra 1. 5. trinn Del D: Dynamisk kartlegging, elevark Mange av oppgavene er muntlige eller praktiske og har derfor ikke oppgaveark til eleven. Til noen

Detaljer

Halvårsplan/årsplan i matematikk for 3. trinn 2014/2015 Kompetansemål KL- 06

Halvårsplan/årsplan i matematikk for 3. trinn 2014/2015 Kompetansemål KL- 06 Uke/ perio de 33-37 Halvårsplan/årsplan i matematikk for 3. trinn 2014/2015 Kompetansemål KL- 06 -Utvikle og bruke ulike regnemetoder for addisjon og subtraksjon av flersifra tall både i hodet og på papiret.

Detaljer

Matematisk førstehjelp

Matematisk førstehjelp Matematisk førstehjelp Brøk prosent desimaltall Brynhild Farbrot Foosnæs Matematisk kompetanse Kunnskapsløftet Kompetansemål Ferdigheter Forståelse Anvendelse Kunnskapsløftet Kompetansemål Ferdigheter:

Detaljer

arbeide med konkreter praktisk arbeid stasjoner uteskole pc samtale samarbeid gruppearbeid arbeide i læreverket andre skriftlige oppgaver

arbeide med konkreter praktisk arbeid stasjoner uteskole pc samtale samarbeid gruppearbeid arbeide i læreverket andre skriftlige oppgaver Årsplan i matematikk for 3. trinn 2015/2016 Lærerverk og bøker: Tusen millioner, oppgavebok og tallbok Uke Mål: eleven skal kunne Tema Arbeidsform Vurdering 34,35,36 T.M s. 4-21 tallene, bruke positive

Detaljer

ÅRSPLAN I MATTE 2. TRINN BREIVIKBOTN SKOLE 2011-2012

ÅRSPLAN I MATTE 2. TRINN BREIVIKBOTN SKOLE 2011-2012 ÅRSPLAN I MATTE 2. TRINN BREIVIKBOTN SKOLE 2011-2012 Lærer: Knut Brattfjord Læreverk: Grunntall 2 a og b, av Bakke og Bakke, Elektronisk Undervisningsforlag AS Målene er fra Lærerplanverket for kunnskapsløftet

Detaljer

Læreplanene for Kunnskapsløftet

Læreplanene for Kunnskapsløftet Læreplanene for Kunnskapsløftet Hvordan få samsvar mellom intensjon og praksis? Mona Røsseland Leder i Lamis Nasjonalt senter for matematikk i opplæringen Lærebokforfatter; MULTI 12-Mar-06 Intensjoner

Detaljer

Læreplanene for Kunnskapsløftet

Læreplanene for Kunnskapsløftet Læreplanene for Kunnskapsløftet Hvordan få samsvar mellom intensjon og praksis? Mona Røsseland Nasjonalt senter for matematikk i opplæringen Leder i Lamis Lærebokforfatter; MULTI 21-Mar-06 Intensjoner

Detaljer

Magisk Matematikk. 75 minutter. Passer for: Varighet:

Magisk Matematikk. 75 minutter. Passer for: Varighet: Lærerveiledning Passer for: Varighet: Magisk Matematikk 9. - 10. trinn 75 minutter Magisk Matematikk er et skoleprogram som tar utgangspunkt i «magiske» talltriks i plenum som enkelt avsløres med algebra,

Detaljer

Årsplan i matematikk Trinn 9 Skoleåret Haumyrheia skole

Årsplan i matematikk Trinn 9 Skoleåret Haumyrheia skole Årsplan i matematikk Trinn 9 Skoleåret 2016-2017 Tids rom 3 Kompetansemål Hva skal vi lære? (Læringsmål) Hvordan jobber vi? (Metoder) sammenligne og regne tall på standardform og uttrykke slike tall på

Detaljer

Lærebok: Tusen millioner, Gjerdrum og Skovdal Barn lærer matematikk gjennom spill, lek, utforsking og aktiv samhandling. Språkets betydning er veldig

Lærebok: Tusen millioner, Gjerdrum og Skovdal Barn lærer matematikk gjennom spill, lek, utforsking og aktiv samhandling. Språkets betydning er veldig Lærebok: Tusen millioner, Gjerdrum og Skovdal Barn lærer matematikk gjennom spill, lek, utforsking og aktiv samhandling. Språkets betydning er veldig viktig for å forstå matematikk. Innenfor matematikkens

Detaljer

Årsplan Matematikk 3.trinn

Årsplan Matematikk 3.trinn Årsplan Matematikk 3.trinn 2016-2017 Uke Tema: Kunnskapsløftet sier: Kompetansemål: Læringsmål: Innhold i timene: 34 35 Kap. 1 Data og statistikk Samle og sortere objekter i passende kategorier. Illustrere

Detaljer

Lærerveiledning Versjon 1.0

Lærerveiledning Versjon 1.0 Lærerveiledning Versjon 1.0 F orord Jeg jobbet som mattelærer i fem år, og har sett hvor mange unge barn som sliter med matte. Det er veldig lett for elevene å miste motivasjonen og gi opp, og de blir

Detaljer

Elevaktiv matematikk. hvorfor og hvordan? Retningslinjer for undervisningen. Intensjoner med ny læreplan. Hvilke utfordringer gir dette lærerne?

Elevaktiv matematikk. hvorfor og hvordan? Retningslinjer for undervisningen. Intensjoner med ny læreplan. Hvilke utfordringer gir dette lærerne? Elevaktiv matematikk Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? hvorfor og hvordan? Mona Røsseland Leder i Lamis Nasjonalt senter for matematikk i opplæringen Lærebokforfatter

Detaljer

timene og hjemme 36 både med og uten digitale verktøy fortløpende Kapittelprøve Arbeidsinnsats i 38 de hele tallene, bruke positive og mindre enn 0

timene og hjemme 36 både med og uten digitale verktøy fortløpende Kapittelprøve Arbeidsinnsats i 38 de hele tallene, bruke positive og mindre enn 0 ÅRSPLAN I MATEMATIKK FOR 4. TRINN 2017/2018 Læreverk: Multi Lærer: Kaia Bøen Jæger og Carl Petter Tresselt UKE MÅL (K06) TEMA ARBEIDSFORM VURDERING 34 lese av, plassere og beskrive posisjoner i Koordinatsystemet

Detaljer

Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig

Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig Sensurveiledning Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1 Semester: VÅR År: 2016 Eksamenstype: Skriftlig Oppgave 1 Figuren viser hvordan en nettside forklarer en metode for addisjon og

Detaljer

Ny Giv. Grunnleggende regneferdighet. Brynhild Farbrot Foosnæs

Ny Giv. Grunnleggende regneferdighet. Brynhild Farbrot Foosnæs Ny Giv Grunnleggende regneferdighet Brynhild Farbrot Foosnæs Læring innebærer endring Hva har du endret siden sist? Læring innebærer at du blir utfordret og at du tør å ta utfordringen. Hvilke utfordringer

Detaljer

Virkelighetsnær matematikk. Fra foredrag av Beate Stabell, Bergen sept. 2005.

Virkelighetsnær matematikk. Fra foredrag av Beate Stabell, Bergen sept. 2005. Virkelighetsnær matematikk Fra foredrag av Beate Stabell, Bergen sept. 2005. Konteksten vesentlig å legge til rette for en undervisningspraksis hvor elevene møter matematikk og matematiske problemstillinger

Detaljer

Halvårsplan/årsplan i matematikk for 3. trinn 2017/2018 Kompetansemål KL- 06

Halvårsplan/årsplan i matematikk for 3. trinn 2017/2018 Kompetansemål KL- 06 Uke/ perio de 33-37 Halvårsplan/årsplan i matematikk for 3. trinn 2017/2018 Kompetansemål KL- 06 -Utvikle og bruke ulike regnemetoder for addisjon og subtraksjon av flersifra tall både i hodet og på papiret.

Detaljer

Tallinjen FRA A TIL Å

Tallinjen FRA A TIL Å Tallinjen FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til tallinjen T - 2 2 Grunnleggende om tallinjen T - 2 3 Hvordan vi kan bruke en tallinje T - 4 3.1 Tallinjen

Detaljer

Periodeplan OPPVEKST MOTTAKSSKOLEN. Kristiansand

Periodeplan OPPVEKST MOTTAKSSKOLEN. Kristiansand OPPVEKST MOTTAKSSKOLEN Kristiansand 12.09.16 Periodeplan Periode: vår 2017 Fag og uketimer: matematikk, 4 timer pr uke Gruppe: C Læremidler: Hovedlæreverk Multi, 2a 2b, evt 3a 3 b. (Alseth, Arnås, Kirkegaard,

Detaljer

Hva er god matematikkundervisning?

Hva er god matematikkundervisning? Hva er god matematikkundervisning? Astrid Bondø Nasjonalt Senter for Matematikk i Opplæringen 22-Feb-08 Ny læreplan, nye utfordringer for undervisninga i matematikk? Hva vil det si å ha matematiske kompetanse?

Detaljer

Moro med matematikk 5. - 7. trinn 90 minutter

Moro med matematikk 5. - 7. trinn 90 minutter Lærerveiledning Passer for: Varighet: Moro med matematikk 5. - 7. trinn 90 minutter Moro med matematikk er et skoleprogram i matematikk hvor elevene får jobbe variert med problemløsingsoppgaver, spill

Detaljer

KOMPETANSEMÅL ETTER 2. TRINNET Tall:

KOMPETANSEMÅL ETTER 2. TRINNET Tall: KOMPETANSEMÅL ETTER 2. TRINNET Tall: 1. Telle til 100, dele opp og byggemengder oppt il 10, sette sammen og dele opp tiergrupper. 2. Bruke tallinjen til beregninger og å angi tallstørrelser. 3. Gjøre overslag

Detaljer

Plassere positive og negative tall på tallinjen KOPIERINGSORIGINAL 2.1. Navn: KAPITTEL 2 Tall og tallforståelse. Oppgave 4a. Oppgave 4b.

Plassere positive og negative tall på tallinjen KOPIERINGSORIGINAL 2.1. Navn: KAPITTEL 2 Tall og tallforståelse. Oppgave 4a. Oppgave 4b. KOPIERINGSORIGINAL 2.1 KAPITTEL 2 Tall og tallforståelse Plassere positive og negative tall på tallinjen Navn: Oppgave 4a 0 1 Oppgave 4b 40 0 40 Oppgave 4c 20 0 20 Oppgave 5a 6 3 0 1 4 Oppgave 5b 2 1 0

Detaljer

Lokal læreplan matematikk 1. trinn

Lokal læreplan matematikk 1. trinn Lokal læreplan matematikk 1. trinn Lærebok: Multi Antall uker Sortering Multi 1A kap.1 Kunne samle, sortere, notere og illustrere data med teljestrekar, tabellar og søylediagram og samtale om prosessen

Detaljer

Innhold DEL I MATEMATIKK SKOLEFAG OG KULTURARV.. 21

Innhold DEL I MATEMATIKK SKOLEFAG OG KULTURARV.. 21 Innhold Velkommen til studiet... 13 Oppbygning... 15 Sammenheng og helhet... 16 Pedagogisk struktur... 17 Lykke til med et spennende kurs... 19 DEL I MATEMATIKK SKOLEFAG OG KULTURARV.. 21 Kapittel 1 Tall...

Detaljer

Årsplan matematikk 3. trinn

Årsplan matematikk 3. trinn Årsplan matematikk 3. trinn Uke Tema Kompetansemål Læringsmål Aktiviteter, metoder og læringsressurser Hele Jeg vet hva symbolet er for de året fire regneartene. Utvikle og bruke varierte metodar for multiplikasjon

Detaljer

Foreldremøte 5.september 2017

Foreldremøte 5.september 2017 Foreldremøte 5.september 2017 Hva er russisk matematikk Utviklende opplæring i matematikk? - Prinsippene og tenkningen bak - Eksempel på noen oppgaver - Hva legges vekt på? - Hva bør elevene ha lært på

Detaljer

Kengurukonkurransen 2013

Kengurukonkurransen 2013 Kengurukonkurransen 2013 «Et sprang inn i matematikken» ECOLIER (4. 5. trinn) Hefte for læreren Kengurukonkurransen 2013 Velkommen til Kengurukonkurransen! I år arrangeres den for niende gang i Norge.

Detaljer

MAT1030 Diskret matematikk. Mengder. Mengder. Forelesning 9: Mengdelære. Dag Normann OVER TIL KAPITTEL februar 2008

MAT1030 Diskret matematikk. Mengder. Mengder. Forelesning 9: Mengdelære. Dag Normann OVER TIL KAPITTEL februar 2008 MAT1030 Diskret matematikk Forelesning 9: Mengdelære Dag Normann OVER TIL KAPITTEL 5 Matematisk Institutt, Universitetet i Oslo 11. februar 2008 MAT1030 Diskret matematikk 11. februar 2008 2 De fleste

Detaljer

ÅRSPLAN I MATEMATIKK 2. KLASSE BREIVIKBOTN SKOLE 2013-2014

ÅRSPLAN I MATEMATIKK 2. KLASSE BREIVIKBOTN SKOLE 2013-2014 ÅRSPLAN I MATEMATIKK 2. KLASSE BREIVIKBOTN SKOLE 2013-2014 Lærer: Turid Nilsen Matematikkverket består av: - Ressursperm - Grunntall 2a + 2b - CD-rom Forfattere: Bjørn Bakke og Inger Nygjelten Bakke Grunnleggende

Detaljer

Den gode matematikkundervisning

Den gode matematikkundervisning Den gode matematikkundervisning Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? - hva er det? Mona Røsseland Nasjonalt senter for matematikk i opplæringen Leder i LAMIS Lærebokforfatter;

Detaljer

Tall: Hovedområdet tall og algebra handler om å utvikle tallforståing og innsikt i hvordan tall og tallbehandling inngår i

Tall: Hovedområdet tall og algebra handler om å utvikle tallforståing og innsikt i hvordan tall og tallbehandling inngår i Lærebok: Tusen Millioner, Gjerdrum Skovdahl Tallbok (rutebok i A5 format) Barn lærer matematikk gjennom spill, leik, utforsking aktiv samhandling. Språkets betydning er veldig viktig for å forstå matematikk.

Detaljer

Matematikk 1. 4. årstrinn Smøla kommune

Matematikk 1. 4. årstrinn Smøla kommune Lokal læreplan i Matematikk 1. 4. årstrinn Smøla kommune Grunnskolen 1 INNHOLDSFORTEGNELSE Hovedområder.. side 3 Gjennomføring.. side 10 Målark. side 11 Digitale ressurser.. side 19 2 HOVEDOMRÅDER Matematikkplanen

Detaljer

Oppgaver til julekalenderen 2005 for mellomtrinnet; 5. - 7.trinn

Oppgaver til julekalenderen 2005 for mellomtrinnet; 5. - 7.trinn Oppgaver til julekalenderen 2005 for mellomtrinnet; 5. - 7.trinn Løsningsord for kalenderen er RAKETTBASE PRESIS KLOKKA TO A B C D E F G H I J K L M N O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 P Q R S T U

Detaljer

Kengurukonkurransen 2011

Kengurukonkurransen 2011 Kengurukonkurransen 2011 «Et sprang inn i matematikken» ECOLIER (4. 5. trinn) Hefte for læreren Kengurukonkurransen 2011 Velkommen til Kengurukonkurransen! I år arrangeres den for sjuende gang i Norge.

Detaljer

Kengurukonkurransen 2009

Kengurukonkurransen 2009 Kengurukonkurransen 2009 «Et sprang inn i matematikken» Ecolier (4. 5. trinn) Hefte for læreren Kengurukonkurransen 2009 Velkommen til Kengurukonkurransen! I år arrangeres den for femte gang i Norge. Dette

Detaljer

Forelesning 9. Mengdelære. Dag Normann februar Mengder. Mengder. Mengder. Mengder OVER TIL KAPITTEL 5

Forelesning 9. Mengdelære. Dag Normann februar Mengder. Mengder. Mengder. Mengder OVER TIL KAPITTEL 5 Forelesning 9 Mengdelære Dag Normann - 11. februar 2008 OVER TIL KAPITTEL 5 De fleste som tar MAT1030 har vært borti mengder i en eller annen form tidligere. I statistikk og sannsynlighetsteori på VGS

Detaljer

å gjenkjenne regning i ulike kontekster å kommunisere og argumentere for valg som er foretatt

å gjenkjenne regning i ulike kontekster å kommunisere og argumentere for valg som er foretatt 13. mai 2014 å gjenkjenne regning i ulike kontekster å velge holdbare løsningsmetoder - gjennomføre å kommunisere og argumentere for valg som er foretatt tolke resultater kunne gå tilbake og gjøre nye

Detaljer

MOSBY OPPVEKSTSENTER ÅRSPLAN I MATEMATIKK - 2.TRINN 2015-16 Uke Emne Kompetansemål Læringsmål Arbeidsmetode Læremidler Evaluering/

MOSBY OPPVEKSTSENTER ÅRSPLAN I MATEMATIKK - 2.TRINN 2015-16 Uke Emne Kompetansemål Læringsmål Arbeidsmetode Læremidler Evaluering/ Årsplan i matematikk for 2 tr. 15-16 Læreverk: Multi 2A, 2B og oppgavebok. MOSBY OPPVEKSTSENTER ÅRSPLAN I MATEMATIKK - 2.TRINN 15-16 34 35 36 37 38 39 Tallene 0- med tallene opp til -Bruke tallinja til

Detaljer

MAT1030 Forelesning 2

MAT1030 Forelesning 2 MAT1030 Forelesning 2 Kontrollstrukturer, tallsystemer, basis Dag Normann - 20. januar 2010 (Sist oppdatert: 2010-01-20 12:31) Kapittel 1: Algoritmer (fortsettelse) Kontrollstrukturer I går innførte vi

Detaljer

Halvårsplan/årsplan i Matematikk for 2. trinn 2015/2016 Tema Læringsmål Grunnleggende ferdigheter

Halvårsplan/årsplan i Matematikk for 2. trinn 2015/2016 Tema Læringsmål Grunnleggende ferdigheter Uke/ perio de Kompetansemål KL- 06 33-39 TALL bygge mengder opp til 10, tiergrupper. Bruke tallinjen til beregning og til å vise tallstørelser. Halvårsplan/årsplan i Matematikk for 2. trinn 2015/2016 Tema

Detaljer

Men hvorfor trenger vi et didaktisk verktøy og hvorfor skulle vi endre eller lage oppgaver?

Men hvorfor trenger vi et didaktisk verktøy og hvorfor skulle vi endre eller lage oppgaver? DiVeLOpp - DEL 1 Didaktisk Verktøy for å Lage Oppgaver Vi vil snakke om kunnskaper og læringsaktiviteter i fire ganger. Vi begynner med å identifisere kunnskaper. Deretter ser vi på læringsaktiviteter.

Detaljer

Hjemmet og matematikkundervisningen. (Uavhengig av de voksnes tidligere erfaringer med matematikk?!)

Hjemmet og matematikkundervisningen. (Uavhengig av de voksnes tidligere erfaringer med matematikk?!) Foreldre teller!! Hjemmet og matematikkundervisningen. (Uavhengig av de voksnes tidligere erfaringer med matematikk?!) Denne økten: Hva kan vi gjøre hjemme for at matematikk skal bli et spennende fag?

Detaljer

Hva vil det si å kunne matematikk? Hva er tallforståelse? Gjett tre kort. Arbeide både praktisk og teoretisk. Det viktigste for læring

Hva vil det si å kunne matematikk? Hva er tallforståelse? Gjett tre kort. Arbeide både praktisk og teoretisk. Det viktigste for læring Hva vil det si å kunne matematikk? Gjett tre kort Hva er tallforståelse? Mona Røsseland Nasjonalt senter for Matematikk i opplæringen Lærebokforfatter; MULTI 9-Sep-08 9-Sep-08 2 Arbeide både praktisk og

Detaljer

Uke Tema Læreplanmål Læringsmål Læremiddel

Uke Tema Læreplanmål Læringsmål Læremiddel Uke Tema Læreplanmål Læringsmål Læremiddel 34-35 Data og statistikk - samle, sortere, notere og illustrere data på formålstenlege måtar med teljestrekar, tabellar og søylediagram, med og utan digitale

Detaljer

Desimaltall FRA A TIL Å

Desimaltall FRA A TIL Å Desimaltall FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side Innledning til desimaltall D - 2 2 Grunnleggende om desimaltall D - 2 2. Tideler, hundredeler og tusendeler D - 6 3 Å regne

Detaljer

Eksamensoppgave i LVUT8091 Matematikk 1 (1-7) emne 1 KFK

Eksamensoppgave i LVUT8091 Matematikk 1 (1-7) emne 1 KFK Fakultet for lærer- og tolkeutdanning Eksamensoppgave i LVUT8091 Matematikk 1 (1-7) emne 1 KFK Faglig kontakt under eksamen: Siri-Malén Høynes Tlf.: 73412621 Eksamensdato: 30. november 2016 2. desember

Detaljer

Kompetansemål Innhold Læringsmål Kilder

Kompetansemål Innhold Læringsmål Kilder Års Tall telle til 50, dele opp og bygge mengder opp til 10, sette sammen og dele opp tiergruppe telling oppover fra et et vilkårlig tall i tallområdet 1-50 telling nedover fra et et vilkårlig tall i tallområdet

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 2: Kontrollstrukturer, tallsystemer, basis Roger Antonsen Institutt for informatikk, Universitetet i Oslo 14. januar 2009 (Sist oppdatert: 2009-01-14 16:45) Kapittel

Detaljer

2012-2013. Generelt for alle emner: Muntlig og skriftlig tilbakemelding og fremovermelding på arbeid i bøkene.

2012-2013. Generelt for alle emner: Muntlig og skriftlig tilbakemelding og fremovermelding på arbeid i bøkene. Kyrkjekrinsen skole Plan for perioden: 2012-2013 Fag: Matematikk År: 2012/2013 Klasse:1. trinn Lærer: Mari Saxegaard og Anne Karin Vestrheim Uke Årshjul Hovedtema Kompetanse mål Delmål / Konkretisering

Detaljer

Matematikk hver dag. Hvordan kan vi bruke dagliglivet til å gi barna bedre matematikk-kunnskap?

Matematikk hver dag. Hvordan kan vi bruke dagliglivet til å gi barna bedre matematikk-kunnskap? Matematikk hver dag Hvordan kan vi bruke dagliglivet til å gi barna bedre matematikk-kunnskap? Faget matematikk er i følge kunnskapsløftet strukturert i fire hovedområder: Tall og algebra Læren om tall

Detaljer

Matematikk. 5.- 7.trinn. 12 uker I skolen Hele kollegiet Lokalt praksisfelt Stockholm Universitet Studiesenteret.no

Matematikk. 5.- 7.trinn. 12 uker I skolen Hele kollegiet Lokalt praksisfelt Stockholm Universitet Studiesenteret.no Mobil Matematikk 5.- 7.trinn 12 uker I skolen Hele kollegiet Lokalt praksisfelt Stockholm Universitet Studiesenteret.no Her er matematikk dreiefaget for tverrfaglig tilnærming i skolens helhelige læringsaktiviteter.

Detaljer

ÅRSPLAN I MATEMATIKK FOR 3. TRINN 2017/2018 Faglærer: Margrethe Biribakken Strand og Line Maria Bratteng Læreverk: Multi 3A og 3B, Multi oppgavebok.

ÅRSPLAN I MATEMATIKK FOR 3. TRINN 2017/2018 Faglærer: Margrethe Biribakken Strand og Line Maria Bratteng Læreverk: Multi 3A og 3B, Multi oppgavebok. Balsfjord kommune for framtida Storsteinnes skole Mulighetenes skole med trygghet, ansvar og respekt former vi framtida. ÅRSPLAN I MATEMATIKK FOR 3. TRINN 2017/2018 Faglærer: Margrethe Biribakken Strand

Detaljer

HELHETLIG PLAN I REGNING VED OLSVIK SKOLE.

HELHETLIG PLAN I REGNING VED OLSVIK SKOLE. HELHETLIG PLAN I REGNING VED OLSVIK SKOLE. Prinsipper og strategier ved Olsvik skole. FORORD Olsvik skole har utarbeidet en helhetlig plan i regning som viser hvilke mål og arbeidsmåter som er forventet

Detaljer

På samme måten er de spesielle trekantene likesidet, likebeint, rettvinklet.

På samme måten er de spesielle trekantene likesidet, likebeint, rettvinklet. GEOMETRI GRUNNLEGGENDE GEOMETRI Geometriske former Trekant, firkant, sirkel. - Hva er det? Hvordan ser det ut? Deltakerne fikk i oppdrag å tegne: en firkant, en trekant og en runding. Som forventet, tegnet

Detaljer

Spill "Lag det tallet" - transkripsjon av samtalen

Spill Lag det tallet - transkripsjon av samtalen Spill "Lag det tallet" - transkripsjon av samtalen Elevene på 7. trinn sitter i lyttekroken foran tavla. Olaug er lærer. Klassen skal spille Lag det tallet. Det er første gang elevene skal spiller det.

Detaljer

ÅRSPLAN I MATEMATIKK FOR 4. TRINN 2015/2016 (høst)

ÅRSPLAN I MATEMATIKK FOR 4. TRINN 2015/2016 (høst) ÅRSPLAN I MATEMATIKK FOR 4. TRINN 2015/2016 (høst) Læreverk: Multi Lærer: Mona Haukås Olsen og Anne Marte Urdal/Ruben Elias Austnes 34-36 37-40 MÅL (K06) TEMA ARBEIDSFORM VURDERING lese avlassere og beskrive

Detaljer

Hva er god matematikkundervisning?

Hva er god matematikkundervisning? Hva er god matematikkundervisning? Astrid Bondø Nasjonalt Senter for Matematikk i Opplæringen 22-Feb-08 Ny læreplan, nye utfordringer for undervisninga i matematikk? Hva vil det si å ha matematiske kompetanse?

Detaljer

Kengurukonkurransen 2008 > Et sprang inn i matematikken <

Kengurukonkurransen 2008 > Et sprang inn i matematikken < Kengurukonkurransen 2008 > Et sprang inn i matematikken < Benjamin (6. 8. trinn) Hefte for læreren Kengurukonkurransen 2008 Velkommen til Kengurukonkurransen! I år arrangeres den for fjerde gang i Norge.

Detaljer

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016 LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016 TID EMNE DELMÅL LÆRINGSKJENNETEGN/ VURDERINGSKRITERIER Høy Middels Lav måloppnåelse måloppnåelse måloppnåelse KJØP OG SALG Lære om : - Sedler og mynters

Detaljer

Storsteinnes skole Mulighetenes skole med trygghet, ansvar og respekt former vi framtida.

Storsteinnes skole Mulighetenes skole med trygghet, ansvar og respekt former vi framtida. Balsfjord kommune for framtida Storsteinnes skole Mulighetenes skole med trygghet, ansvar og respekt former vi framtida. Skoleåret: 2017/2018 Faglærer: Charlotte Nyheim Lambela ÅRSPLAN I MATEMATIKK Emne/

Detaljer

MATEMATIKK I BARNEHAGEN? Hvorfor? Hvordan? Av Vibeke Mostad

MATEMATIKK I BARNEHAGEN? Hvorfor? Hvordan? Av Vibeke Mostad MATEMATIKK I BARNEHAGEN? Hvorfor? Hvordan? Av Vibeke Mostad RAMMEPLANEN: Antall, rom, form Gjennom lek, eksperimentering og hverdagsaktiviteter utvikler barna sin matematiske kompetanse Hva er matematikk?

Detaljer

Tallregning Vi på vindusrekka

Tallregning Vi på vindusrekka Tallregning Vi på vindusrekka Addisjon... 2 Addisjon: Oppstilling... 3 Addisjon med minnetall... 4 Addisjon med desimaltall... 5 Subtraksjon... 6 Subtraksjon uten låning... 7 Subtraksjon med låning...

Detaljer

FORELDREMØTE 25.april 2017

FORELDREMØTE 25.april 2017 FORELDREMØTE 25.april 2017 Hva er Russisk matematikk utviklende opplæring i matematikk? - Prinsippene og tenkningen bak - Eksempel på noen oppgaver - Hva legges vekt på? - Hva bør elevene ha lært på de

Detaljer

3. kurskveld. Gjennomgang av hjemmeleksa. Hvilke tall tenker jeg på?

3. kurskveld. Gjennomgang av hjemmeleksa. Hvilke tall tenker jeg på? 3. kurskveld Gjennomgang av hjemmeleksa Hvilke tall tenker jeg på? Læreren tenker på to etterfølgende tall mellom 1 og 10. To elever får en lapp med hvert sitt av de to tallene. Elev A: Jeg vet ikke hvilket

Detaljer

Telle i kor med 4 fra 5 - transkripsjonen av samtalen

Telle i kor med 4 fra 5 - transkripsjonen av samtalen Telle i kor med 4 fra 5 - transkripsjonen av samtalen Elevene på 5. trinn sitter parvis i klasserommet. Morten er lærer. Tallene skrives rad for rad i fem kolonner. Før tellingen starter har Morten skrevet

Detaljer

De fire regningsartene

De fire regningsartene De fire regningsartene Det går ikke an å si at elevene først skal ha forstått posisjonssystemet, og deretter kan de begynne med addisjon og subtraksjon. Dette må utvikles gradvis og om hverandre. Elevene

Detaljer

Lengdemål, areal og volum

Lengdemål, areal og volum Lengdemål, areal og volum Lengdemål Elever bør tidlig få erfaring med å vurdere ulike avstander og lengdemål. De kommer ofte opp i situasjoner i hverdagen hvor det er en stor ulempe å ikke ha begrep om

Detaljer

Matematisk julekalender for 1. - 4. trinn

Matematisk julekalender for 1. - 4. trinn Matematisk julekalender for 1. - 4. trinn Nytt av året er en kalender for elever på 1. til 4. trinn. Dette er en aldersgruppe som spriker veldig i kunnskap, og derfor har vi valgt å lage et stort utvalg

Detaljer

MAM Mestre Ambisiøs Matematikkundervisning. Novemberkonferansen 2015

MAM Mestre Ambisiøs Matematikkundervisning. Novemberkonferansen 2015 MAM Mestre Ambisiøs Matematikkundervisning Novemberkonferansen 2015 Eksempel: Telle i kor Film Kort omtale av aktiviteten Oversikt Introduksjon av aktiviteten Eksempler på aktiviteter Link til plandokument

Detaljer

Begynneropplæringen i matematikk. 1.-3.trinn 07.03.2012. Dagsoversikt. Tallfølelse

Begynneropplæringen i matematikk. 1.-3.trinn 07.03.2012. Dagsoversikt. Tallfølelse 07.03.2012 Begynneropplæringen i matematikk 1.-3.trinn Tillegskomponenter: Kartleggingsprøver: Halvårsprøve og årsprøve Grublishefte 1-4 og 5-7 Nettsted: www.gyldendal.no/multi Elevoppgaver Lærersider

Detaljer

Praktisk oppgave i gymsalen.

Praktisk oppgave i gymsalen. Info til lærer Dette heftet inneholder oppgaver som passer å gjøre etter arbeidet med Brann i Matteboken, eller som en aktivitet i løpet av den perioden de arbeider med de andre oppgaveheftene. I aktivitetene

Detaljer

Halvårsplan for: 3. trinn, høst 2017 Fag: Matematikk

Halvårsplan for: 3. trinn, høst 2017 Fag: Matematikk Halvårsplan for: 3. trinn, høst 2017 Fag: Matematikk Uke Tema/emne Læremidler Kompetansemål Læringsmål Vurdering Ansvar samle, sortere, notere samle inn data 33-34 Data og statistikk Grunnbok 3a og illustrere

Detaljer

Sensurveiledning Matematikk 1, 5-10, emne 1 Høsten 2013

Sensurveiledning Matematikk 1, 5-10, emne 1 Høsten 2013 Sensurveiledning Matematikk 1, 5-10, emne 1 Høsten 2013 Oppgave 1 a) =2 = 5 2 =5 2 = = 25 4 = 25 8 Full uttelling gis for arealet uttrykt over. Avrundinger gis noe uttelling. b) DC blir 5 cm og bruk av

Detaljer

KONGSVINGER 08.11.13 NY GIV - REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF

KONGSVINGER 08.11.13 NY GIV - REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF KONGSVINGER 08.11.13 NY GIV - REGNING Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF Mattelæreren God regning For å legge til rette for elevenes utvikling i regning som grunnleggende

Detaljer

Regn i hodet: 46 + 28. Å uttrykke tall. Ulike uttrykksmåter. Det vesentlige er utvikling. Hvordan jobbe med dette? Hvordan jobbe med dette? 10.09.

Regn i hodet: 46 + 28. Å uttrykke tall. Ulike uttrykksmåter. Det vesentlige er utvikling. Hvordan jobbe med dette? Hvordan jobbe med dette? 10.09. Hva er Hvorfor Singaporematematikk er folk interesserte i Singapore-matematikk Fordi elevene i Singapore stadig får best resultat på En samling undervisningsstrategier vanlig i Singapore internasjonale

Detaljer

Foreldremøte 13.september 2017

Foreldremøte 13.september 2017 Foreldremøte 13.september 2017 Hva er russisk matematikk Utviklende opplæring i matematikk? - Prinsippene og tenkningen bak - Eksempel på noen oppgaver - Hva legges vekt på? - Hva bør elevene ha lært på

Detaljer

Grunnleggende geometri

Grunnleggende geometri Grunnleggende geometri Elevene skal lære navn på og egenskaper ved kjente figurer som kvadrat, rektangel, parallellogram, generelle firkanter, likebeint og likesidet trekant og generelle trekanter. Det

Detaljer

ÅRSPLAN. Skoleåret: 16/17 Trinn: 6.trinn Fag: Matematikk

ÅRSPLAN. Skoleåret: 16/17 Trinn: 6.trinn Fag: Matematikk ÅRSPLAN Skoleåret: 16/17 Trinn: 6.trinn Fag: Matematikk Periode med tema Uke 33 35 Tall og regning Titallsystemet, avrunding uke 36 Hoderegning, Addisjon og subtraksjon Uke 37 Negative tall, Kompetansemål

Detaljer

Pi er sannsynligvis verdens mest berømte tall. Det har engasjert kloke hoder og fascinert både matematikere og filosofer gjennom tusener av år.

Pi er sannsynligvis verdens mest berømte tall. Det har engasjert kloke hoder og fascinert både matematikere og filosofer gjennom tusener av år. 1 Pi er sannsynligvis verdens mest berømte tall. Det har engasjert kloke hoder og fascinert både matematikere og filosofer gjennom tusener av år. De fleste av oss kjenner pi som størrelsen 3,14, og mange

Detaljer