GeoGebra. Tor Espen Kristensen. 1 Innstallering av GeoGebra 2. 2 Litt om programmets oppbygning 2. 3 Funksjoner i GeoGebra 3

Størrelse: px
Begynne med side:

Download "GeoGebra. Tor Espen Kristensen. 1 Innstallering av GeoGebra 2. 2 Litt om programmets oppbygning 2. 3 Funksjoner i GeoGebra 3"

Transkript

1 GeoGebra Tor Espen Kristensen Februar 2009 Innhold 1 Innstallering av GeoGebra 2 2 Litt om programmets oppbygning 2 3 Funksjoner i GeoGebra 3 4 Skjæringspunkt mellom to grafer 7 5 Arealet under en graf 9 6 Kopiere til Word 12 7 Nyheter i neste versjon 13 Regnearket Regresjon GeoGebra er et program som kobler sammen geometri, algebra og funksjoner. Det er et dynamisk geometri-program, grafplotter og etter hvert computeralgebra systen(cas). Således er det et program som passer perfekt for videregående skole. I dette lille heftet skal vi jobbeoss 1

2 gjennom noen eksempler som viser nytteverdien av programmet. Jeg vil ikke her ta stilling til om dette er den beste måten å løse de ulike oppgavene eller hva som er læringseffekten av å gjøre det ene eller det andre. Her vil vi kun kose oss med selve programmetog løsningene av en del oppgaver. 1 Innstallering av GeoGebra Selve programmet finner du på nettsiden Om du har java innstallert, så er det bare til å trykke på. Dersom du ikke har java installert må du gå til nettsiden 2 Litt om programmets oppbygning GeoGebra er bygget opp rundt flere felt. Det er et felt for inntasting av kommandoer, funksjonsuttrykk, tall, etc. Dette kaller vi for inntastingsfeltet eller kommandofeltet. Det største feltet kaller vi for geometrivinduet. Det er her du kan se grafer, geometriske figurer etc. Så har vi algebravinduet. Her ser vi likninger for kurver, funksjonsuttrykk, tallverdier osv. Ovenfor disse har vi verktøylinjen. Her finner vi ulike konstruksjonsverktøy (tegning av linjer, linjestykker, sirkler, normaler etc.) og en del andre verktøy som måling av lengder, areal, innsetting av tekst etc. 2

3 3 Funksjoner i GeoGebra Eksempel 1 Vi har gitt funksjonen f(x)=x 3 2x+1 x [0,4] a) Plott grafen til f i et koordinatsystem b) Finn eventuelle nullpunkt til f c) Finn eventuelle topp-/bunnpunkt til grafen til f. Løsning: a) Dersom vi skriver funksjonsuttrykket inn i inntastingsfeltet, vil vi få tegnet grafen uten begrensinger på x-verdiene: Dersom vi ønsker å plotte grafen for x-verdier i et bestemt intervall, kan vi bruke kommandoen Funksjon[funksjon, a, b]. I vårt eksempel skriver vi inn:. Vivildafånoeslikt: 3

4 Etproblemmeddennegrafeneratviikkefårsealle y-verdiene. Viønskerderforåzoome litt ut på y-aksen og zoome inn litt på x-aksen. Den enkleste måten å gjøre dette på, er å holde Ctrl nede mens du flytter markøren over aksen. Holder du da venstre musetast nede (mensdusamtidigholder Ctrl nede),vildukunnedraiaksenslikatduentenfårstrukket denutellertrukket densammen.resultatetkandaseslikut: b) Vi skal finne nullpunktene. Det er to måter å gjøre dette på i GeoGebra. For polynomfunksjoner er det nok å skrive i inntastingsfeltet Nullpunkt[f]. Vi vil da få tre punkt som 4

5 svar,a,bogc.dissekanvileseavialgebravinduet.detenepunktetera=( 1,62,0).Dette erikkemedidefinisjonsmengdentil f.svaretpåoppgavenerderforat f hartonullpunkt: x=0,62ogx=1.skulleviønskefleredesimaler,kamvifådetvedåklikkepåinnstillinger i menylinjen og velge antall desimaler: Viviserdenandremåtenåfinnenullpunkt ieksempel2. c) Topp-/bunnpunkt kan vi finne ved å bruke kommandoen Ekstremalpunkt. Vi skriver inn:. Vi får da tegnet inn et punkt E på grafen til f. Grafen har med andreordet bunnpunkt(0,8165, 0,0887).Vi måselvsagtikke glemmeatgrafen ogsåhar to toppunkt. Ett for x= 0og ett for x= 4.Vi kan lett regne ut funksjonsverdiene til f i disse punkta ved å skrive inn f(0) og f(4) i inntastingsfeltet. Vi leser da av i algebravinduet at f(0)=1(detståra=1)og f(4)=57(b=57).grafenharaltsåtotoppunkt:(0,1)og(4,57). Eksempel2 Finnnullpunktene tilfunksjonen g(x)= x 2 2x+5. Løsning: Vi skriver i inntastingsfeltet:. Vi får da plottet grafen. Forsøker vi så å skrive Nullpunkt[g], vi ingen ting skje når vi trykker enter. Dette vil nemlig bare fungere for polynomfunksjoner. Men vi kan skrive inn Nullpunkt[g, 3]. Tretallet er her et tall i nærhetene av nullpunktet. Nå kan vi trykke enter og lese av koordinatene til punktet A som bletegnet. Viseratfunksjonenharnullpunkt for x=2. EnannenmåteåfinnenullpunkteteråvelgeetverktøypåverktøylinjensomheterSkjæring mellom to objekter. Se figur 1. Når dette verktøyet er valgt klikker du først på grafen til g og deretter på x-aksen. Da vil du få nullpunktet tegnet inn. Figur1 Skjæringmellomtoobjekter.Foråfårulletneddeandreverktøyenemåduklikkepådenlille trekanten nede i høyre hjørne. 5

6 Oppgave 1 Gitt funksjonen f(x)=x 4 3x 3 +2, x [0,2] a) Plott grafen til f i et koordinatsystem b) Finn eventuelle nullpunkt til f c) Finn eventuelle topp-/bunnpunkt til grafen til f. GeoGebra kan også derivere funksjoner. Har du skrevet inn en funksjon f(x) i inntastingsfeltet, er det bare til å skrive f (x) i inntastingsfeltet og GeoGebra deriverer f. Du kan også derivere en funksjon f(x) ved å bruke kommandoen derivert[f]. Eksempel3 Deriverfunksjonen f(x)=x 3 sin(x). Løsning: Viskriverinn:.Passpååskrivegangetegnmellom x^3og sin(x).detvil sistjerne *.Vikandaleseavsvaretialgebravinduet: Viharaltsåfunnetat f (x)=3x 2 sin(x)+x 2 cos(x). Oppgave 2 Deriver funksjonene a) f(x)= x2 +1 x 3 1 b) g(x)= x 2 2x c) h(x)=10 x Oppgave3 Funksjonen g ergittved g(x)= 2x2 1 x+1 a) Tegn grafen til g i et koordinatsystem b) Tegndenderiverte g (x)isammekoordiantsystem c) Finn topp-/bunnpunkt til funksjonen. Eksempel4 Finnvendepunktettilfunskjonen f(x)=x 3 2x+1ogfinnlikningentiltangenten i vendepunktet. 6

7 Løsning: Vi kan selvsagt finne vendepunkt ved å se hvor den dobbeltderiverte skifter fortegn. Men for polynomer fins det en egen kommando som heter vendepunkt. Vi skriver derfor først inn funksjonen f ogskriverså vendepunkt[f]. Vifinnerdaat f harvendepunktia=(0,1). Vifinnertangententil f iavedåskrive.vifårdategnetinntangenten i geometrivinduet og kan lese av likningen i algebravinduet: Viseratlikningentiltangenten er y= 2x+1. Oppgave 4 Gitt tredjegradsfunksjonen f(x)=x 3 2x 2 5x+6 a) Finn nullpunktene til f. b) FinnmidtpunktetDtiltoavnullpunktene AogBogfinntangentensomtangerer f overd. Detvilsiattangenten tangerer f i(d, f(d))der d er x-koordinatentil D.Foråskriveinn dette punktet skriver du (x(d), f(x(d))) i inntastingsfeltet. Du kan finne midtpunkt ved å velge verktøyet«midtpunkt eller sentrum». Se figur 2. c) Hvakandusiomdennetangenten? 4 Skjæringspunkt mellom to grafer Eksempel 5 Løs likningssystemet 2x 3y= 1 5x+2y=26 7

8 Figur 2 Du kan finne midtpunkt til to punkt med dette verktøyet. Løsning: Vi skriver inn likningene en etter en i inntastingsfeltet. Når vi trykker enter vil linjene som likningene representerer bli tegnet i koordinatsystemet i geometrivinduet. Vikannåvelge«Skjæringmellomtoobjekt»påverktøylinjen,klikkeførstpådenenelinjen,så den andreogfå markertinnskjæringspunktet A=(4,3). Detvil siat x= 4 og y=3.det fins også en egen kommando for skjæring mellom to kurver, nemlig Skjæirng:. Menhuskatdersomduskalbrukedennepågrafertilandreobjekterennpolynomer,såmådu i tillegg skrive inn et punkt i nærheten av et søkt skjæringspunkt. Eksempel6 Gittfunksjonene f(x)=sin(x)og g(x)= x 1. a) Tegngrafentil f og g isammekoordinatsystem b) Finn skjæringspunktet til grafene. Løsning: Vi skriver inn funksjonene i GeoGebra og skriver inn i inntastingsfeltet Skjæring[f,g,(2,1)]. Viharvalgt(2,1)sometpunktsomliggerinærhetenavdetsøkteskjæringspunktet.Vikanda lese av skjæringspunktet i algebravinduet: A =(1,935, 0,935). 8

9 Figur 3 Skjæring mellom to grafer nær punktet(2,1). Vi ser at A =(1,935, 0,935) i algebravinduet. Oppgave 5 Løs likningssettene a) x y=9og3x+5y=11 b) y=x 2 2ogx 2 + y 2 =8 5 Arealet under en graf ViskalhersepåhvordanvikanbrukeGeoGebratilåberegnearealetunderengraf. Eksempel7 Hvaerarealetundergrafentil f(x)=0,1x 2 +1fra x=0til x=6? Nedenfor har vi tegnet inn grafen til f. Vi har også tegnet inn en del rektangler som ligger akkuratovergrafentil f.dissegirengodtilnærmingtilarealetundergrafen. 9

10 Figur 4 Kommandoen SumOver[f, 0, 6, 6] gir en tilnærmet verdi for arealet under grafen. Vi kunne gjort dette enda bedre ved å ta flere rektangler. Vi kunne også beregnet arealet ved å tegne rektanglene inn slik at de ligger under grafen. På figuren under har vi beregnet en tilnærmet verdi for arealet ved å bruke flere rektangler og ved å ta gjennomsnittet mellom øvre sumognedresum. Figur5 KommandoenSumOver[f,0,6,12]ogSumUnder[f,0,6,12]girbeggeentilnærmetverdifor arealet under grafen. Gjennomsnittet av disse gir en ganske god tilnærming. Kommandoene SumOver[f, a, b, n] og SumUnder[f, a, b, n] fungerer slik at de beregner arealettilnrektanglerfraatilbsomhenholdsvisertegnetoverogundergrafentilf. 10

11 Dersom vi nå lar n i beregningene ovenfor bli veldig stor, det vil si at vi får uendelig mange rektangler,såvidiferansenmellomdeøvreogdenedrerektanglenegåmotnullogvikanfinne arealet under grafen. Dette gjelder for kontinuerlige funksjoner. Denne grensen kaller vi for integralettil f fraatilbogvinotererdetteslik: b a f(x)dx I S2 skal vi kunne beregne slik arealet ved hjelp av digitale hjelpemidler. Kalkulatoren er et slikt.dufinnegodeframgangsmåterfordetteilæreboka.hervilvivisehvordanvikanbruke GeoGebra til å beregne dette integralet. Eksempel8 Beregnarealetunder f fra0til6. Vi har allerede funnet en god tilnærming for dette arealet ved å bruke SumOver og SumUnder. Her vil vi bruke en kommando som heter Integral[f, a, b]. Denne beregner altså arealet under grafentilffra x= a til x=b.idettetilfellet fårvi 0 6 fdx=13.2 Figur6 KommandoenIntegral[f,0,6]girossarealetunder f frax=0til x=6. Eksempel 9 Finn arealet avgrenset av grafen til f, x-aksen, x= 0 og x= 2 til funksjonen f(x)=x 3 3x 2 +2x. 11

12 KommandoenIntegral[f,0,2]girossidettetilfellet0somsvar.Kandettestemme?Detsom skjeridettetilfelleteratdeterlikestortarealsomliggeroverx-aksensomunder.vimåderfor deleopp integralet fra x= 0til x= 1 og fra x= 1 til x= 2. Det sisteintegralet blir negativt, så derformåvitrekkedettefradetførste.vifår detsøkteareal= 0 1 x 3 3x 2 +2xdx 1 2 x 3 3x 2 +2xdx =Integral[f, 0,1]-Integral[f, 1,2]=0.25 ( 0.25) =0.5 MerkatviførstharskrevetinniGeoGebra f(x)=x 3 3x 2 +2x. Figur7 Arealetbegrensetav f, x-aksen,x=0og x=2tilfunksjonen f(x)=x 3 3x 2 +2x. 6 Kopiere til Word DersomdubrukerWord(ellerandretekstbehandlere)ogønskeråfåengrafinnietdokument, erdetbaretilåtrykkepå Ctrl + Shift + C.Duvildafåraltdetduserigeometrivinduet kopierttilutklipstavlen.nåerdetbaretilålimedetinniwordderdumåtteønskedet. 12

13 Figur 8 Under Fil/Eksporter får du flere valg for hvordan du vil eksportere geometrivinduet. Merk at du også kan eksportere arbeidsarket som nettside! 7 Nyheter i neste versjon I skrivende stund er neste versjon av GeoGebra like rundt hjørnet. Denne har en god del forbedringer, og du kan allerede må bruke denne versjonen. Du finner den ved å gå til www. geogebra.org og så klikke på«kommende versjoner» i venstemargen. På siden du da får opp velger du GeoGebra Pre-Release. Deviktigstenyheteneidenneversjonen(versjon3.2nårdenerferdig)erat Den har fått et eget regneark-vindu Du kan symbolbehandle uttrykk(f.eks. RegnUT[(x-3)^2] Du kan regne ut standardavvik, median og liknende GeoGebra kan nå utføre regresjoner. Regnearket Du får opp regnearket ved å enten klikke på Vis/Regneark på menylinjen eller ved å klikke Ctrl + Shift + S.Nårduharfåttoppdettevindueterdetbaretilåføreinntallicellenei regnearket. 13

14 Eksempel10 Viskaltegneoppethistorgramutfrafølgendetall: Løsning: 2,3,2,4,1,3,5,3,5,6,3,4,4,6,6,3,4,6,5 Vi skriver tallene inn i kollone A, markerer tallen (svarter), høyreklikker og velger «Lag liste». DavilalledissetalleneblilagretienlisteL 1. 14

15 Vi kan nå gjøre beregninger på listen, slik som for eksempel Middelverdi[L_1]. Vi skal nå tegne et histogram.vi ønsker at breddenskalværefra og med1til 2, fra og med2til 4 ogfra ogmed4til6.daskriverviinnkommandoen.resultatetserdupå figur9 Figur 9 Du kan tegne hisogram ved å bruke kommandoen Histogram[]. Oppgave 6 Vi har følgende tall: 2,3,3,2,5,4,6,5,5,5,2,1,4,5,6,5,2 a) Førtalleneinnienkollonneiregnearketoglagenlisteavtallene. b) Hva er middelverdien? c) Hva er stadardavviket? Bruk kommandoen StandardAvvik[] d) Tegn et histogramover tallen. La breddenværefra ogmed 1 til 2, fra og med 2til 5 ogfra ogmed5til6. Eksempel 11 Simuler 20 terningkast og lag søylediagram over alle utfallene. Løsning: For å løse denne oppgaven bruker vi kommandoen A1TilfeldigMellom[1,6]=. Vi vil da få et tilfeldigtallskrevetinnicellea1iregnearket.vikandaautokopieredennecellenvedåklikkepå firkanteninedrehøyrehjørneicellea1ogdra19raderned. 1 Etteratduharfått20tilfeldigetall 1 Iskrivende stundfungererdetteikkeivista. Dumåherkopiereoglimeinniformelennedtilduhar20kast. 15

16 mellom1og6(inkludert1og6),kandumarkeredisse20tallene,høyreklikkeoglageliste.denn kan du nå regne ut middelverdi, median, standardavvik, etc. Du kan også tegne søylediagram: Figur 10 Simulering av 20 terningkast. Vi har også valgt å vise Konstruksjonsforklaring (under Vismenyen). Når du simulerer slike tilfelige tall, så kan du be GeoGebra om å regne gjøre kaste på nytt ved å trykke keystrokef9. Regresjon Eksempel 12(Fra eksempelsett 2 til 2P) Den nøyaktigaste måten å finne makspulsen på, er ågjennomføreeinfysisktest. Detbetyr ipraksisåpressesegmaksimaltfor åsjåkor høgpuls determoglegåoppnå.fempersonarhar gjennomførteinsliktest. Resultataserduitabellen nedanfor. Alder Makspuls Viskalbrukeregresjontilåfinneensammenhengmellommellommakspulsyogalderx.Vi førertallainniregnearket,lagerenliste(l 1 )ogskriversåinnkommandoen:. Vi får da fram en linje sompasserpunkta ganske bra.her møter vi en liten utfordring. Vi ser atlikningen forlinjaer3941x+5966y= mensviskullehahatt y=...dettekanvifå om vi høyreklikker på likningen for linja i algebravinduet og velger «Likning y=ax+b». Vi får daat y= 0,66x

17 Oppgave 7 Samanhengen mellom kostnaden K(x) i kroner ved produksjon av en vare og tallet på produserte enheter x er gitt i tabellen nedenfor. x K(x) a) Brukregresjonogfinn en godmodellfor K(x). IGeoGebra kanduvelgemellom RegExp, RegLin, RegLinx, RegLog, RegLogsit, RegPly, RegPot og RegSin b) FinnK (300) 17

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Innstillinger................................... 5 2 Regning 5 2.1 Tallregning...................................

Detaljer

Hvordan forandrer jeg på innstillingene langs aksene, slik at hele grafen viser? Dette kan du gjøre på seks ulike måter:

Hvordan forandrer jeg på innstillingene langs aksene, slik at hele grafen viser? Dette kan du gjøre på seks ulike måter: Spørsmål og svar om GeoGebra, versjon 3.0 bokmål. Jeg har lastet ned en installasjonsfil fra www.geogebra.org og installert programmet, men får det ikke til å fungere. Hva kan dette skyldes? Den vanligste

Detaljer

GeoGebra i 1T. Grafer. Å tegne grafen til en funksjon. GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10.

GeoGebra i 1T. Grafer. Å tegne grafen til en funksjon. GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10. 2 Grafer Å tegne grafen til en funksjon Akser Rutenett Avrunding GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10. Funksjonen får automatisk navnet f. Hvis grafen ikke vises, kan du høyreklikke i grafikkfeltet

Detaljer

KORT INNFØRING I GEOGEBRA

KORT INNFØRING I GEOGEBRA Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE GRAFER... 9 ØVELSE 2. TEGNE GRAFER TIL RASJONALE FUNKSJONER... 11 ØVELSE 3. LIKNINGSLØSNING... 15 ØVELSE 4. TANGENTER OG MAKS OG MIN

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 1 og 2 GeoGebra-øvelser i funksjonslære Av Peer Sverre Andersen Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE GRAFER...

Detaljer

GeoGebra 4.2 for Sinus 1P. av Sigbjørn Hals

GeoGebra 4.2 for Sinus 1P. av Sigbjørn Hals GeoGebra 4.2 for Sinus 1P av Sigbjørn Hals Innhold Litt om GeoGebra... 3 GeoGebra som kalkulator. Eksempel side 55... 3 Omforming av formler. Side 82 i læreboka... 4 Rette linjer. Side 89 i læreboka...

Detaljer

Spørsmål og svar om GeoGebra, versjon 2.7 bokmål

Spørsmål og svar om GeoGebra, versjon 2.7 bokmål Spørsmål og svar om GeoGebra, versjon 2.7 bokmål Jeg har lastet ned en installasjonsfil fra www.geogebra.org og installert programmet, men får det ikke til å fungere. Hva kan dette skyldes? Den vanligste

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Geogebra

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Geogebra Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Menyer..................................... 4 2 Regning 5 2.1 Tallregning...................................

Detaljer

SINUS R1, kapittel 5-8

SINUS R1, kapittel 5-8 Løsning av noen oppgaver i SINUS R1, kapittel 5-8 Digital pakke B TI-Nspire Enkel kalkulator (Sharp EL-506, TI 30XIIB eller Casio fx-82es) Oppgaver og sidetall i læreboka: 5.43 c side 168 5.52 side 173

Detaljer

Plotting av grafer og funksjonsanalyse

Plotting av grafer og funksjonsanalyse Opplæringshefte i GeoGebra Innholdsfortegnelse: Plotting av grafer og funksjonsanalyse... 2 Oppgave 1... 2 Oppgave 2... 4 Oppgave 3... 8 Å plassere et bilde i GeoGebra... 8 Oppgave 4... 8 Vektorregning

Detaljer

Lær å bruke GeoGebra 4.0

Lær å bruke GeoGebra 4.0 Lær å bruke GeoGebra 4.0 av Sigbjørn Hals Innhold: Generelt om GeoGebra... 2 Innstillinger... 2 Likninger og ulikheter... 5 Implisitte likninger... 5 Ulikheter... 9 Statistikkberegninger i regnearket...

Detaljer

Hurtigstart. Hva er GeoGebra? Noen fakta

Hurtigstart. Hva er GeoGebra? Noen fakta Hurtigstart Hva er GeoGebra? En dynamisk matematisk programvare som er lett å ta i bruk Er egnet til læring og undervisning på alle utdanningsnivå Binder interaktivt sammen geometri, algebra, tabeller,

Detaljer

Spørsmål og svar om GeoGebra, versjon 2.7 nynorsk

Spørsmål og svar om GeoGebra, versjon 2.7 nynorsk Spørsmål og svar om GeoGebra, versjon 2.7 nynorsk Eg har lasta ned ei installasjonsfil frå www.geogebra.org og installert programmet, men får det ikkje til å fungere. Kva kan dette skuldast? Den mest vanlege

Detaljer

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 1P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 1P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy Sinus 1P Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy GeoGebra 4.0 og 4.2 wxmaxima Microsoft Mathematics WordMat TI-Nspire CAS 1 Innhold Litt om programmene... 4 GeoGebra

Detaljer

GeoGebra. Menylinje Angreknapp. Verktøylinje. Aktivt verktøy med mørkeblå kant. Innstillinger. Algebrafelt. Velge oppsett.

GeoGebra. Menylinje Angreknapp. Verktøylinje. Aktivt verktøy med mørkeblå kant. Innstillinger. Algebrafelt. Velge oppsett. GeoGebra Menylinje Angreknapp Verktøylinje Aktivt verktøy med mørkeblå kant Innstillinger Algebrafelt Grafikkfelt Inntastingsfelt Velge oppsett GEOGEBRA SOM FUNKSJONSTEGNER OPPSETT FLYTTE TEGNE- FLATEN,

Detaljer

2.1 Regnerekkefølge. 3.4 Rette linjer med digitale verktøy 2(3 + 1) (6+ 2):4+ 42

2.1 Regnerekkefølge. 3.4 Rette linjer med digitale verktøy 2(3 + 1) (6+ 2):4+ 42 Sinus T uten grafisk kalkulator Dette dokumentet oversetter kapittelet Lommeregnerstoff i Sinus T boka til Cappelen Damm til Excel- og GeoGebrastoff.. Regnerekkefølge ( + ) (6+ ):+ CTRL+J Bytter mellom

Detaljer

Kurs. Kapittel 2. Bokmål

Kurs. Kapittel 2. Bokmål Kurs 9 Kapittel 2 Bokmål 1 av 9 Kurs i GeoGebra Funksjoner og grafer I dette kurset skal vi se nærmere på hvordan vi kan bruke GeoGebra som en graftegner. Grunnleggende innstillinger Når vi skal bruke

Detaljer

Kurvetilpasning (regresjon) med GeoGebra 4.0

Kurvetilpasning (regresjon) med GeoGebra 4.0 Kurvetilpasning (regresjon) med GeoGebra 4.0 av Sigbjørn Hals Innhold Liste over kommandoene... 2 Lineær regresjon... 3 Potensregresjon... 5 Eksponentiell regresjon... 5 Logaritmisk regresjon... 6 Logistisk

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Geogebra for Sigma matematikk 1P Innledning Denne bruksanvisningen er ment som en beskrivelse av dataprogrammet

Detaljer

Funksjoner med GeoGebra

Funksjoner med GeoGebra Funksjoner med GeoGebra Wallace Anne Karin 2015 G e o G e b r a 5. 0 Innhold Oppsett for arbeid med funksjoner... 2 Flytte tegneflaten, endre enheter på aksene... 4 Flytt inntastingsfeltet øverst... 4

Detaljer

GeoGebra-opplæring i Matematikk S1

GeoGebra-opplæring i Matematikk S1 GeoGebra-opplæring i Matematikk S1 Emne Underkapittel Utregning av algebraiske uttrykk 1.4 Forenkle uttrykk 1.5 Faktorisering 1.5 Kvadratsetningene 1.6 Grafisk løsning av eksponentiallikninger 1.8 Grafisk

Detaljer

1 Introduksjon GeoGebra 2 Speiling, rotasjon og parallellforskyvning 3 Perspektivtegning 4 Symmetriakser

1 Introduksjon GeoGebra 2 Speiling, rotasjon og parallellforskyvning 3 Perspektivtegning 4 Symmetriakser 1 Geometri i kunsten: 1 Introduksjon GeoGebra 2 Speiling, rotasjon og parallellforskyvning 3 Perspektivtegning 4 Symmetriakser MKH GeoGebra - Geometri i kunsten Innhold 1 Introduksjon GeoGebra... 1 1.1

Detaljer

GeoGebra på vgs. Versjon 3.0

GeoGebra på vgs. Versjon 3.0 GeoGebra på vgs. Versjon 3.0 Bokmål Lær å bruke et gratis program for graftegning, funksjonsanalyse og dynamisk geometri. av Sigbjørn Hals GeoGebra på vgs. Innhold: HVA ER GEOGEBRA?... 3 HVOR KAN JEG FÅ

Detaljer

2.1 Regnerekkefølge. 2.4 Brøkregning. 3.6 Rette linjer 2(3 + 1) (6+ 2):4+ 42

2.1 Regnerekkefølge. 2.4 Brøkregning. 3.6 Rette linjer 2(3 + 1) (6+ 2):4+ 42 Dette dokumentet oversetter kapittelet Lommeregnerstoff i Sinus 1P boka til Cappelen Damm til Excel- og GeoGebrastoff. Se brukerveiledningen i Lokus for perspektivtegning med GeoGebra..1 Regnerekkefølge

Detaljer

GeoGebra 4.2 for Sinus 1T. av Sigbjørn Hals

GeoGebra 4.2 for Sinus 1T. av Sigbjørn Hals GeoGebra 4.2 for Sinus 1T av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Faktorisering. Side 55 i læreboka... 3 Rette linjer. Side 73 i læreboka... 3 Digital løsning av likninger. Side 77 i læreboka...

Detaljer

GeoGebra-opplæring i Matematikk S2

GeoGebra-opplæring i Matematikk S2 GeoGebra-opplæring i Matematikk S Emne Underkapittel Faktorisering.1 Grafisk løsning av likningssett I.3 Størst mulig overskudd 3. Vendepunkter 3.4 Den naturlige eksponentialfunksjonen 3.5 3.6 Den naturlige

Detaljer

Innhold. Matematikk for ungdomstrinnet

Innhold. Matematikk for ungdomstrinnet Innhold FUNKSJONSTEGNER... 3 Skjermbildet i GeoGebra... 3 Verktøylinja... 4 Verktøyet Flytt eller velg objekt... 4 Oppsett av skjermbildet... 5 Flytte tegneflaten, endre enheter på aksene... 5 Mer øving

Detaljer

Innhold. Matematikk for ungdomstrinnet

Innhold. Matematikk for ungdomstrinnet Innhold FUNKSJONSTEGNER... 3 Skjermbildet i GeoGebra... 3 Verktøylinja... 4 Verktøyet Flytt eller velg objekt... 4 Oppsett av skjermbildet... 5 Flytte tegneflaten, endre enheter på aksene... 5 Mer øving

Detaljer

Hjelp til GeoGebra. Offisiell manual for 3.0. Norsk, bokmål

Hjelp til GeoGebra. Offisiell manual for 3.0. Norsk, bokmål Hjelp til GeoGebra Offisiell manual for 3.0 Norsk, bokmål Markus Hohenwarter og Judith Preiner www.geogebra.org, august 2007 Hjelp til GeoGebra 3.0 Sist forandret: 1. august, 2007 GeoGebra Website: www.geogebra.org

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 2 Regning 4 2.1 Tallet e...................................... 4 3 Sannsynlighetsregning

Detaljer

GeoGebra 3.2. for. ungdomstrinnet

GeoGebra 3.2. for. ungdomstrinnet GeoGebra 3.2 for ungdomstrinnet av Sigbjørn Hals 1 Innhold: Hva er GeoGebra?... 3 Hvor kan jeg få tak i dette programmet?... 3 Hvordan kommer jeg i gang med å bruke programmet?... 4 Å hente og legge til

Detaljer

Brukermanual i GeoGebra

Brukermanual i GeoGebra Brukermanual i GeoGebra for Vg1T, Vg1P, Vg2T, Vg2P, R1 og R2. GeoGebra er et program for Geometri og AlGebra. GeoGebra er en dynamisk matematisk programvare, som binder sammen geometri, algebra og utregninger.

Detaljer

QED 1 7 Matematikk for grunnskolelærerutdanningen

QED 1 7 Matematikk for grunnskolelærerutdanningen QED 1 7 Matematikk for grunnskolelærerutdanningen Bind 1 og 2 GeoGebra-øvelser i funksjonslære, 2. utgave Av Peer Sverre Andersen Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE

Detaljer

GeoGebra er et dynamisk matematikkprogram som kan lastes ned fra

GeoGebra er et dynamisk matematikkprogram som kan lastes ned fra GeoGebra er et dynamisk matematikkprogram som kan lastes ned fra http://www.geogebra.no/ eller http://www.geogebra.org/ Du kan velge å kjøre GeoGebra som en applikasjon i nettleseren, men jeg anbefaler

Detaljer

GeoGebra-opplæring i Matematikk 1P

GeoGebra-opplæring i Matematikk 1P GeoGebra-opplæring i Matematikk 1P Emne Underkapittel Perspektivtegning I 3.8 Perspektivtegning II 3.8 Terningkast 4.1 Valgtre I 4.3 Valgtre II 4.7 Graftegning 5.2 Linje gjennom to punkter 5.2 Nullpunkter

Detaljer

GeoGebra på vgs. Versjon 2.7

GeoGebra på vgs. Versjon 2.7 GeoGebra på vgs. Versjon 2.7 Bokmål Lær å bruke et gratis program for graftegning, funksjonsanalyse og dynamisk geometri. av Sigbjørn Hals GeoGebra på vgs. Innhold: HVA ER GEOGEBRA?... 3 HVOR KAN JEG FÅ

Detaljer

GeoGebra-opplæring i Matematikk 1P

GeoGebra-opplæring i Matematikk 1P GeoGebra-opplæring i Matematikk 1P Emne Underkapittel Perspektivtegning I 3.8 Perspektivtegning II 3.8 Regulære mangekanter 3.9 Flislegging I 3.9 Flislegging II 3.9 Flislegging III 3.9 Terningkast 4.1

Detaljer

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1008 Matematikk T Eksamen 30.11.009 Bokmål MAT1008 Matematikk T HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en

Detaljer

GeoGebra. brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals

GeoGebra. brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals GeoGebra brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals Innhold Hva er GeoGebra?... 2 Hvilken nytte har elevene av å bruke GeoGebra?... 2 Hvor finner vi GeoGebra?... 2 Oppbyggingen av programmet...

Detaljer

Figur 62: Faktorisering kan lett gjøres ved å skrive inn uttrykket og så klikke på verktøyet for faktorisering.

Figur 62: Faktorisering kan lett gjøres ved å skrive inn uttrykket og så klikke på verktøyet for faktorisering. 11 CAS i GeoGebra Fra og med versjon 4.2 får GeoGebra et eget CAS-vindu. CAS står for Computer Algebra System og er en betegnelse for programvare som kan gjøre symbolske manipuleringer. Eksempler på slike

Detaljer

Eksamen S1, Høsten 2013

Eksamen S1, Høsten 2013 Eksamen S1, Høsten 013 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Funksjonen f er gitt ved Bestem f. f x 3x 3x 1, Df f

Detaljer

GEOGEBRA (Versjon 5.0.150.12.september 2015)

GEOGEBRA (Versjon 5.0.150.12.september 2015) 1 INNFØRING GEOGEBRA (Versjon 5.0.150.12.september 2015) Østerås 12. september 2015 Odd Heir 2 Innhold Side 3-10 Innføring i GeoGebra 10-12 Utskrift 12-13 Overføring til Word 13-15 Nyttige tips 15-16 Stolpediagram

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

Kurs. Kapittel 2. Bokmål

Kurs. Kapittel 2. Bokmål Kurs 8 Kapittel 2 Bokmål D.8.2.1 1 av 4 Introduksjon til dynamisk geometri med GeoGebra Med et dynamisk geometriprogram kan du tegne og konstruere figurer som du kan trekke og dra i. I noen slike programmer

Detaljer

GeoGebra. Menylinjer og de vanligste funksjonene. GeoGebra

GeoGebra. Menylinjer og de vanligste funksjonene. GeoGebra 1 er et dynamisk geometriprogram. Ved hjelp av dette programmet kan du framstille forskjellige geometriske figurer, forskjellige likninger (likningssett) og ulike funksjonsuttrykk, og du kan gjøre endringer

Detaljer

GeoGebra 4.2 for Sinus Påbyggingsboka P. av Sigbjørn Hals

GeoGebra 4.2 for Sinus Påbyggingsboka P. av Sigbjørn Hals GeoGebra 4.2 for Sinus Påbyggingsboka P av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Eksponentiell vekst. Side 45 i læreboka... 3 Søylediagram. Side 50-52 i læreboka... 4 Kurvediagram. Side 55-56 i læreboka...

Detaljer

Hva er nytt i GeoGebra 3.0? Sigbjørn Hals

Hva er nytt i GeoGebra 3.0? Sigbjørn Hals Hva er nytt i GeoGebra 3.0? Sigbjørn Hals 1 Dersom du vil ha en fullstendig oversikt over det som er nytt i versjon 3.0, kan du gå til denne nettsida: http://www.geogebra.org/static/geogebra_release_notes_prerelease.txt

Detaljer

Lær å bruke GeoGebra 4.0

Lær å bruke GeoGebra 4.0 Lær å bruke GeoGebra 4.0 av Sigbjørn Hals Innhold: Generelt om GeoGebra... 2 Innstillinger... 2 Statistikkberegninger i regnearket... 5 Nye muligheter for funksjonsanalyse... 8 Nullpunkt og ekstremalpunkt...

Detaljer

GeoGebra 4.2 for Sinus 2P. av Sigbjørn Hals

GeoGebra 4.2 for Sinus 2P. av Sigbjørn Hals GeoGebra 4.2 for Sinus 2P av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Linjediagram. Side 46 i læreboka... 3 Søylediagram. Side 57 i Læreboka... 5 Histogram. Side 81 i læreboka... 6 Lineær regresjon.

Detaljer

Grafisk løsning av ligninger i GeoGebra

Grafisk løsning av ligninger i GeoGebra Grafisk løsning av ligninger i GeoGebra Arbeidskrav 2 Læring med digitale medier 2013 Magne Svendsen, Universitetet i Nordland Innholdsfortegnelse INNLEDNING... 3 GRAFISK LØSNING AV LIGNINGER I GEOGEBRA...

Detaljer

Oppsummering om hva som kreves ved bruk av digitale verktøy

Oppsummering om hva som kreves ved bruk av digitale verktøy 1 Oppsummering om hva som kreves ved bruk av digitale verktøy Graftegner Det skal gå klart fram av den grafiske framstillingen hvilken skala og hvilken enhet som er brukt, på hver av aksene. Det er en

Detaljer

Oppgave 1 a) Tegn grafene til de tre funksjonene nedenfor i samme koordinatsystem i GeoGebra

Oppgave 1 a) Tegn grafene til de tre funksjonene nedenfor i samme koordinatsystem i GeoGebra kompetansemålet: Funksjoner - undersøkje funksjonar som beskriv praktiske situasjonar, ved å fastsetje nullpunkt, ekstremalpunkt og skjeringspunkt og tolke den praktiske verdien av resultata. Oppgave 1

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

Eksempelsett R2, 2008

Eksempelsett R2, 2008 Eksempelsett R, 008 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonen f x x cosx f x cosx x s x f x cosx 6x sinx

Detaljer

Menylinje og de vanligste funksjonene. Her gjør du de tilpasningene du trenger.

Menylinje og de vanligste funksjonene. Her gjør du de tilpasningene du trenger. GeoGebra GeoGebra 1 GeoGebra er et dynamisk geometriprogram. Ved hjelp av dette programmet kan du framstille forskjellige geometriske figurer, forskjellige likninger (likningssett) og ulike funksjonsuttrykk,

Detaljer

GeoGebra-opplæring i Matematikk 2P

GeoGebra-opplæring i Matematikk 2P GeoGebra-opplæring i Matematikk 2P Emne Underkapittel Graftegning 2.1 Linje gjennom to punkter 2.1 Å finne y- og x-verdier 2.1 Lineær regresjon 2.3 Andregradsfunksjoner 2.4 Polynomregresjon 2.4 Eksponential-

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO99A Matematikk Ordinær Eksamen Dato 8. mai 8 Tidspunkt 9. - 14. Antall oppgaver 4 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 Deriver følgende

Detaljer

GeoGebra 4.2 for Sinus Påbyggingsboka T. av Sigbjørn Hals

GeoGebra 4.2 for Sinus Påbyggingsboka T. av Sigbjørn Hals GeoGebra 4.2 for Sinus Påbyggingsboka T av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Nullpunkt. Side 11 i læreboka... 3 Andregradslikninger. Side 18 i læreboka... 3 Momentan vekstfart. Side 47 i læreboka...

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. TI-NspireCAS

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. TI-NspireCAS Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for TI-NspireCAS Innhold 1 Om TI-NspireCAS 4 1.1 Applikasjonene................................. 4 1.2 Dokumenter...................................

Detaljer

Eksempel på løsning 2011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 2010 Bokmål

Eksempel på løsning 2011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 2010 Bokmål Eksempel på løsning 011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 010 Bokmål MAT1013 Matematikk 1T, Høst 010 Del 1 Uten hjelpemidler Kun vanlige skrivesaker, passer, linjal med centimetermål

Detaljer

GEOGEBRA (3.0) til R1-kurset

GEOGEBRA (3.0) til R1-kurset GEOGEBRA (3.0) til R1-kurset INNHOLD Side 1. Konstruksjon 2 1.1 Startvinduet 2 1.2 Markere punkter 3 1.3 Midtpunkt 4 1.4 Linje mellom punkter 5 1.5 Vinkelrett linje 6 1.6 Tegne en mangekant 6 1.7 Høyden

Detaljer

GEOGEBRA (Versjon 5.0.233.0 6. mai 2016)

GEOGEBRA (Versjon 5.0.233.0 6. mai 2016) 1 KURSHEFTE INNFØRING GEOGEBRA (Versjon 5.0.233.0 6. mai 2016) Østerås 8. mai 2016 Odd Heir 2 Innhold Side 3-13 Innføring i GeoGebra 13-14 Funksjonsanalyse 14-16 Utskrift 17-18 Overføring til Word 18-20

Detaljer

Klarer dere disse abel-nøttene fra 2011?

Klarer dere disse abel-nøttene fra 2011? 2: Lineære funksjoner VG1-T - teoretisk retning En del av dere synes nok at innføringa i kapittel 1 er i vanskeligste laget. Trass i at vi stort sett har repetert foreløpig, ser jeg at dere merker overgangen

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

Introduksjon og installasjon Tegninger i motsetning til geometriske konstruksjoner

Introduksjon og installasjon Tegninger i motsetning til geometriske konstruksjoner Introduksjon og installasjon Tegninger i motsetning til geometriske konstruksjoner GeoGebra arbeidsark 1 Judith og Marcus Hohenwarter www.geogebra.org Oversatt av Anders Sanne og Jostein Våge Tilpasset

Detaljer

S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka

S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka 5.1 a f( x) = 4x+ 0 I GeoGebra skriver vi f(x)=funksjon[-4x+0,-5,5]. Grafen viser at [ 0, 40] V =. f b gx ( ) =,5x+ 10 I GeoGebra skriver vi f(x)=funksjon[,5x+10,-10,4].

Detaljer

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 2P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 2P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy Sinus 2P Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy GeoGebra 4.0 og 4.2 wxmaxima Microsoft Mathematics WordMat TI-Nspire CAS 1 Innhold Litt om programmene... 4 GeoGebra

Detaljer

Eksamen REA3028 S2, Høsten 2012

Eksamen REA3028 S2, Høsten 2012 Eksamen REA308 S, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (6 poeng) Deriver funksjonene 3x x a) gx 3 3x x 3x

Detaljer

Del 1. Generelle tips

Del 1. Generelle tips Innhold Del 1. Generelle tips... 2 Bruk en "offline installer"... 2 Øk skriftstørrelsen... 3 Sett navn på koordinataksene... 3 Vis koordinater til skjæringspunkt, ekstremalpunkt m.m.... 4 Svar på spørsmålene

Detaljer

Funksjoner med og uten hjelpemidler

Funksjoner med og uten hjelpemidler Funksjoner med og uten hjelpemidler Plan for dagen Del 1: 09:00-11:45 Lunsj: 11:45-12:15 Del 2: 12:15-14:30 Eksamensinformasjon: 14:30-15:00 Plan for tiden før lunsj Økt 1: 09:00-09:45 Økt 2: 10:00-10:45

Detaljer

Velg mellom disse kommandoene: Dersom[, , ] Funksjon[, , ]

Velg mellom disse kommandoene: Dersom[<Vilkår>, <Så>, <Ellers>] Funksjon[<Funksjon>, <Start>, <Slutt>] 442 Grafer Å tegne grafen til en funksjon Nullpunkter Velg mellom disse kommandoene: Dersom[, , ] Funksjon[, , ] GeoGebra finner nullpunktene til en innlagt

Detaljer

Opplæringshefte i GeoGebra. for mellomtrinnet og. ungdomstrinnet

Opplæringshefte i GeoGebra. for mellomtrinnet og. ungdomstrinnet Opplæringshefte i GeoGebra for mellomtrinnet og ungdomstrinnet av Sigbjørn Hals Bokmål 1 Innhold: Del 1. Generell informasjon om GeoGebra...3 Kva er GeoGebra?...3 Kvar kan eg få tak i dette programmet?...3

Detaljer

GeoGebra på vgs. Versjon 2.7

GeoGebra på vgs. Versjon 2.7 GeoGebra på vgs. Versjon 2.7 Nynorsk Lær å bruke eit gratis program for grafteikning, funksjonsanalyse og dynamisk geometri. av Sigbjørn Hals GeoGebra på vgs. Innhald: KVA ER GEOGEBRA?... 3 KVAR KAN EG

Detaljer

eksamensoppgaver.org 4 2e x = 7 e x = 7 2 ln e x = ln 2 x = ln 7 ln 2 ln x 2 ln x = 2 2 ln x ln x = 2 ln x = 2 x = e 2

eksamensoppgaver.org 4 2e x = 7 e x = 7 2 ln e x = ln 2 x = ln 7 ln 2 ln x 2 ln x = 2 2 ln x ln x = 2 ln x = 2 x = e 2 eksamensoppgaver.org 4 oppgave a..i) e x = 7 e x = 7 ( ) 7 ln e x = ln x = ln 7 ln a..ii) ln x ln x = ln x ln x = ln x = x = e a..i) cos x =.8 x [, 6 ] x = arccos(.8) x 6.9 x 6 6.9 x 6.9 x. a..ii) Løserdennemedabc-formelen

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Casio fx-9860

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Casio fx-9860 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Casio fx-9860 Innhold 1 Om lommeregneren 4 2 Regning 4 2.1 Tallregning...................................

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Hylland. Digitalt verktøy for Sigma S2. Geogebra

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Hylland. Digitalt verktøy for Sigma S2. Geogebra Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Hylland Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 2 Regning 4 2.1 Tallregning................................... 4 2.2 Tallet

Detaljer

Løsningsforslag for 2P våren 2015

Løsningsforslag for 2P våren 2015 Del 1 Oppgave 1 Sortert i stigende rekkefølge blir det: 4 5 6? 10 12 Medianen, som er 7, skal ligge midt mellom de to midterste tallene 6 og det ukjente tallet, som derfor må være 8. Oppgave 2 Opprinnelig

Detaljer

P(x, y) ) x. Dette er sirkellikningen. Et punkt P(x, y) ligger på denne sirkelen hvis og bare hvis koordinatene passer i likningen.

P(x, y) ) x. Dette er sirkellikningen. Et punkt P(x, y) ligger på denne sirkelen hvis og bare hvis koordinatene passer i likningen. 5.9 Sirkellikningen Fra kapittel 4.3 vet vi at sirkelen er det geometriske stedet for de punktene som har en bestemt avstand r fra et fast punkt S. Avstanden r kaller vi radien, og punktet S kaller vi

Detaljer

Lineære funksjoner. Skjermbildet

Lineære funksjoner. Skjermbildet Lineære funksjoner I dette opplæringsløpet lærer du å tegne funksjoner i GeoGebra samt å bruke verktøy til å løse oppgaver som dreier seg om funksjoner. Alle oppgavene handler om lineære funksjoner. I

Detaljer

R1 kapittel 4 Funksjonsdrøfting. Løsninger til oppgavene i boka ( 1) 5 ( 2) = = = = = = = ( ) 1 1. f ( a)

R1 kapittel 4 Funksjonsdrøfting. Løsninger til oppgavene i boka ( 1) 5 ( 2) = = = = = = = ( ) 1 1. f ( a) R kapittel 4 Funksjonsdrøfting Løsninger til oppgavene i boka 4. a 4 f( ) f ( ) 4 4 b g ( ) 6 c d e f 4. a b c d e f 4. a g ( ) 0 h ( ),8 4 h ( ),8,8 i ( ),8,8 i 0 ( ) j ( ) π j ( ) 0 k ( ) k ( ) f( )

Detaljer

Prøve i R2 Integrasjonsmetoder

Prøve i R2 Integrasjonsmetoder Del 1 Hjelpemidler: ingen 1 Oppgave 1 Prøve i R Integrasjonsmetoder Caspar W. Hatlevik 19. oktober 1 Finn de ubestemte integralene og regn ut det bestemte integralet a. x + x + 1dx b. e 4x + x dx c. 1

Detaljer

Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra

Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra Anne-Mari Jensen Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra Innledning I ungdomsskolen kommer funksjoner inn som et av hovedområdene i læreplanen i matematikk. Arbeidet

Detaljer

Lær å bruke wxmaxima

Lær å bruke wxmaxima Bjørn Ove Thue og Sigbjørn Hals Lær å bruke wxmaxima Et godt og gratis CAS-verktøy med enkelt brukergrensesnitt. Oppdatert versjon, november 2009 Lær å bruke wxmaxima. Eksempler fra Sinus-bøkene fra Cappelen

Detaljer

I Katalog velger du: Ny eksamensordning i matematikk våren 2015

I Katalog velger du: Ny eksamensordning i matematikk våren 2015 CAS teknikker H-P Ulven 10.12.2014 Innledning Våren 2015 gjelder nye regler for bruk av digitale hjelpemidler: Når det står "Bruk CAS", så må kandidaten bruke CAS, og når det står "Bruk graftegner", så

Detaljer

Hjelp til GeoGebra. Offisiell manual for 3.0. Norsk, nynorsk

Hjelp til GeoGebra. Offisiell manual for 3.0. Norsk, nynorsk Hjelp til GeoGebra Offisiell manual for 3.0 Norsk, nynorsk Markus Hohenwarter og Judith Preiner www.geogebra.org, august 2007 2 Hjelp til GeoGebra 3.0 Sist endra: 1. august, 2007 GeoGebra Website: www.geogebra.org

Detaljer

Løsningsforslag Matematikk 2MX - AA mai 2006

Løsningsforslag Matematikk 2MX - AA mai 2006 Løsningsforslag Matematikk 2MX - AA6516-3. mai 2006 eksamensoppgaver.org September 21, 2008 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Casio fx 9860

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Casio fx 9860 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Casio fx 9860 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Tallet π.....................................

Detaljer

Nyttige tilleggsverktøy i GeoGebra

Nyttige tilleggsverktøy i GeoGebra Nyttige tilleggsverktøy i GeoGebra Her er en omtale av noen GeoGebra-verktøy som kan være nyttige og arbeidssparende. Ei vanlig GeoGebra-fil har etternavnet ggb, mens et GeoGebraverktøy har etternavnet

Detaljer

Funksjoner, likningssett og regning i CAS

Funksjoner, likningssett og regning i CAS Funksjoner, likningssett og regning i CAS MKH, TUS 2014, GeoGebra 4.4 Innholdsfortegnelse Funksjoner og likningssett i GeoGebra... 2 Introduksjon til lineære funksjoner... 2 Oppgave om mobilabonnement...

Detaljer

Eksamen R1 - H

Eksamen R1 - H Eksamen R1 - H 013-8.11.013 Løsningsskisser Del 1 - Uten hjelpemidler Oppgave 1 a) Kjerneregel: f x e u, u 3x f x e u 3 6e 3x b) Kjerneregel på ln 3x ln u, u 3x gir ln 3x 1 u 3 3 3x 1 x Produktregel gir

Detaljer

Geometri med GeoGebra

Geometri med GeoGebra Geometri med GeoGebra GeoGebra er et dynamisk geometriprogram. Det vil si at vi kan gjøre en del endringer på figurene vi tegner uten å måtte tegne dem på nytt. Dette gir oss mange muligheter til å utforske

Detaljer

f (x) = a x k der tallet a og eksponenten k kan være både positive og negative tall. Et eksempel på en potensfunksjon med negativ eksponent er

f (x) = a x k der tallet a og eksponenten k kan være både positive og negative tall. Et eksempel på en potensfunksjon med negativ eksponent er 7.5 Potensfunksjoner Funksjonen f gitt ved f () = 3 er et eksempel på en potensfunksjon. For alle potensfunksjoner er funksjonsuttrykket på formen f () = a k der tallet a og eksponenten k kan være både

Detaljer

Løsning eksamen R1 våren 2009

Løsning eksamen R1 våren 2009 Løsning eksamen R1 våren 009 Oppgave 1 a) 1) f( ) ( 1) 4 f ( ) 4( 1) ( 1) 4( 1) 8 ( 1) ) g ( ) e 3 3 3 g( ) e ( e ) 1 e e ( ) 1e e (1) e b) ( ) lim lim lim ( ) 4 4 4 ( ) ( ) ( ) ( ) c) ( ) ( ) ( ) ( )

Detaljer

Løsningsforslag AA6516 Matematikk 2MX Privatister 10. desember 2003. eksamensoppgaver.org

Løsningsforslag AA6516 Matematikk 2MX Privatister 10. desember 2003. eksamensoppgaver.org Løsningsforslag AA6516 Matematikk MX Privatister 10. desember 003 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i MX er gratis, og det er lastet

Detaljer

Løsningsforslag matematikk S1 V14

Løsningsforslag matematikk S1 V14 Løsningsforslag matematikk S1 V14 Oppgave 1 Bruker ABC-formelen: ABC-formelen gir x = 2 x = 3 x 2 + 3x 3 = 3 2x x 2 + 5x 6 = 0 x = b ± b 2 4ac 2a lg(x + 2) = 2 lg x lg(x + 2) = lg x 2 10 lg(x+2) lg x2

Detaljer

Løsning eksamen R1 våren 2008

Løsning eksamen R1 våren 2008 Løsning eksamen R våren 008 Oppgave a) f ( ) ln f ( ) ( ) ln (ln ) ln ln b) c) d) e) ( 4 6) : ( ) 4 6 6 0 64 ( 8) ( 8) 8 8 8 6 lim lim lim 8 8 6 8 ( 8) 8 lg( y ) lg y lg lg lg y lg y lg lg y lg lg y y

Detaljer

Geogebra hjelp - S2. Funksjonsanalyse. Innhold. Kommando. Funksjonsanalyse 1. Undersøke om dataene er normalfordelt 1.

Geogebra hjelp - S2. Funksjonsanalyse. Innhold. Kommando. Funksjonsanalyse 1. Undersøke om dataene er normalfordelt 1. Geogebra hjelp - 4. mai 2012 Innhold Funksjonsanalyse 1 Komandoer 1 Undersøke om dataene er normalfordelt 1 Finne sannsynlighetsfordeling 2 Binomisk fordeling...........................................

Detaljer

Løsningsforslag for eksempeloppgave REA3026 Matematikk S1 - April 2007. eksamensoppgaver.org

Løsningsforslag for eksempeloppgave REA3026 Matematikk S1 - April 2007. eksamensoppgaver.org Løsningsforslag for eksempeloppgave REA3026 Matematikk S1 - April 2007 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i S1 er gratis, og det er

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Casio fx 9860

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Casio fx 9860 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Casio fx 9860 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Kvadratrot....................................

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. TI-Nspire CAS

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. TI-Nspire CAS Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for TI-Nspire CAS Innhold 1 Om TI-Nspire 4 2 Regning 4 2.1 Noen forhåndsdefinerte variabler......................

Detaljer