Talsnes ONE Enhver form for mangfoldiggjørelse av hele eller deler av innholdet av dette materiale er i henhold til norsk lov om
|
|
- Trond Løkken
- 1 år siden
- Visninger:
Transkript
1 1
2 Eksponentielt vekst: En størrelse vokser eller avtar med en fast prosent per tidsenhet. Eulers tall e: En matematisk konstant, e=2, ln a gir det tallet du må opphøye Eulers tall e i for å få a. Det fører til at: ln a = x e x = a e ln a = a ln a n = n ln a ln(a b) = ln(a) + ln(b) ln ( a ) = ln(a) ln(b) b 2
3 Grenseverdi: Funksjonsuttrykket f(x) nærmer seg grenseverdien G når x nærmer seg g. Matematisk kan dette skrives som lim x g f(x) = G Kontinuerlig funksjon: En funksjon er kontinuerlig hvis grafen til funksjonen ikke har noen Derivasjon: brudd/gjør noen hopp. Den deriverte er et uttrykk for stigningstallet til tangenten til funksjonen. f (x 1 ) = lim Δx 0 f(x 1 + Δx) f(x 1 ) Δx f (x 1 ) er altså signingstallet til funksjonen f(x) i punktet (x 1, f(x 1 )) f(x) = k f (x) = 0 f(x) = x n f (x) = n x n 1 f(x) = k g(x) f (x) = k g (x) f(x) = g(x) + h(x) f (x) = g (x) + h (x) f(x) = g(x) h(x) f (x) = g (x) h (x) f(x) = 1 f (x) = 1 x x 2 f(x) = x f (x) = 1 2 x F(x) = f(u) F (x) = f (u) u, hvor u = g(x) f(x) = u(x)v(x) f (x) = u (x)v(x) + u(x)v (x) f(x) = u(x) f (x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 3
4 f(x) = e x f(x) = e x f(x) = e g(x) f(x) = e g(x) g (x) f(x) = ln(x) f (x) = 1 x f(x) = ln(g(x)) f (x) = 1 g(x) g (x) y = f (x 1 )(x x 1 ) + y 1 Siden den deriverte sier noe om stigningstallet til funksjonen kan vi ut ifra den deriverte se om funksjonen vokser eller avtar. Hvis den deriverte har et positivt stigningstall er funksjonen voksende. Hvis den deriverte har et negativt stigningstall er funksjonen avtagende. Sagt matematisk: f (x) 0 f(x) er voksende f (x) 0 f(x) er avtagende Vi kan derfor tegne opp fortegnslinjen til den deriverte ut ifra en funksjon 4
5 Hvis f (x 1 ) = 0 betyr det at funksjonen hverken stiger eller synker i punktet (x 1, f(x 1 )) Dette kan deles inn i tre tilfeller: maksimumspunkt, minimumspunkt og sadelpunkt Maksimumspunkt: Ingen punkter rett til høyre eller til venstre for punktet er større. Dette skjer hvis den deriverte endres fra positiv til negativ. Minimumspunkt: Ingen punkter rett til høyre eller til venstre for punktet er mindre. Dette skjer hvis den deriverte endrer seg fra negativ til positiv. Sadelpunkt: Den deriverte er null, men har samme fortegn både til høyre og til vestre for nullpunktet. 5
6 og er Det vil si at vi har et ekstremalpunkt hvis f (x) = 0 og f (x) skifter fortegn hvor den deriverte er null. Et er det punktet som har for hele definisjonsområdet til funksjonen. Altså det høyeste punktet når man tegner opp grafen.. Et globalt minimumspunkt er det punktet med den minste funksjonsverdien i definisjonsområdet. Et i definisjonsområdet til funksjonen.. Motsatt for lokale minimumspunkter. er et maksimumspunkt, men det finnes a- Globalt minimumspunkt fordi a er et endepunkt som er det minste punktet for hele definisjonsområdet b- Globalt maksimumspunkt fordi b har ingen større punkter enn seg selv lokalt, og er det største punktet for hele definisjonsområdet. c- Lokalt minimumspunkt fordi c har ingen mindre punkter enn seg selv lokalt, men punktet a har en mindre funksjonsverdi d- Lokalt maksimumspunkt fordi d er et endepunkt og har ingen større punkter enn seg selv lokalt, men punktet b har en høyere funksjonsverdi. 6
7 Vendepunkter: En funksjon f(x) har et vendepunkt i det punktet hvor f (x) = 0 f (x), eller den dobbeltderiverte er den deriverte av den deriverte, altså (f (x)) Hvis f (x) < 0 er f(x) konkav Hvis f (x) > 0 er f(x) konveks Som regel er alle eksamensoppgaver lagt opp til å følge en naturlig fremgangsmetode hvor du bruker resultatet i oppgave a videre i oppgave b. Hvis du står fast eller du tilsynelatende mangler noen opplysninger kan denne fremgangsmetoden være grei å huske på: 1. Skriv ned alle opplysningene 2. Finn f(x) = 0 3. Finn f (x) og f (x) 4. Sett f (x) og f (x) lik 0 5. Tegn fortegnslinje 6. Finn ekstremalpunkter og vendepunkter 7. Putt noen verdier inn for f(x) 8. Skisser grafen 7
8 : Anti-derivasjon er det samme som integrasjon. Integrasjon er altså den motsatte operasjonen av derivasjon. : f(x)dx = F(x) + C F (x) = f(x) (u(x) ± v(x))dx = u(x) dx ± v(x) dx k f(x)dx = k f(x) dx x n dx = x n+1 + C n 1 n x + 1 dx e ax dx = = ln x + a + C e ax a + C b f(x)dx = [F(x)] b a = F(b) F(a), hvor F(x) = f(x)dx a Arealet mellom f(x) og x-aksen, som er avgrenset av x-verdiene a og b er gitt ved: b A = f(x)dx = [F(x)] b a = F(b) F(a) a Det vil med andre ord si at arealet mellom x-aksen og f(x) = x 2 mellom x=1 og x=2 er gitt ved: 2 A = x 2 dx = [ x3 3 ] = = 7 3 8
9 Hvis funksjonsverdien krysser x-aksen i integrasjonsområdet må integralet deles opp i flere integraler og det må tas absoluttverdien for å få det korrekte arealet. Med absoluttverdi menes å ta den positive verdien av uttrykket. For eksempel 2 = 2 = 2 Hvis vi skal finne arealet A mellom f(x) og x-aksen i intervallet a til c og f(x) = 0 når x=b blir arealet A b A = f(x)dx a c + f(x) dx b = A 1 + A 2 Dette må gjøres på grunn av at areal som er på undersiden av x-aksen blir regnet som negativt areal. 4 Hvis A 2 = f(x) dx 1 positiv verdi. i bildet ovenfor vil vi få at A 2 < 0. Vi må derfor ta absoluttverdi for å få en 9
10 : Hvis K(x) er kostnadsfunksjonen er K (x) grensekostnadsfunksjonen. Den forteller noe om hvor mye det koster å produsere en enhet til. : Hvis I(x) er inntektsfunksjonen er I (x) grenseinntektsfunksjonen. Den forteller noe om hvor mye inntekten øker ved å selge en enhet til. Profitten er størst når K (x) = I (x). Altså når grenseinntekten er like grensekostnaden Elastisiteter forteller noe om hvor mye en størrelse endrer seg avhengig av en annen størrelse. forteller hvor mye etterspørselen endrer seg hvis prisen endrer seg 1 %. Momentan elastisitet av etterspørselen x mhp prisen p: E p = x (p) p x(p) Hvis E p = 2 betyr det at hvis prisen økes med 1 % vil etterspørselen synke med 2 %. 10
11 Funksjoner med to ukjente kan skrives på formen z = f(x, y) Vi kan dermed tegne opp funksjonen z i tre dimensjoner. Hver verdi av x og y vil korrespondere til en verdi for z. Vi får dermed en tredimensjonal funksjon. Eksempel: z = f(x, y) = x 2 + y 2 Når man skal partiell derivere en funksjon bestående av flere variabler (for eksempel x og y), så deriverer du kun med hensyn på den ene og holder alle andre ledd konstant (dersom du skal partiell derivere med hensyn på x skal du se på y som en konstant). Ved partiell derivasjon skal du derfor behandle alt du ikke deriverer med hensyn på, som konstant og derivere på vanlig måte. Stasjonære punkter: Vi har et stasjonært punkt for f(x, y) når f x = f y = 0 Hvis (x 0, y 0, f(x 0, y 0 )) er et stasjonært punkt kan følgende test bestemme hva slags stasjonært punkt det er: f xx (x 0, y 0 ) = A, f xy (x 0, y 0 ) = B, f yy (x 0, y 0 ) = C Hvis AC B 2 > 0 og A > 0 min Hvis AC B 2 > 0 og A < 0 max Hvis AC B 2 < 0 Sadelpunkt Hvis AC B 2 = 0 fungerer ikke testen 11
12 I 3-D er dette eksempler på de ulike stasjonære punktene: Minimumspunkt Maksimumspunkt Sadelpunkt f(x, y) skal maksimeres/minimeres under bibetingelsen g(x, y) = c 1. Skriv opp Lagrange-funksjonen F(x, y) = f(x, y) λ[g(x, y) c] (λ er en konstant) 2. Finn de stasjonære punktene til F(x, y) ved å sette F x = 0 og F y = 0 3. Skriv opp de tre ligningene 4. Løs ligningene med hensyn på x og y. f x (x, y) λg x (x, y) = 0 f y (x, y) λg y (x, y) = 0 g(x, y) = c 12
13 Vi har en hvis a n+1 = k, hvor k er en konsant for rekken: a n a 1 + a 2 + a a n Rekken er et eksempel på en geometrisk rekke siden 3 = 9 = Summen av de n første leddene i en geometrisk rekke er gitt av: S n = a 1 k n 1 k 1, hvor a 1er rekkens første ledd. Nåverdi er dagens verdi av en fremtidig kontantstrøm. For å regne ut nåverdi av et fremtidig beløp gitt en diskonteringsrente og et antall terminer kan man bruke : K n K 0 = (1 + r) n, hvor K n er det fremtidige beløpet, r er rentesatsen og n er antall terminer. Motsatt kan vi regne ut hvor mye et beløp K 0 vil vokse til gitt et rentesats r og n antall terminer ved å bruke : K n = K 0 (1 + r) n Hvis du setter K kroner inn på en konto hvert år i n år med en terminrenten r vil sluttverdien A n rett etter siste innbetaling være: A n = K (1 + r)n 1 r 13
14 Annuitetslån: Et annuitetslån er et lån hvor man betaler faste terminbeløp. Det vil si at renter n + avdrag n = fast terminbeløp Formelen for å regne ut hvis K 0 = lånebeløp r = terminrenten n = antal terminer, og første tilbakebetaling begynner en termin etter låneopptak er: K = K 0 (1 + r)n r (1 + r) n 1 Nåverdien K 0 av en fremtidig kontantstrøm med faste innbetalinger kan beregnes med formelen: K 0 = K (1 + r)n 1 (1 + r) n r, Hvor K er den faste uttak per termin, n er antall terminer og r er termin renten. 14
15 En lineær ligning er på formen ax + by = c. Ligningens grafiske avbildning blir en rett linje og kalles derfor for en lineær ligning. Et ligningssett bestående av flere lineære ligninger kan være på formen: a 1 x + b 1 y = c 1 a 2 x + b 2 y = c 2 Et slikt ligningssett har en entydig løsning hvis nøyaktig en x og en y gjør at begge ligningene er riktige. Grafisk vil dette se slikt ut: Et ligningssett har uendelig mange løsninger hvis grafene ligger oppå hverandre. Det vil si at for alle x og alle y hvor den ene ligningen stemmer, vil den andre ligningen også stemme. Et ligningssett har ingen løsninger hvis grafene er to parallelle linjer. Siden parallelle linjer aldri krysser hverandre vil de si at det finnes ingen x eller y hvor begge ligningene stemmer. 15
16 Determinanter: Alle ligningssett har en tilhørende determinant. 4x 3y = 6 5x + 2y = 10 Har den tilhørende determinanten: Determinanten består altså av koeffisientene foran x, og y-ene i ligningssettet. Man kan regne ut en 2x2 determinant ved å bruke følgende pil-system: 4 3 = 4 2 ( 3) 5 = Vi ser derfor at ligningssystemet A har en entydig løsning siden A 0 x + 2y = 2 3x + 2y + z = 1 x + z = 3 Har den tilhørende determinanten: x3 determinanter: Måten man regner ut en 3x3 determinant på er ved å skrive opp samme determinant rett tilhøyre for den opprinnelige og bruke følgende pil-system: A = = 2 0 Huskeregelen: Ned mot høyre er positiv, ned mot venstre er negativ. 16
17 Vi kan løse et ligningssett med tre ligninger og tre ukjente ved å bruke Cramers regel. Hvis ligningssettet A er på formen: a x1 x + a y1 y + a z1 z = b 1 a x2 x + a y2 y + a z2 z = b 2 a x3 x + a y3 y + a z3 z = b 3 Da finner vi x, y og z ved: x = B 1 A y = B 2 A, z = B 3 A a x1 a y1 a z1 b 1 a y1 a z1 a x1 b 1 a z1 a x1 a y1 b 1 der A = ( a x2 a y2 a z2 ), B 1 = ( b 2 a y2 a z2 ) B 2 = ( a x2 b 2 a z2 ) B 3 = ( a x2 a y2 b 2 ) a x3 a y3 a z3 b 3 a y3 a z3 a x3 b 3 a z3 a x3 a y3 b 3 17
Matematikk for økonomer Del 2
Matematikk for økonomer Del 2 Formelark Dokument type: Formelark Antall kapitler: 10 kapitler Antall sider: 17 Sider Forfatter: Studiekvartalets kursholdere rett til bruk av materialet. Det innebærer at
Matematikk for økonomer Del 2
Matematikk for økonomer Del 2 Oppgavedokument Antall oppgaver: 75 svar Antall kapitler: 10 kapitler Antall sider: 15 Sider Forfatter: Studiekvartalets kursholdere Kapittel 1 Derivasjon 1. f (x) = 2x 2
Faktor. Eksamen høst 2005 SØK 1001- Innføring i matematikk for økonomer Besvarelse nr 1: -en eksamensavis utgitt av Pareto
Faktor -en eksamensavis utgitt av Pareto Eksamen høst 005 SØK 00- Innføring i matematikk for økonomer Besvarelse nr : OBS!! Dette er en eksamensbevarelse, og ikke en fasit. Besvarelsene er uten endringer
Institutt for Samfunnsøkonomi. Utlevering: 29.04.2015 Kl. 09:00 Innlevering: 29.04.2015 Kl. 14:00
SENSORVEILEDNING MET 803 Matematikk Institutt for Samfunnsøkonomi Utlevering: 9.04.05 Kl. 09:00 Innlevering: 9.04.05 Kl. 4:00 For mer informasjon om formalia, se eksamensoppgaven. Oppgave Beregn følgende
Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2
Prøve i FO929A - Matematikk Dato: 1. juni 2012 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 2 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver
Fasit til eksamen i emnet MAT102 - Brukerkurs i matematikk II Mandag 21.september 2015
Fasit til eksamen i emnet MAT02 - Brukerkurs i matematikk II Mandag 2.september 205 Fasit. (a) Løs ligningssystemene. i) 5x + 7y = 4 3x + 2y = ii) 3x + 4y + z = 2 2x + 3y + 3z = 7 Svar: i) x = 85/, y =
Oppgaveløsninger for "Matematikk for økonomer - kort og godt".
Oppgaveløsninger for "Matematikk for økonomer - kort og godt". Kapittel 1 Oppgave 1.1 a) (x 2 9x 12)(3 3x) =3x 2 27x 36 3x 3 +27x 2 +36x = 3x 3 +30x 2 +9x 36. b) (2x y) 2 +2(x+y)(x y)+(x+4y) 2 =4x 2 4xy+y
ECON2200: Oppgaver til for plenumsregninger
University of Oslo / Department of Economics / Nils Framstad 9. mars 2011 ECON2200: Oppgaver til for plenumsregninger Revisjoner 9. mars 2011: Nye oppgavesett til 15. og 22. mars. Har benyttet sjansen
Oppsummering matematikkdel ECON 2200
Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke 7. mai 2008 1 Innledning En rask oppsummering av hele kurset vil ikke kunne dekke alt vi har gjennomgått. Men alt er pensum, selv om det ikke blir
Kompendium h-2013. MAT100 Matematikk. Formelsamling. Per Kristian Rekdal
Kompendium h-2013 MAT100 Matematikk Formelsamling Per Kristian Rekdal Forord Dette er formelsamlingen i emnet MAT100 Matematikk ved Høgskolen i Molde, 2013. Formelsamlingen er ment å brukes når man løser
Løsningsforslag til underveisvurdering i MAT111 vår 2005
Løsningsforslag til underveisvurdering i MAT111 vår 5 Beregn grenseverdien Oppgave 1 (x 1) ln x x x + 1 Svar: Merk at nevneren er lik (x 1), så vi kan forkorte (x 1) oppe og nede og får (x 1) ln x ln x
Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Oppgave 1 Løs ulikheten x + 6 5 x + 2 Strategien er å
Emnenavn: Eksamenstid: Faglærer: Hans Kristian Bekkevard. består av 8 sider inklusiv denne forsiden og vedlagt formelsamling.
e. Høgskoleni Østfold ). EKSAMEN Emnekode: Emnenavn: SFB10711 Metode 1 matematikk deleksamen Dato: Eksamenstid: 3. juni 2016 4 timer Hjelpemidler: Kalkulator og vedlagt formelsamling Faglærer: Hans Kristian
1 OPPGAVE 2 OPPGAVE. a) Hva blir kontobeløpet den 2. januar 2040? b) Hvor mye penger blir det i pengeskapet den 2. januar 2040?
OPPGAVE Den. januar 0 satte Ola Normann 00 tusen kroner på en bankkonto med faste renter 3% per år. Han planlegger å ta ut halvparten av rentebeløpet den. januar hvert år, og å legge kontantene til et
. 2+cos(x) 0 og alle biter som inngår i uttrykket er kontinuerlige. Da blir g kontinuerlig i hele planet.
MA 1410: Analyse Uke 47, 001 http://home.hia.no/ aasvaldl/ma1410 H01 Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave 11.1: 7. f(x, y) = 1 16 x y. a) Definisjonsområde D: f
Funksjoner 1T Quiz. Test, 4 Funksjoner
Test, 4 Funksjoner Innhold 4.1 Funksjonsbegrepet... 4. Lineære funksjoner... 6 4.3 Andre funksjonstyper... 14 4.4 Vekstfart og derivasjon... 0 4.5 Drøfting av funksjoner på grunnlag av egenskaper hos den
Institutt for Samfunnsøkonomi. Utlevering: Kl. 09:00 Innlevering: Kl. 14:00
SENSORVEILEDNING MET 11803 Matematikk Institutt for Samfunnsøkonomi Utlevering: 17.12.2014 Kl. 09:00 Innlevering: 17.12.2014 Kl. 14:00 For mer informasjon om formalia, se eksamensoppgaven. Oppgave 1 Finn
Formelsamling H MAT100 Matematikk. Per Kristian Rekdal
Formelsamling H-2016 MAT100 Matematikk Per Kristian Rekdal 2 Forord Dette er formelsamlingen i emnet MAT100 Matematikk ved Høgskolen i Molde, 2016. Formelsamlingen er ment å brukes når man løser innleveringsoppgavene
QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Kalkulus
QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 1 Kalkulus Kapittel 1 Oppgave 1. a) en funksjon b) en funksjon c) ikke en funksjon d) ikke en funksjon Oppgave 2. a) 12,1 b) 4 c)
ECON2200: Oppgaver til plenumsregninger
University of Oslo / Department of Economics / Nils Framstad, denne versjonen: π-dagen ECON2200: Oppgaver til plenumsregninger 1. plenumsregning 1. feb.: derivasjon. Oppgave 1.1 der A er en konstant. Funksjonen
Eksamen REA3028 S2, Høsten 2012
Eksamen REA308 S, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (6 poeng) Deriver funksjonene 3x x a) gx 3 3x x 3x
OPPGAVESETT MAT111-H16 UKE 44. Oppgaver til seminaret 4/11
OPPGAVESETT MAT111-H16 UKE 44 Avsn. 5.5: 19, 41, 47 Avsn. 5.6: 9, 17, 47 Avsn. 5.7: 15 På settet: S.1, S.2. Oppgaver til seminaret 4/11 Oppgaver til gruppene uke 45 Løs disse først så disse Mer dybde Avsn.
Oppfriskningskurs i matematikk 2008
Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-
Løsningsforslag: Eksamen i Brukerkurs for informatikere MA 0003, onsdag 30. november 2005
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 Løsningsforslag: Eksamen i Brukerkurs for informatikere MA 3, onsdag 3. november 5 Del Oppgave Funksjonen f(x) er
Oppgaver om derivasjon
Oppgaver om derivasjon Oppgave 1 Gitt funksjonen g(x) = x 3 6x 48x + 13 a) Finn g (x). b) Bruk den deriverte til å finne x-koordinaten til topp/bunn-punktene til grafen. Finn også de tilhørende y-koordinatene,
Løsningsforslag for MAT-0001, desember 2009, UiT
Løsningsforslag for MAT-1, desember 29, UiT av Kristian Hindberg Oppgave 1 a) Bestem grenseverdien e x 1 x lim x x 2 e x 1 x lim x x 2 = lim x e x 1 2x e = x lim x 2 = 1 2 b) Finn det ubestemte integralet
Notater nr 9: oppsummering for uke 45-46
Notater nr 9: oppsummering for uke 45-46 Bøkene B (læreboken): Tor Gulliksen og Arne Hole, Matematikk i Praksis, 5. utgave. K (kompendium): Amir M. Hashemi, Brukerkurs i matematikk MAT, høsten. Oppsummering
Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 009 Oppgave 1 Funksjonen g er definert ved g(x)
Løsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I
Universitetet i Bergen Matematisk institutt Bergen, 8. desember 006. Bokmål Løsningsforslag: Eksamen i MAT - Grunnkurs i Matematikk I Mandag desember 8, 006, kl. 09-4. Oppgave Gitt funksjonen f(x) = ln(
Fasit MAT102 juni 2016
Fasit MAT02 juni 206. (a) Finn egenverdiene og egenvektorene til matrisen ( ) 6 A = 2 7 Svar: λ = 8 og ( ) x = y y ( ) /2, λ = 5 og ( ) x = y y ( ) for alle y 0. (b) Finn den generelle løsningen på systemet
Oppsummering matematikkdel
Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke Økonomisk Institutt May 9, 2011 KAB (Økonomisk Institutt) Oppsummering May 9, 2011 1 / 25 Innledning Rekker bare å nevne noen hovedpunkter Alt er
R2 Eksamen V
R V011 R Eksamen V011-1.05.011 Del 1 - Uten hjelpemidler Oppgave 1 a) 1) Kjerneregel: fx sin u, u x f x cosu 4 cosx ) Produktregel (og kjerneregel på cosx): g x x cosx x sin x xcosx x sin x ) Kjerneregel:
Handelshøyskolen BI Eksamen i Met Matematikk for økonomer kl til Løsninger
Handelshøyskolen BI Eksamen i Met 91001 Matematikk for økonomer..1 00 kl 09.00 til 1.00 Løsninger OPPGAVE 0.1 Vi skal derivere disse funksjonene a) b) f( x) 3x 8 + 3x f ( x) x 8 1 + 3 x x 9 + 6x fx ( )
Eksamensoppgavehefte 1. MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler
Eksamensoppgavehefte 1 MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler Matematisk institutt, UiO, våren 2010 I dette heftet er det samlet et utvalg av tidligere eksamensoppgaver innenfor
LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode
Oppgave 1. e rt = 120e. = 240 e
Løsning MET 803 Matematikk Dato 5. desember 05 kl 0900-00 Oppgave. (a) Dersom vi selger eiendommen etter t år, med t > 0, så er nåverdien av salgssummen med r = 0,0. Da får vi N(t) = V (t)e rt = 0 e e
Oppsummering matematikkdel
Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke Økonomisk Institutt May 5, 2014 KAB (Økonomisk Institutt) Oppsummering May 5, 2014 1 / 25 Innledning Rekker bare å nevne noen hovedpunkter Alt er
S1 2014 høst LØSNING. 2x 10 = x(x 5) x 2 + 7x 10 = 0 x = 7± 49 4 ( 1) ( 10) x = 7±3. x = 2 x = 5. lg( ) + 3 = 5. lg( ) = 2.
/14/016 S1 014 høst LØSNING matematikk.net S1 014 høst LØSNING Contents DEL EN Oppgave 1 x 10 = x(x 5) x + 7x 10 = 0 x = 7± 49 4 ( 1) ( 10) x = 7± x = x = 5 lg( ) + = 5 x lg( ) = x = 10 lg( x ) 10 x =
Kapittel 2. Antiderivering. 2.1 Derivasjon
Kapittel 2 Antiderivering I dette og neste kapittel skal vi bli kjent med noen typer difflikninger og lære hvordan disse kan løses. Til dette trenger vi derivering og antiderivering. 2.1 Derivasjon I Kapittel
f =< 2x + z/x, 2y, 4z + ln(x) >.
MA 40: Analyse Uke 48, 00 http://home.hia.no/ aasvaldl/ma40 H0 Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave.5: 5. Vi har gitt funksjon f(x, y) = x + y z + z ln(x) og punkt
Løsningsforslag Eksamen S2, høsten 2016 Laget av Tommy Odland Dato: 27. januar 2017
Løsningsforslag Eksamen S, høsten 016 Laget av Tommy Odland Dato: 7. januar 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = x 3 5x, og vi kommer til å få bruk for reglene (ax n ) = anx
Høgskoleni østfold EKSAMEN. Metode 1 (Deleksamen i matematikk)
Høgskoleni østfold EKSAMEN Emnekode: SFB10711 Emne: Metode 1 (Deleksamen i matematikk) Dato: 02.12.2013 Eksamenstid: kl 0900 til kl 1300 Hjelpemidler: Kalkulator Utlevert formelsamling Faglærer: Hans Kristian
Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2
Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2 1 Bestem den naturlige denisjonsmengden til følgende funksjoner.
Nicolai Kristen Solheim
Oppgave 1. 1a) 1, 0, 2, sin 5 4cos sin 54cos sin 8 sin cos cos 54cos 8 sin cos 5cos 4cos 8sin cos 5cos 4cos Dersom vi plotter grafen for vil vi se hvor vokser og avtar. 1 Fra grafen for ser vi følgende
Oppsummering matematikkdel
Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke Økonomisk Institutt May 8, 2009 KAB (Økonomisk Institutt) Oppsummering May 8, 2009 1 / 22 Innledning Rekker bare å nevne noen hovedpunkter Alt er
Matematikk R1 Forslag til besvarelse
Matematikk R1 Forslag til besvarelse NITH 4. mars 014 Oppgave 1 a) Regn ut p x) når px) = x 3 3x + 6x 1. p x) = x 3 ) 3x ) + 6x) 0 = 3x ) 3x) + 6 1 = 6x 6x + 6 b) Regn ut p x) når px) = ax + bx + c. Her
Oppsummering matematikkdel
Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke Økonomisk Institutt May 6, 2010 KAB (Økonomisk Institutt) Oppsummering May 6, 2010 1 / 23 Innledning Rekker bare å nevne noen hovedpunkter Alt er
Repetisjon i Matematikk 1: Derivasjon 2,
Repetisjon i Matematikk 1: Derivasjon 2, 201. 1 Høgskolen i Gjøvik Avdeling TØL Repetisjonsoppgaver MATEMATIKK 1 REA1141 og REA1141F Derivasjon 2, 201. Oppgave 1 Denne oppgaven har forholdsvis enkle derivasjoner,
I et eksperiment er det målt følgende sammenheng mellom to størrelser x og y. x Y = ax + b:
OPPGAVE I et eksperiment er det målt følgende sammenheng mellom to størrelser x og y. x 7 74 546 y 48 6 45 a) Plott Y ln y mot X ln x i et rettvinklet koordinatsystem. ) Finn en lineær sammenheng mellom
Alle svar skal grunngis. Alle deloppgaver har lik vekt.
Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom
Høgskoleni østfold EKSAMEN. Faglærer: Hans Kristian Bekkevard
Høgskoleni østfold EKSAMEN Emnekode: SFB10711 Emne: Metode 1 (Deleksamen i matematikk) Dato: 23.11.15 Eksamenstid: 4 timer, kl. 9.00-13.00 Hjelpemidler: Kalkulator Utlevert formelsamling (4 siste sider
Løsningsforslag AA6516 Matematikk 2MX Privatister 10. desember 2003. eksamensoppgaver.org
Løsningsforslag AA6516 Matematikk MX Privatister 10. desember 003 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i MX er gratis, og det er lastet
Institutt for samfunnsøkonomi. Eksamensdato: , kl Tillatte hjelpemidler:
Institutt for samfunnsøkonomi Flervalgseksamen i: MET 2403 Matematikk Eksamensdato: 20.2.07, kl 09.00-2.00 Tillatte hjelpemidler: Innføringsark: Alle Svarark Totalt antall sider: 7 Antall vedlegg: (eksempel
Løsningsforslag Eksamen S2, høsten 2015 Laget av Tommy O. Sist oppdatert: 25. mai 2017
Løsningsforslag Eksamen S2, høsten 215 Laget av Tommy O. Sist oppdatert: 25. mai 217 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere funksjonen f(x) = x 3 + 2x. Formelen vi må bruke er (x n ) =
Løsningsforslag Eksamen M001 Våren 2002
Løsningsforslag Eksamen M Våren Oppgave f(x) = (x )e x Bruker produktregelen i derivasjonen f (x) = e x + (x ) (e x ) For å derivere e x velges kjernen u = x, og vi får (e x ) = e u. f (x) = e x + (x )
Sammendrag kapittel 9 - Geometri
Sammendrag kapittel 9 - Geometri Absolutt vinkelmål (radianer) Det absolutte vinkelmålet til en vinkel v, er folholdet mellom buelengden b, og radien r. Buelengde v = b r Med v i radianer! b = r v Omregning
Funksjoner og andregradsuttrykk
88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter
Forord. Molde, august 2011. Per Kristian Rekdal. Copyright c Høyskolen i Molde, 2011.
1 13. august 011 Forord Høgskolen i Molde gjennomfører forkurs i matematikk for studenter som har svakt grunnlag i dette faget, eller som ønsker å friske opp gamle kunnskaper. Formål: Målet med forkurset
Løsningsforslag Eksamen S2, våren 2016 Laget av Tommy Odland Dato: 29. januar 2017
Løsningsforslag Eksamen S, våren 016 Laget av Tommy Odland Dato: 9. januar 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = e x. Den generelle regelen er at (e ax ) = ae ax, i vårt tilfelle
Løsningsforslag Eksamen S2, høsten 2017 Laget av Tommy O. Sist oppdatert: 26. november 2017
Løsningsforslag Eksamen S, høsten 017 Laget av Tommy O. Sist oppdatert: 6. november 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = x 4x 3. Vi bruker regelen samt regelen (x n ) = nx
Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015
Ekstranotat, februar 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser, brøk og potenser... Funksjoner...4 Tilvekstform (differensialregning)...5 Nyttige tilnærminger...8
Eksamen i MAT1100 H14: Løsningsforslag
Eksamen i MAT H4: Løsningsforslag Oppgave. ( poeng) Dersom f(x, y) x sin(xy ), er f y lik: A) sin(xy ) + xy cos(xy ) B) x cos(xy ) C) x y cos(xy ) D) sin(xy ) + x y cos(xy ) E) cos(xy ) Riktig svar: C):
Oppgaver i funksjonsdrøfting
Oppgaver i funksjonsdrøfting To av oppgavene er merket med *. Det betyr at de er ekstra interessante. Oppgave 1 Gitt funksjonen f(x) = x + 4. a) Finn nullpunktene til funksjonen. b) Bruk definisjonen på
Matematikk R1 Oversikt
Matematikk R1 Oversikt Lars Sydnes, NITH 20. mai 2014 I. ALGEBRA ANNENGRADSLIGNINGER Annengradsformelen: ax 2 + bx + c = 0 x = b ± b 2 4ac 2a (i) 0 løsninger hvis b 2 4ac < 0 (ii) 1 løsning hvis b 2 4ac
TMA4100: Repetisjon før midtsemesterprøven
TMA4100: Repetisjon før midtsemesterprøven 10.10.09 Lars Sydnes sydnes@math.ntnu.no Institutt for matematiske fag October 1, 2009 L.S. (NTNU) TMA4100: Oversikt October 1, 2009 1 / 20 Kapittel 1: Funksjoner.
Heldagsprøve i matematikk. Svar og løsningsforslag
Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være
1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at
Ekstranotat, 7 august 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser og brøker... Funksjoner...3 Tilvekstform (differensialregning)...4 Telleregelen...7 70-regelen...8
Krasjkurs MAT101 og MAT111
Krasjkurs MAT101 og MAT111 Forord Disse notatene ble skrevet under et åtte timer (to firetimers forelesninger) i løpet av 10. og 11. desember 2012. Det er mulig at noen av utregningene ikke stemmer, enten
Stigningstall og konstantledd, løsningsforslag
Stigningstall og konstantledd, løsningsforslag Oppgave: Løsningsforslag Listen [1] Oppgave Oppgave 1 a) Skriv ned stigningstallet og konstantleddet i de tre funksjonene under. 1. f(x) = x + Stigningstall
Løsningsforslag til Obligatorisk innlevering 7
Løsningsforslag til Obligatorisk innlevering 7 Oppgave a) Likningen e 2x 6e x + 5 = 0 er en annengradslikning i e x. Siden ( ) ( 5) = 5 og 5 = 6 så faktoriserer annengradsuttrykket som (e x 5)(e x ). Dette
Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1
Eksamen i BYPE2000 - Matematikk 2000 Dato: 6. juni 2014 Målform: Bokmål Antall oppgaver: 7 (20 deloppgaver) Antall sider: 4 Vedlegg: Noen formler Hjelpemiddel: Ingen Alle svarene skal grunngis. Alle deloppgavene
Eksempelsett R2, 2008
Eksempelsett R, 008 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonen f x x cosx f x cosx x s x f x cosx 6x sinx
Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011
Derivasjon Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 2. september 20 Kapittel 3.7. Derivasjon av inverse funksjoner 3 Derivasjon av inverse til deriverbare funksjoner
TMA4100 Matematikk 1, høst 2013
TMA4100 Matematikk 1, høst 2013 Forelesning 9 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 9 Derivasjon I dagens forelesning skal vi se på følgende: 1 Tilnærminger til små endringer. 2 Vekstfart.
Heldagsprøve R2. Våren Onsdag 6. Mai Løsningsskisser - Versjon Del 1 - Uten hjelpemidler - 3 timer. Oppgave 1.
Heldagsprøve R Våren 015 Onsdag 6. Mai 09.00-14.00 Løsningsskisser - Versjon 1.05.15 Del 1 - Uten hjelpemidler - timer Oppgave 1 Deriver funksjonene: a) fx tanx Kjerneregel: fx tanu, u x f 1 x cos u x
BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8
Innlevering BYFE DAFE Matematikk HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 5. april 6 kl Antall oppgaver: 8 Funksjonen ft) er vist i guren over. Funksjonen F x) er denert som for x. F x)
ECON 2200, Kjerneregel, annenderivert og elastisitet; Handout
ECON 2200, Kjerneregel, annenderivert og elastisitet; Handout Kjell Arne Brekke January 27, 20 Inledning Dette notatet er noen begreper og noen oppgaver som kan hjelpe deg til å forberede deg til forelesningen.
S2 kapittel 3 Derivasjon Løsninger til kapitteltesten i læreboka
S kapittel 3 Derivasjon Løsninger til kapitteltesten i læreoka 3.A a h () t = 0,5 t = 0,5t Vannhøyden øker stadig raskere. c h (3) =,5 h (5) =,5 Etter 3 minutter øker vannhøyden med,5 cm per minutt. Etter
Kompendium H MAT100 Matematikk. Del 2 av 2. Per Kristian Rekdal
Kompendium H-2016 MAT100 Matematikk Del 2 av 2 Per Kristian Rekdal Figur 1: Matematikk er viktig. 2 Innhold 1 Grunnleggende emner 19 1.1 Tall og tallsystemer................................... 20 1.2 Algebraiske
MAT 100a - LAB 3. Vi skal først illustrerere hvordan Newtons metode kan brukes til å approksimere n-te roten av et positivt tall.
MAT 100a - LAB 3 I denne øvelsen skal vi bruke Maple til å illustrere noen anvendelser av derivasjon, først og fremst Newtons metode til å løse likninger og lokalisering av min. og max. punkter. Vi skal
Formelsamling Kalkulus
Formelsamling Kalkulus Martin Alexander Wilhelmsen December 8, 009 En liten formelsamling for MAT00 ved UiO. Vennligst meld fra om feil til martinaw@student.matnat.uio.no. Dette dokumentet er publisert
1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m
Formelsamling og tabeller FO020E Matte 2000 for elektroprogrammet 1 Matematikk 1.1 Denisjoner av ulike typer polynomer og rekker 1.1.1 Rekke med konstante ledd En rekke med konstante ledd er gitt som a
MA0003-8. forelesning
Implisitt derivasjon og 31. august 2009 Outline Implisitt derivasjon 1 Implisitt derivasjon 2 Outline Implisitt derivasjon 1 Implisitt derivasjon 2 Outline Implisitt derivasjon 1 Implisitt derivasjon 2
Alle svar skal grunngis. Alle deloppgaver har lik vekt.
Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom
EKSAMEN. Ingeniør- og Fleksibel ingeniørutdanning.
KANDIDATNUMMER: EKSAMEN EMNENAVN: Matematikk. EMNENUMMER: REA42/REA42F EKSAMENSDATO: Mandag 9. august 2 KLASSE: Ingeniør- og Fleksibel ingeniørutdanning. TID: kl. 9. 3.. FAGANSVARLIG: Hans Petter Hornæs
Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100
Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 9. september 2011 Kapittel 4.1. Funksjoners ekseremverdier fra og med lokale ekstrema
Høgskolen i Oslo og Akershus. sin 2 x cos 2 x = 0, x [0, 2π) 1 cos 2 x cos 2 x = 0 2 cos 2 x = 1 cos 2 x = 1 2 1 2
Innlevering i DAFE/ELFE 1000 Oppgavesett 1 Innleveringsfrist: 31. januar klokka 14:00 Antall oppgaver: 3 Løsningsforslag Oppgave 1 Løs disse likningene ved regning, og oppgi svarene eksakt: a) Vi kan for
Løsningsforslag til eksamen i MAT 1100 H07
Løsningsforslag til eksamen i MAT H7 DEL. (3 poeng Hva er den partiellderiverte f y når f(x, y, z = xeyz? xze yz e yz xe yz e yz + xze yz e yz + xze yz + xye yz Riktig svar: a xze yz Begrunnelse: Deriver
R2 - Funksjoner, integrasjon og trigonometri
R - Funksjoner, integrasjon og trigonometri Løsningsskisser Del I - Uten hjelpemidler Oppgave 1 Regn ut integralene: a) x cosx dx b) x x 3x dx c) ex cose x dx a) Delvis integrasjon: x cosx dx x sin x sin
DERIVASJON MED LITT TEKNISK HJELP
DERIVASJON MED LITT TEKNISK HJELP Viskalnåsepåhvordanvikanundersøkeenfunksjonvednoesomvikallerderivasjon. Funksjoner er en sammenhengen mellom størrelser. Det kan være antall solgte biler per måned, temperaturvariasjoner,
Oppgave 1. (a) Vi løser det lineære systemet for a = 1 ved Gauss-eliminasjon. Vi nner først den utvidede matrisen: x A =
Løsning MET 80 Matematikk for siviløkonomer Dato 0. mai 07 kl 0900-400 Oppgave. (a) Vi løser det lineære systemet for a = ved Gauss-eliminasjon. Vi nner først den utvidede matrisen: 0 y = 4 0 4 0 z 0 Deretter
MAT1100 - Grublegruppen Uke 36
MAT - Grublegruppen Uke 36 Jørgen O. Lye Partiell derivasjon Hvis f : R 2 R er en kontinuerlig funksjon, så kaller man følgende dens partiellderiverte (gitt at de finnes!) f f(x + h, y) f(x, y) (x, y)
Optimering av funksjoner av flere variable
Optimering av funksjoner av flere variable av Tom Lindstrøm Matematisk insitutt/cma Universitetet i Oslo Dette notatet gir en kortfattet innføring i maksimums- og minimumsproblemer for funksjoner av flere
UNIVERSITETET I BERGEN
Bokmål UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Løsningsforslag til Eksamen i emnet MAT - Grunnkurs i matematikk I Torsdag 22. mai 28, kl. 9-4. Dette er kun et løsningsforslag.
TMA4100 Matematikk 1 Høst 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 24 Løsningsforslag Øving 9 4.3.4 Vi bruker Taylor-polynom til å løse denne oppgaven. Taylor-polynomet (Maclaurinpolynomet)
dg = ( g P0 u)ds = ( ) = 0
NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,
Flere anvendelser av derivasjon
Flere anvendelser av derivasjon Department of Mathematical Sciences, NTNU, Norway September 30, 2014 Forelesning 17.09.2014 Fikspunkt-iterasjon Newtons metode Metoder for å finne nullpunkter av funksjoner:
Løsningsforslag for eksamen i brukerkurs i matematikk A (MA0001)
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag for eksamen i brukerkurs i matematikk A (MA1) Bokmål Tirsdag 1. desember 11 Tid: 9: 1: (4 timer)
3x + 2y 8, 2x + 4y 8.
Oppgave En møbelfabrikk produserer bord og stoler Produksjonen av møbler skjer i to avdelinger, avdeling I og avdeling II Alle møbler må innom både avdeling I og avdeling II Det å produsere et bord tar
Arne B. Sletsjøe. Kompendium, MAT 1012
Arne B. Sletsjøe Kompendium, MAT 2 Forord Dette kompendiet dekker analysedelen av pensum i kurset MAT 2 ved Universitetet i Oslo. Kurset bygger på MAT og legger mer vekt på anvendelser av teorien enn på