ARBEIDSHEFTE I MATEMATIKK

Størrelse: px
Begynne med side:

Download "ARBEIDSHEFTE I MATEMATIKK"

Transkript

1 ARBEIDSHEFTE I MATEMATIKK Temahefte nr 4 Hvordan du regner med bokstaver, likninger og formler (elementær algebra) Detaljerte forklaringer Av Matthias Lorentzen mattegrisenforlag.com

2 1 Opplsning: Faste, spesifiserte tall kalles for konstanter. Eksempel: 7 9, 4, 0,,,,14... osv. Kommentar: Tallet null for eks. er og blir null, det forandrer seg ikke. Derav ordet konstant eller fast tall. Opplsning: Uspesifiserte tall kalles for variabler (variable uttrkk) og betegnes med bokstaver eller en blanding av bokstaver og konstanter. Eksempel: Under er det noen mstiske variable uttrkk (som også kan inneholde konstanter).,, z,, 4, 7, ab, b ab... osv. z z ( multiplikasjonstegn utelates ofte)

3 Eksempel: Formelen for omkretsen av en sirkel er et godt eksempel på en variabel størrelse. Omkretsen på en sirkel er lengden på den veien du må labbe for å komme rundt sirkelen en gang (rundt et løpestadion). Formel for omkretsen (O) til en sirkel uttrkt ved diameteren (d): O, 14 d Omkretsen (O) er ca. ganger diameteren (d). Jeg klarer det aldri, fordi det er ca. 00m rundt! MÅL START d=100m At O og d er variabler, skjønner du når diameteren dobles (d = 00m). Da vil omkretsen bli ca. 600m (det dobbelte av 00m). La oss vise det ved regning:

4 Diameteren = d = 100m (som ovenfor). I formelen (likningen) for omkretsen erstatter vi variabelen d med en boks som verdien 100m skal puttes inni. O,14d, m Omkretsen når diameteren er 100m blir da: O,14100m 14m Vi fordobler diameteren til 00m og forventer at den ne omkretsen blir 68m: Diameteren = d = 00m. I formelen (likningen) for omkretsen erstatter vi variabelen d med en boks som verdien 00m skal puttes inni. O,14d, 14 00m Omkretsen når diameteren er 00m blir da: O,1400m 68m Oppgave: hvilke av følgende fem uttrkk (a til e) er konstanter? a ) 4, b) (0,6), c) z, d) 1, e) 0 Fasit: b) 0,6 og e) 0 er konstanter. Kommentar: Isolert sett er også 4, og 1 konstanter, men de er del av et uttrkk som også inneholder bokstaver (variabler). Opplsning: Konstanten som multipliseres med et bestemt bokstavuttrkk kalles koeffisient.

5 4 Eksempel: Finn koeffisientene til bokstavuttrkkene under. 1,,, 4 For å tdeliggjøre koeffisientene, må vi skrive uttrkkene med multiplikasjonstegn (gangetegn). har koeffisienten 1, fordi 1 Koeffisienten til er lik 1 har koeffisienten -1, fordi ( 1) Koeffisienten til - er lik har koeffisienten, fordi Koeffisienten er en halv 4 har koeffisienten -4, fordi 4 ( 4) Koeffisienten er -4

6 Oppgave: Hva er koeffisientene til de variable uttrkkene under?,, t og 1 0,001a b Fasit: 1,, 1, 0, 001 Opplsning: Bokstavuttrkk eller tall med plusstegn eller minustegn i mellom kalles ledd. Bokstavuttrkk av samme slag (det er bare koeffisientene som varierer), kan vi trekke sammen ved å beholde bokstavutrkket og trekke sammen koeffisientene. Eksempel: (1 ) eple pluss epler minus epler er lik null epler Koeffisientene trekkes sammen Summen av koeffisientene er lik 0 Merk: Null ganger et tall er alltid lik null. Eksempel: 4?

7 6 Ovenfor har vi to tper bokstavuttrkk: og. Vi sorterer uttrkkene slik at alle de tre -leddene settes samlet. 4 Lik tpe ledd kan nå telles sammen ved hjelp av koeffisientene. ( 4 ) ( ) Sum = Sum = 1 Eksempel: 4 kan ikke trekkes sammen, fordi og er ulike bokstavutrkk.

8 Eksempel: 7 Men snet kan bedra: 4? Bokstavuttrkkene og ser ulike ut, men er det ikke. Hvorfor? Vi faktoriserer bokstavuttrkkene og snur på faktorenes rekkefølge, så ser vi at tpen bokstavuttrkk er like. Merk: Faktorenes rekkefølge spiller ingen rolle. Vi ser på uttrkket : Her har vi snudd på rekkefølgen X er opphød i andre potens. Da må ganges med seg selv ganger. Da får vi at

9 Er lik 4, som vi fant rett ovenfor Oppgave: Trekk sammen leddene under og finn ut hva som skal stå i den tomme boksen. Legg merke til at summen er null (din første likning). Tips: Forsøk å finne bokstavuttrkkene som er like (selv om det ikke ser slik ut ved første øekast). Sorter dem og trekk disse sammen. 9ab ru 6b a 7r u b ba 7ur 0 Fasit: ru Opplsning: Parenteser med minus foran kan fjernes (inkludert minustegnet), bare du skifter fortegn på leddene inni. Minus foran parentesen gir: To formler: a b a b a b a b Merk deg fortegnsskiftet fra b til + b

10 9 Eksempel: Vi lar både a og b være positive tall: a =, og b = dette gir at a b Vi kunne selvfølgelig lagt og sammen i parentesen først, men når vi regner med ulike bokstaver er det ikke like lett. Se neste eksempel. Eksempel: + kan ikke trekkes sammen I neste eksempel skal vi bruke formelen (a b) = - a + b Eksempel: ? Hvis du tror at svaret her blir positivt, så tar du skrekkelig feil: -0 (tve enheter mot venstre) +1 (femten enheter mot høre) - (rest) Fsikk: Vi skrumper pilen som representerer -0; med 1 enheter.

11 10 Restpilen vår (-) er svaret: Eksempel: Opplsning: Parenteser med pluss foran kan fjernes uten videre. Eksempel: Ingen fortegn er skiftet Eksempel: 6 8h 6 8h Ingen fortegn er skiftet Eksempel: Ingen fortegn er skiftet

12 11 Og så et samlende eksempel til slutt hvor det er både pluss og minus foran parentesen. Eksempel: c b b c b c? c Her skal det skiftes fortegn Her skal det skiftes fortegn c c b b c b c? Her er det skiftet fortegn Her er det skiftet fortegn Husk: Hvis det ikke står noe fortegn, så betr det pluss. For eks. b = + b. Oppgave: Løs opp følgende parenteser og eventuelt trekk sammen. a) ( )? b) ( )? c) ( a b)? d) ( )? Fasit: a), b), c) a + b, d) 4 4

13 1 Formel: bc ac c b a ac ab c b a ) ( ) ( Eksempel: Vi skal trekke sammen uttrkket nedenfor (husk det er ingen likning).? ) 7 ( 4? ) 7 ( 4? ) ( 7 ) ( 4 Leddene i det ne uttrkket regner vi ut hver for seg nedenfor. Opplsning: Du ganger et tall (bokstavuttrkk) med en parentes ved å gange tallet med hvert av tallene inni parentesen. Først skal multipliseres med de tre leddene inni parentesen Dette er de tre leddene ovenfra Dette er det første av tre ledd i det ne uttrkket etter at vi har ganget inn i parentesen øverst

14 ne ledd: ( ) Vi foretar en fullstendig faktorisering av leddet for å vise hva som foregår. 4 ( ) 4 er en forkortet skrivemåte for 4 like faktorer Faktorenes rekkefølge er likegldig. Vi samler -faktorene og de konstante faktorene hver for seg ved å btte om på rekkefølgen. Til slutt ganger vi sammen. 6 6 er en forkortet skrivemåte for like faktorer 6, fordi ulike fortegn ved multiplikasjon gir minus. Dermed har vi regnet ut 1. Ledd. Vi fortsetter med det neste leddet (av totalt ledd).. ledd: ledd: ( ) 1 1

15 14 Vi legger de utregnede leddene sammen og får resultatet: 14 6 ) 7 ( 4 Eksempel:? ) ( Vi må gange med hvert av leddene inni parentesen ( og ). Se strektegningen under: ) ( ) ( ) ( Utregning av 1. Ledd: ) ( Utregning av. Ledd: 6 6 ) ( Summen av ledd 1 og ledd gir oss svaret på oppgaven. Resultat: ) (

16 1 Oppgave: Regn ut og trekk sammen. a) ( 4 6 ) b) ( 6 ) Fasit: 7 a) 0, b) ================================================================ Opplsning: To parenteser ganges sammen ved å gange hvert tall i den ene med === hvert tall i den andre. Formel: ( a b) ( c d) ac ad bc bd Eksempel: Multipliser sammen parentesene under ved å bruke regelen ovenfor. ( ) ( )? Fremgangsmåte: ( ) ( ) ( ) ( ) 1 4 Faktorene og har bttet rekkefølge.

17 16 Eksempel: Regn ut uttrkket under.? ) 9 ( 9) ( Løsning: ) 9 ( 9) (? 9 9) ( 9 ) ( 9) ( ) ( 1 4 Utregning av ledd 1: ) ( ) ( Utregning av ledd : 4 ) ( Like fortegn gir pluss Ulike fortegn gir minus Summere eksponenter

18 17 Utregning av ledd : 9 ( 9) 81 Utregning av ledd 4: Resultatet på utregningen blir som følger: ( 9) ( 9 ) Kommentar: Det er vanlig å skrive leddene med høest grad (eksponent) først. Oppgave: Regn ut og trekk sammen. ( a b) ( a b)? Fasit: a ab b Oppgave: ( 1)( 1) Kommentar: Det står egentlig et gangetegn mellom parentesene, men det skrives ikke alltid. Fasit: 4 1

19 18 Opplsning: Variablene kan erstattes av ulike konstanter (faste tall). Vi kan tenke oss en variabel som en tom boks som vi skriver et fast tall i. Når du skal sette tall i formler, kan det lønne seg å skrive bokstavene som tomme bokser du setter tallene inni. X= Eksempel: Hvis erstattes med, får vi 4 Uttrkket 4. er altså lik 4 når er lik. Dette kan også skrives: Hvis =, så er Eksempel: Arealet av en sirkel med radius lik r har formelen A r, hvor, 14. Finn arealet til sirkelen hvis radien r er m.

20 19 Utregning: Arealet av en sirkel = kan skrives,14r, 14 r r, slik at radien r = m, A= Areal av sirkelflaten =,14 m m = 1,6m m A 1m Oppgave: En sirkel har radien lik 4m. Hvor stort er sirkelens areal? Fasit: 0,m Eksempel: Under har vi en rettvinklet trekant (den rette vinkelen er 90 o ). Vi skal bruke Ptagoras formel (likning) som forutsetter en rettvinklet trekant. Den kan uttrkkes som setning: Kvadratet på hpotenusen er lik kvadratet på den ene kateten pluss kvadratet på den andre kateten. (Vi kvadrerer tall slik: Kvadratet av 9 er 9 99.) Ptagoras formel: ( Hpotenus ) ( Katet) ( Katet) Kommentar: Katetene står alltid vinkelrett på hverandre. Hpotenusen er alltid den lengste siden.

21 0 Katet Hpotenus (jeg er lengst) 90 o Katet Trekantberegning: Trekanten under er rettvinklet og vi skal vise at Ptagoras setning gjelder. Dvs. vi skal vise at: 4 4 Variablene i Ptagoras likning er altså hpotenusen og de to katetene. Vi gjør som ovenfor og btter ut variablene med tomme bokser og putter inn tallene, 4 og (du kan gjerne tenke i cm, men det kan like gjerne være m). Ptagoras formel: ( Hpotenus ) Katet ( Katet ) ( ) kan skrives = + Nå blir det en smal sak å putte inn konstantene, 4 og :

22 1 Ptagoras formel: ( Hpotenus ) ( Katet ) ( Katet ) = 4 + Ptagoras påstår altså at: som blir Likningen stemmer, fordi faktisk er lik (husk at et likhetstegn ikke bare er til pnt begge sider må være like når det puttes inn tall for alle variablene i en formel; som faktisk er en likning). Kommentar: tallene, 4 og kalles et ptagoreisk talltrippel. 10, 8 og 6 er etannet eksempel. Test ut selv! Eksempel: Et annet eksempel på en likning er den berktede andregradslikningen. En likning av andregrad vil inneholde variabler (bokstaver) som har en eksponent lik, men ikke større enn. For eks. vil være et andregradsledd. Dette er et andregradsledd Dette er en andregradslikning 0

23 Det strenge likhetstegnet i andregradslikningen like ovenfor, sier oss at dette skal være en likhet mellom venstre siden av likhetstegnet og høre siden. Det blotte øet ser selvfølgelig ingen likhet. Derfor kalles en likning med variabler for en åpen påstand (åpen setning). Det er først når vi erstatter variabelen (tenk tom boks) med et fast tall, at vi med sikkerhet kan si noe om likhet. Hvis venstre siden etter innsetting av et tall (verdi) blir lik 0, sier vi at denne spesielle -verdien er en løsning for likningen. Problemet er å finne det riktige tallet (eller to stkker andregradslikningen kan høst ha to løsninger). Å prøve seg frem kan være nttig som trening, men det tar tid. For å finne løsningen fortere bruker vi den berømte abc-formelen: b b 4 ac a Dette ser ut som et monster, så lenge en ikke vet hva bokstavene a, b, c og tegnet er for noe. Vi forklarer bokstavene først og rottegnet,, etterpå. Hvem er dere? a, b og c Den spesielle andregradslikningen 0 har nemlig en mer generell form: Den generelle andregradslikningen a b c 0 Ved sammenlikning med den spesielle andregradslikningen skal vi se hva a, b og c er:

24 0 a b c 0 Med øet ser vi at: a =, b = - og c = (bokstavene som inngår i abc-formelen). Andregradslikninger kan altså løses ved å slenge konstantene a = -, b = -, og c = (også kalt for koeffisientene til andregradslikningen) inn i abc-formelen: a b c 0 har løsningen b b a 4ac ( abc formelen) Vi skal løse likningen under og sette prøve: 0 Vi ser at a =, b = - og c = (håper du så det ovenfor også). Vi setter formelen opp i boksform (a, b, og c er bokser) og setter verdiene for a, b og c inn i boksene:

25 4 b b 4 ac a (a =, b = - og c = settes inn) Dette kan vi renskrive: ( ) ( ) 4? Kvadratroten (bitte liten innføring) Først litt om kvadratroten : Kvadratroten av et tall er det tallet som ganget med seg selv gir tallet. For eks. er 1 4 osv. 1, fordi , fordi Vi regner videre ( ) ( ) 4?

26 Steg 1: ( ) (like fortegn gir pluss) ( ) ( ) 4? Steg : Like fortegn gir pluss Ulike fortegn gir pluss Se ovenfor Vi setter inn de beregnede verdiene: 1 ( ) ( ) Pluss-minustegnet, ±, betr at andregradslikningen har to løsninger. Den ene løsningen får du ved å bruke +, og den andre løsningen får du ved å bruke -.

27 6 Forkorting 1 ) min 1 ( ) ( og til beregnet er Løsningene ustegnet brukt plusstegnet brukt Formuleringen beregnet til tder på at vi må teste løsningene ved å sette disse inn i den opprinnelige likningen (en av gangen). Vi setter inn først. Husk: X er en boks. Prøve venstre side av likningen (høre side er lik null): gir i renskrevet form:? Ledd 1: 4, Et helt tall kan omformes til en brøk ved å sette 1 i nevneren. Slik: 1 Brøker multipliseres sammen ved å gange teller med teller og nevner med nevner

28 7 Ledd :? 1 Denne treeren må omformes til en brøk ved å gange brøken oppe og nede 1 med. Se under! Setter denne opp på ntt under , Denne treeren må omformes til en brøk ved å gange brøken oppe og nede 1 med. Brøker med like nevnere kan trekkes sammen, ved å beholde nevneren og trekke tellerne sammen Ved å legge sammen ledd 1 og ledd får vi endelig svar på om andregradslikningen, 0, blir null ved å putte inn løsningen. Ledd 1 + Ledd = 4, 4, = 0 Hvilket vi skulle vise.

29 8 Den andre løsningen = 1 gir ved innsetting i : Begge - løsningene passet. Hvilket vi skulle vise. Eksempel: Strekning er lik fart ganger tid. Dette kan skrives som en formel: s v t strekning fart tid hvor s = strekningen, v = farten og t = tiden. Likningen inneholder tre variabler (tenk bokser eller bokstaver), som vi kan finne med en hjelpepramide (med mindre du løser likningen i hodet). s v t Vi skal finne strekningen s: Du holder fingeren over s (boksen på toppen). Det som da sns er v t. Dvs. at s v t strekning er lik fart (hastighet) ganger tid

30 9 s v t Vi skal finne farten v: Du holder fingeren over v (boksen til venstre). Det som da sns er t s. Dvs. at v s t fart er strekning (lengde) delt på tid Vi skal finne tiden t: Du holder fingeren over t (boksen til høre). Det som da sns er v s. Dvs. at t s v tid er strekning (lengde) delt på fart

31 Eksempel: 0 Hvis en bil kjører i to timer og 1 minutter, dvs. t = h1min, og farten er 90 km/h (90km i timen), hvor langt har bilen kjørt? Vi må først gjøre om minutter til timer. Vi gjør 1 min om til timer: Den vanlige benevningen på timer er h (engelsk: hour): 1 time = 1h Vi er smarte og stkker 1time som er 60min i 60 biter: 1min min min 4min min Krmpet del 7min 8min 9min 60min min h 1min må da være 1 ganger h 1min h min h h h 0, h faktoriseres i 1 ganger 4, og 1 forkortes

32 1 Bilen kjører altså i t = h + 0,h =,h og farten er km v 90 h s v t Hold fingern over s for å finne strekningen (se pramide ovenfor). Det gir: s v t km 90,h h Strekningen blir da: km s v t 90,h 0, km h Benevningen stemmer, fordi: km h h km h h km Eksempel: Hvor lang tid bruker en bil på å kjøre 9mil med en fart på 100km/h? s v t

33 Vi skal finne tiden t: Du holder fingeren over t (boksen til høre). Det som da sns er v s. Dvs. at t s v tid er strekning (lengde) delt på fart Vi har at tiden blir: Siden 1mil = 10km, vil 9mil være 90km h = 1time = 60min t s v 90km 100km/ h 0,9h 0,9 60min 4min Forklaring på benevningen får du under Benevningen ovenfor, 90km 100km/ h, skal vi se nærmere på: km km h km h km h h km h km h h km h km h Vi må få bort nevneren h i den lille brøken under den store hovedbrøken. Det gjør vi ved å gange med h oppe og nede på hovedbrøken.

34 Eksempel: Hva er farten til en bil som 4min på 10mil? Vi skal finne farten v: Du holder fingeren over v (boksen til venstre). Det som da sns er t s. Dvs. at v s t fart er strekning (lengde) delt på tid 1mil er lik 10km, derfor er 10mil = 100km Vi får at farten blir v s 100km 1,km h t 0,7h / 4min time 0, 7h 4 1 Opplsning: I en likning hvor ikke har høere eksponent enn 1 ( ), kalles en første gradslikning eller en lineær likning (grafen til likningen gir en rett linje i et koordinatsstem).

35 Eksempel: Førstegradslikning X er av første grad: X er av. grad: Kommentar: En andregradslikning inneholder bokstavledd av tpen 4, hvor eksponenten er lik. For eks. vil 9 7 0, være en andregradslikning. Oppgave: Hvilke av følgende likninger er lineære likninger? a) b) 7 8 c) 6 Fasit: a) og c) er lineære likninger. Opplsning: Lineære likninger kan vi løse med fltteregelen, deleregelen og gangeregelen: Fltteregelen: Du kan fltte et ledd fra en side til den andre i en likning, bare du skifter fortegn på leddet. Deleregelen: Du kan dele alle ledd i en likning med samme tall. Gangeregelen: Du kan gange alle ledd i en likning med samme tall.

36 Eksempel: -ledd -ledd 4 konstantleddledd Fltteregelen: I likningen ovenfor samler vi alle -leddene på venstre siden og konstantleddet på høre siden. Først fltter vi -leddet fra høre siden over til venstre siden av likhetstegnet, samtidig som vi skifter fortegn. 4 Her ser vi at har skiftet fortegn til - Resultatet av flttingen av blir: 4 0 Neste steg er å fltte konstantleddet -4 over til høre siden av likhetstegnet, og samtidig skifte fortegn fra -4 til pluss 4, dvs Her ser vi at -4 har skiftet fortegn til +4

37 6 Resultatet av flttingen av -4 blir: 4 På venstre side kan vi btte rekkefølge på -leddene, slik: (= ) Resultatet blir: Vi trekker sammen og får: Vi er interessert i, ikke. Derfor må vi bruke deleregelen: Vi deler begge sider av likhetstegnet med Da får vi: 4 Likningen har løsningen =, fordi 4 delt på er lik :

38 7 Kommentar: Det betr at hvis vi erstatter (tenk på bokstaver som tomme bokser som kan flles med tall) med verdien, vil begge sidene i likningen 4, bli like på ordentlig. Vi skal ta det grundig senere. Men litt kjapt ser vi: Venstre side av likningen blir ved innsetting av = : Høre side av likningen blir ved innsetting av = : Prøven viser at = er den riktige løsningen for likningen 4. Eksempel: I likningen nedenfor har vi nevneren som vi må kvitte oss med først. Det gjør vi ved å bruke gangeregelen. Vi ganger alle ledd i likningen med nevneren : 4 Alle ledd må ganges med (= nevneren) 4 Her ser vi at alle ledd er ganget med

39 8 I første ledd ovenfor skal ganges med en brøk. Totallet ganges rett inn i telleren. 8 4 Nå er vi kvitt nevneren (som var poenget) Resultatet blir dermed: 8 4 Etter å ha flttet 8 over på høre siden og skiftet fortegnet til pluss, får vi: 4 8 Etter å ha flttet 4 over på venstre siden og skiftet fortegnet til minus, får vi: 4 8 Vi trekker leddene 4 sammen og får (du har tre kroner og sklder 4, dvs. en saldo på -1 krone): 8

40 9 For å bli kvitt minustegnet, kunne vi ha ganget med (-1) på begge sider og av den grunn skiftet fortegn på - til. Men for å demonstrere deleregelen, vil vi dele med -1 på begge sider, selv om det virker tungvint her. For det er lett å skjønne med et blikk at må være lik -8. kan også skrives som -1 ganger 1-1 faktoren kommer vi til å forkorte i likningen, som vi skal se nedenfor. 1 8 Deleregelen: Vi deler begge sider av likningen med faktoren (-1) ( 1) ( 1) 8 ( 1) Nå har vi delt begge sider av likningen med faktoren (-1) ( 1) ( 1) 8 ( 1) Vi forkorter faktoren (-1) for å få 1 (= ). Husk at et tall delt på seg selv er lik 1

41 40 8 ( 1) Høre side av likhetstegnet 8 ( 1), er en skurk vi må se nærmere på. Hvorfor er 8 1 lik 8??? Dette skal vi gå nærmere inn på nedenfor. For å se at 8 blir 8 1, kan vi gange brøken oppe og nede med (-1): Fortegnsregel: Ulike fortegn gir minus Fortegnsregel: Like fortegn gir pluss

42 41 Vi får videre Likningen 4 har løsningen 8 (fordi -8 delt på 1 er lik -8) Eksempel: Løs likningen under og sett prøve. ( 1) 7 4 Det står minus foran parentesen, vi løser den opp ved å skifte fortegn inni. Leddene inni parentesen blir da: 1 Status på den ne likningen blir: Vi samler -leddene på venstre side og konstantene på høre ved å bruke fltte regelen

43 4 Etter flttingen av 4 får vi (vi legger også sammen 1+7 = 8): 4 8 N status: 4 8 Etter flttingen av 8 får vi: 4 8 Venstre siden av likningen: Vi tenker at minus 4 ligger 4 enheter til venstre for null på den vanlige tallinja. Forflttning av enda enheter mot venstre gir oss en posisjon 6 enheter til venstre for null. Det vil si posisjonen blir i dette tilfellet -6. Høre siden av likningen: Samme tpe resonnement gir oss -10. N likningsstatus: 6 10 Her bruker vi deleregelen for å bli kvitt -6. Det vil si at vi deler med -6 på begge sider av likningen

44 4 Etter forkortingen av -6 får vi: 10 6 Minustegnene kan settes i parentes, slik at det blir lett å forkorte: Etter forkortingen faktoriserer vi 10 og 6 og forkorter deretter : Altså vi finner at -verdien blir fem tredeler: Kommentar: Vi må sjekke om dette er den riktige verdien. Vi setter prøve. Det vil si at vi regner ut venstre og høre siden av den opprinnelige likningen hver for seg, ved å putte fem tredeler inn i -boksene ( er en tom boks). Hvis vi får samme svaret (verdi) for begge sidene, er alt i boks. Da gjør vi det.

45 44 Vi setter den opprinnelige likningen opp på ntt: ( 1) 7 4 Vi btter med en ordentlig boks. Prøve venstre side: gir ( 1) Totallet ganger vi rett inn i telleren Dette gir oss: 1 7 Det er minus foran parentesen. Vi skifter fortegn inni. To ganger fem er lik ti Vi får da En pluss sv er lik åtte

46 4 Vi må utvide 8 til en brøk med nevner ved å gange oppe og nede med (husk at et tall delt på en er lik tallet selv): Brøker med samme nevner kan trekkes sammen ved å beholde nevneren og trekke sammen tellerne. Husk at en ganger tre er lik tre. Vi trekker brøkene sammen: Vi har beholdt nevneren. Minus 10 pluss 4 er lik Venstre siden = Prøve høre side: ( 1) 7 4

47 46 gir må ganges rett inn i telleren må utvides til en brøk med som nevner. Det gjør vi ved å gange brøken 1 oppe og nede med. Deretter trekkes tellerne sammen. Dvs. 0-6=14 (nevneren beholdes) 14 Prøven er i orden, siden begge sider ble lik (se resultat av prøven for venstre - og høresiden ovenfor).

48 47 Eksempel: En husstand brukte et år kwh (kilowattimer, h = hour = time) i elektrisk energi. Det faste beløpet per år var på kr 000 per år pluss en energipris på øre per kilowattime (i 1991). a) Regn ut strømutgiftene til denne husstanden dette året. b) Sett opp en likning som viser sammenhengen mellom forbruket, antall kwh =, og strømutgiftene, antall kr i året =. Dvs. finn en formel for uttrkt ved det variable forbruket og de faste kostnadene. c) Finn en formel for det variable forbruket uttrkt ved antall kr. d) Regn ut forbruket hvis utgiftene et år er kr e) Lag en formel som viser de samlede utgiftene z per kwh for et år. f) Regn ut de samlete utgiftene per kwh, hvis forbruket er kwh. Løsning: a) Regn ut strømutgiftene til denne husstanden dette året. øre per kilowattime kan skrives slik øre kwh Utregning av utgiftene ved et forbruk på kwh: øre kwh kr000 kwh Prisen ganger strømforbruket Fast utgift per år Benevningen kwh i venstre ledd kan forkortes (fordi 1000kwh tilhører telleren, se under).

49 48 Altså utgiftene ved et forbruk på kwh blir: øre 100 kwh kr000 kr0,100 kr000 kr70 kwh øre kan gjøres om til kr 0, Svaret får da den riktige benevningen kr. Svar på a): Strøm utgiftene dette året blir: kr 70 b) Sett opp en likning som viser sammenhengen mellom forbruket, antall kwh =, og strømutgiftene, antall kr i året =. Dvs. finn en formel for uttrkt ved det variable forbruket og de faste kostnadene. En slik likning finner vi ved å se på utregningen ovenfor (vi snur rekkefølgen på leddene): antall kwh = (her: 1000) antall kr i året = (her: 70) 70 0, , Vi erstatter konstanten 70 med variabelen, og konstanten 1000 med variabelen. Variabelen kalles en avhengig variabel og for en fri variabel. Dvs. at når

50 49 forbruket (målt i antall kwh = ) varierer, så vil strømutgiftene (målt i antall kr i året = ) også variere. Svar: 0, som er likningen vi skulle finne. a) Vi må finne av likningen 0, 000, fltter 000 over på venstre side og skifter fortegn ,, deler begge sider med 0, for å bli kvitt 0, på høre side , 0, 0,, vi forkorter lik faktor i teller og nevner 0, på høre side. Svar: 000 0, (formel for det variable forbruket uttrkt ved strømutgiftene ). d) Utgiftene et år er = kr For å finne forbruket, må vi erstatte i formelen med I stedet for kan vi sette en boks , , , Svar: Forbruket er 000 kwh, hvis utgiftene et år er kr e) De samlede utgiftene z per kwh for et år, får vi ved å dele de samlede utgiftene (antall kr) med forbruket (antall kwh): 0, 000 skal altså deles med. Da får vi

51 0 z 0, 000 0, , Formelen for z blir altså Svar: z 000 0, f) De samlede utgiftene per kwh når forbruket er = kwh, blir: -verdien skal inn i boksen under (vi har erstattet med en boks i formelen) z 0, vi får at z 0, 0, 0, Svar: de samlede utgiftene per kwh blir: 0,kr/kWh Oppgave: Løs likningen og sett prøve: 19 Fasit: ( 10) 9 4 Oppgave: Løs likningen og sett prøve: + 1 = 4. Fasit: = 1 Eksempel: Løs likningen og sett prøve. ( 4) (1 ) 1 ( )

52 1 Vi bruker gangemetoden for å fjerne nevnerne. Vi må gange alle ledd i likningen med minste felles nevner (MFN). Denne finner vi på følgende måte: MFN 6 Kommentar: Nevnerne står faktorisert på hver sin linje, slik at flest mulig like faktorer står under hverandre. Faktorene i MFN tilsvarer sølene som fremkommer (her 4 stk.). Vi må altså gange hvert ledd med 6, og ganger 6 rett inn i tellerene. ( 4) 6 (1 ) 6 16 ( ) Siden 6: = 18, 6:1 =, 6:6 = 6 og 6:18=, får vi at ( 4 ) 18 (1 ) 16 ( ) Vi ganger tallene inn i parentesene ved å gange de med hvert av leddene inni (1 ) 6 Vi ganger ut og fjerner parentesen ved å skifte fortegn inni (minus foran parentesen) Nå fltter vi alle -ledd over på venstre side av likhetstegnet (og skifter fortegn). Konstantene fltter vi over på høre side (og skifter fortegn). Vi får da = = - Så bruker vi deleregelen og deler begge sider med (-6). ( 6) ( 1) ( 6) ( 1) 6 S var : 6

53 Vi setter prøve. Venstre side: , , Begge sider ble like etter innsetting og utregning med kalkulator. Det bekrefter at vi har funnet riktig -verdi. Oppgave: Løs likningen og sett prøve. ( ) Fasit: Opplsning: To størrelser og er proporsjonale dersom en dobling av den ene fører til en dobling av den andre, en tredobling av den ene fører til en tredobling av den andre, osv. Det er det samme som å si at forholdet mellom og er konstant. For eks. 10. Eksempel: En kilo epler koster kr 10,-. Vi kan sette opp følgende: 1kg koster kr10 kg koster kr0 (antall kg er doblet og prisen er doblet) kg koster kr0 (antall kg er tredoblet og prisen er tredoblet) 4kg koster kr40 (antall kg er firedoblet og prisen er firedoblet) osv. Vi kan finne en formel (likning) for denne proporsjonaliteten. Vi setter at = prisen for kg epler = antall kg epler

54 prisen for kgepler pris per kg antall epler 10 Renskriver vi dette, får vi likningen for proporsjonaliteten: 10 Hvis vi lager en tabell mellom og kan vi plotte verdiene som punkter i et koordinatsstem For eks. = gir at (husk at en bokstav er en boks ) Se grafisk fremstilling under. Punktene (0, 0), (1, 10), (, 0), (, 0), (4, 40) er markert på grafen (den rette linjen).

55 4 Som vi kan se blir grafen en rett linje som går gjennom origo. Opplsning: Hvis to størrelser og er proporsjonale, vil vi kunne skrive den ene som et fast tall (konstant) multiplisert med den andre. k (k= konstant, for eks. k = 10) Og grafen til likningen (funksjonen) blir en rett linje gjennom origo (0,0). Eksempel: Strømprisen () og antall kwh (kilowatt timer) () er ikke proporsjonale, fordi strømprisen ikke bare er avhenging av antall kwh. I tillegg kommer det også en fastpris som ødelegger opplegget. Hvis pris per kwh er kr 0,8 og fastprisen en periode er kr 00, vil strømprisen kunne skrives som følgende likning: 0,8 00

56 Om vi dobler, så vil ikke fastprisen 00 dobles, og dermed ikke strømprisen. Grafen blir en rett linje, men den går ikke gjennom origo. Den skjærer -aksen i 00. Vi lager en tabell med tre punkter for å tegne grafen Husk at vi bare er interessert i -verdier større eller lik null i dette tilfellet. Oppgave: I en opphengt fjør kan vi henge kan vi henge lodd med ulik vekt ( gram), og så måle forlengelsen av fjøra ( mm). Seks målinger er gjengitt i tabellen nedenfor. Tegn punktene i et passende koordinatsstem og avgjør om og er proporsjonale størrelser (den rette linja bør gå gjennom origo). Finn en formel (likning) hvor er uttrkt med. i gram i mm Fasit: og er prop.,.

57 6 Oppgave: Tegn de rette linjene nedenfor i et koordinatsstem. Avgjør i hvilke likninger og er proporsjonale størrelser. og Fasit: I den siste likningen er og proporsjonale. Opplsning: To størrelser og er omvendt proporsjonale dersom en dobling av den ene fører til en halvering av den andre, en tredobling av den ene fører til en tredling av den andre, osv. Det er det samme som å si at produktet av og er konstant. For eks Eksempel: En oljetank på 000 liter varer i 10 dager med et forbruk på 0 liter per dag. Med et forbruk på 40 liter per dag varer den 7 dager. Dvs en halvering av fringstiden ved en fordobling av forbruket per dag. Nedenfor er det gjengitt en tabell som viser fringstiden avhengig av forbruket per dag. Forbruk per dag i l () Fringstid i dager () Det er tdelig at og er omvendt proporsjonale av hverandre. Produktet av og er også konstant, dvs. 000 Hvis vi deler begge sider i likningen med får vi et utrkk for fringstiden () avhengig av forbruket per dag (). 000 Vi forkorter med på venstre side av likhetstegnet og får et uttrkk for fringstiden: 000 ( generelt har viat k, der k er en kons tant) Vi tegner grafen til funksjonen.

58 7 Vi er bare interessert i -verdier som er større null (dvs. grafen over -aksen som ligger i første kvadrant). Oppgave: Undersøk om følgende måleverdier av og er omvendt proporsjonale ,40 0, 0,7 0, 0,0 Fasit: og er omv.prop. Opplsning: Regning med prisindeks er en form for prosentregning, slik at prisene på enkeltvarer i et bestemt år blir sammenliknet med prisene i et såkalt basisår (vanligvis 1979). Prisindeksen for basisåret settes lik 100.

59 8 Eksempel: En vare kostet i 1979 kr 4. Den samme varen kostet i 1998 kr 19. Hva er prisindeksen for akkurat den varen i 1998? Løsning: År Pris Indeks ,4 Forholdstallet mellom 19 og 4 (merk rekkefølgen) er lik 19,74,74 1,74 100% 7,4% 4 Prisen i 1998 er altså over to og en halv gang så hø som i 1979 (19 er 7,4% av 4). Forholdstallet mellom de tilsvarende prisindeksene er lik 7,4,74 7,4% 100 Svar: Prisindeksen for varen i 1998 er 7,4. Opplsning: Forholdet mellom prisindeksene er lik forholdet mellom prisene uansett hvilke år vi sammenlikner. Eksempel: Varen i eksempelet ovenfor hadde i 198 prisindeksen 164,8. Hva kostet den i 198? År Pris Indeks , ,4 Løsning: Vi bruker opplsningen rett ovenfor ,8 7,4 eller 19 7,4 164,8 Den første likningen er lettest å løse. Vi ganger begge sider i likningen med 19.

60 9 Svar: Varen kostet i 198 kr , ,99 7,4 Opplsning: Konsumprisindeksen (levekostnadsindeksen) gjelder ikke for enkeltvarer, men for et visst utvalg av ca. 770 alminnelige varer og tjenester. Konsumprisindeksen forteller oss hvor drt det er å leve sammenliknet med basisåret. Konsumprisindeksen i 1979 settes lik 100 indekspoeng. Eksempel: Hvis konsumprisindeksen er 70 indekspoeng i dag, vil prisnivået på alminnelige varer og tjenester være,7 ganger så høt som basisåret Regningen med konsumprisindeks er den samme som for prisindeksen for enkeltvarer. Opplsning: Ved å sammenlikne konsumprisindeksene for ulike år, kan vi få et mål på hvor me en krone et år er i forhold til en krone et annet år. Eksempel: Konsumprisindeksen i 1981 var 16,0 og i 1996 var den 6,. Dette betr at 16 kroner i 1981 hadde samme kjøpekraft som 6, kroner i Kroneverdien er omtrent halvert fra 1981 til 1996 (inflasjon). For å opprettholde levestandarden bør lønningene være dobbelt så store i 1996 som i Dette kan kort uttrkkes 16 kr 1981 = 6, kr 1996 Vi kan nå regne ut hvor me en 1981 krone er i 1996 kroner, eller hvor me en 1996 krone er i 1981 kroner, henholdsvis å dele begge sider med 16,0 eller 6,: 1kr , 1kr ,09 kr kr kr 6, ,48kr 1981 Opplsning: Når vi går via 1kr slik som ovenfor, kan vi deflatere lønna (nominell lønn) vår i et bestemt år til et annet år.

61 60 Eksempel: Arild tjente kr i 1981 og kr i Konsumprisindeksen var 16 i 1981 og 6, i 1996 (se ovenfor). Finn lønningen hans uttrkt i 1981 kroner (dvs. deflatere lønningen hans til 1981). Løsning: Vi skal bruke resultatet fra forrige eksempel. Dvs. 1kr 1996 = 0,48kr kr kr ,48kr kr1981 Som vi ser, hadde ikke levestandarden forandret seg særlig i forhold til 1981 (han tjente da kr ). Opplsning: Hvis vi deflaterer lønna et bestemt år (nominell lønn) til basisåret blir den deflaterte lønna kalt reallønn. Eksempel: Hva var reallønna til Arild i 1996? Løsning: For å finne reallønna i 1996 må vi sammenlikne konsumprisindeksen i 1996 med den i basisåret Vi må finne 1996 kroner uttrkt i 1979 kroner (se ovenfor). 6,kr kr kr1979 1kr1996 0,798kr 6, 4 000kr kr (deler med 6, på begge sider) ,798kr kr 1979 Svar: Arilds reallønn i 1996 var kr 9 01 (underforstått at det er basiskroner, dvs kroner det er snakk om). Oppgave: En vare kostet kr 0 i år 00. Hvor me kostet den i år 00, når indeksene er som i tabellen under? Opplsning: 1kr for et år uttrkt i 1979 kroner kalles kroneverdien i det året. For eksempel var kroneverdien i 1996 lik 0,798 kr 1979 (se eksempel ovenfor). Fasit: kr 414 År Pris Indeks , , Oppgave: Hans tjente kr i Konsumprisindeksen i 1990 var 1,. Hva var reallønna til Hans. Fasit: Reallønna til Hans er kr 616 (1979 kroner).

Tallregning og algebra

Tallregning og algebra 30 Tallregning og algebra Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

ARBEIDSHEFTE I MATEMATIKK

ARBEIDSHEFTE I MATEMATIKK ARBEIDSHEFTE I MATEMATIKK Temahefte nr Hvordan du regner med brøk Detaljerte forklaringer Av Matthias Lorentzen mattegrisenforlag.com Opplysning: Et helt tall er delelig på et annet helt tall hvis svaret

Detaljer

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B SAMMENDRAG OG FORMLER Nye Mega 9A og 9B 1 Sammendrag og formler Nye Mega 9A Kapittel A GEOMETRI Regulære mangekanter Når alle sidene er like lange og alle vinklene er like store i en mangekant, sier vi

Detaljer

Eksamen MAT 1011 Matematikk 1P Høsten 2013

Eksamen MAT 1011 Matematikk 1P Høsten 2013 Eksamen MAT 1011 Matematikk 1P Høsten 01 Oppgave 1 (1 poeng) Per har lest 150 sider i en bok. Dette er 0 % av sidene i boka. Hvor mange sider er det i boka? Går «veien om 1»: 150 1% 5 0 100% 5 100 500

Detaljer

4 Funksjoner og andregradsuttrykk

4 Funksjoner og andregradsuttrykk 4 Funksjoner og andregradsuttrkk KATEGORI 1 4.1 Funksjonsbegrepet Oppgave 4.110 Regn ut f (0), f () og f (4) når a) f () = + b) f () = 4 c) f () = + 5 d) f () = 3 3 Oppgave 4.111 f() = + + 1 4 3 1 0 1

Detaljer

Regning med tall og bokstaver

Regning med tall og bokstaver Regning med tall og bokstaver M L N r du har lest dette kapitlet, skal du kunne ^ bruke reglene for br kregning ^ trekke sammen, faktorisere og forenkle bokstavuttrykk ^ regne med potenser ^ l se likninger

Detaljer

Tema. Beskrivelse. Husk!

Tema. Beskrivelse. Husk! Dette er ment som en hjelpeoversikt når du bruker boka til å repetisjon. Bruk Sammendrag etter hvert kapittel som hjelp. Verktøykassen fra side 272 i boka er og til stor hjelp for repetisjon til terminprøve.

Detaljer

Oversikt over aktuelle temaer til matematikkprøve onsdag 28. november

Oversikt over aktuelle temaer til matematikkprøve onsdag 28. november Oversikt over aktuelle temaer til matematikkprøve onsdag 28. november 1. Algebra 1.1 Innsetting av tallverdier i bokstavuttrykk Eksempel 1: Sett inn a = 2 og regn ut verdien til uttrykket 4a 3 4a 3 = 4

Detaljer

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform 1 10 Tall og tallregning Studentene skal kunne gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall definere og benytte de anerkjente skrivemåtene for åpne, halvåpne og lukkede intervaller

Detaljer

1.1 Tall- og bokstavregning, parenteser

1.1 Tall- og bokstavregning, parenteser MATEMATIKK: 1 Algebra 1 Algebra 1.1 Tall- og bokstavregning, parenteser Matematikk er et morsomt fag hvis vi får det til. Som på de fleste områder er det er morsomt og givende når vi lykkes. Skal en f.eks.

Detaljer

Tall og enheter. Mål. for opplæringen er at eleven skal kunne

Tall og enheter. Mål. for opplæringen er at eleven skal kunne 8 1 Tall og enheter Mål for opplæringen er at eleven skal kunne anslå svar, regne med og uten tekniske hjelpemidler i praktiske oppgaver og vurdere rimeligheten av resultatene 1.1 Regnerekkefølge På ungdomsskolen

Detaljer

Heldagsprøve i matematikk. Svar og løsningsforslag

Heldagsprøve i matematikk. Svar og løsningsforslag Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være

Detaljer

Eksamen MAT 1011 Matematikk 1P Høsten 2014

Eksamen MAT 1011 Matematikk 1P Høsten 2014 Eksamen MAT 1011 Matematikk 1P Høsten 2014 Oppgave 1 (2 poeng) Diagrammet ovenfor viser hvor mange bøker en forfatter har solgt hvert år de fire siste årene. Når var den prosentvise økningen i salget fra

Detaljer

Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold

Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold 1 Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold 1 Regning med positive og negative tall 2 Regnerekkefølge og parenteser 3 Potenser 4 Algebra 5 Brøkregning 6 Ligninger 7 Ulikheter

Detaljer

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at Ekstranotat, 7 august 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser og brøker... Funksjoner...3 Tilvekstform (differensialregning)...4 Telleregelen...7 70-regelen...8

Detaljer

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015 Ekstranotat, februar 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser, brøk og potenser... Funksjoner...4 Tilvekstform (differensialregning)...5 Nyttige tilnærminger...8

Detaljer

Tempoplan: Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 4: Algebra

Tempoplan: Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 4: Algebra Tempoplan: Kapittel 5: /1 1/. Kapittel 6: 1/ 1/. Kapittel 7: 1/ 1/4. Resten av tida repetisjon og prøver. 4: Algebra Algebra omfatter tall- og bokstavregninga i matematikken. Et viktig grunnlag for dette

Detaljer

SAMMENDRAG OG FORMLER. Nye Mega 10A og 10B

SAMMENDRAG OG FORMLER. Nye Mega 10A og 10B SAMMENDRAG OG FORMLER Nye Mega 10A og 10B 1 Sammendrag og formler Nye Mega 10A Kapittel A GEOMETRI Oversikt over vinkelkonstruksjoner 90 45 60 30 120 135 67 1 2 75 Den pytagoreiske læresetningen I en rettvinklet

Detaljer

Mer om likninger og ulikheter

Mer om likninger og ulikheter Mer om likninger og ulikheter Studentene skal kunne utføre polynomdivisjon anvende nullpunktsetningen og polynomdivisjon til faktorisering av polynomer benytte polynomdivisjon til å løse likninger av høyere

Detaljer

Forberedelseskurs i matematikk

Forberedelseskurs i matematikk Forberedelseskurs i matematikk Formålet med kurset er å friske opp matematikkunnskapene før et år med realfag. Temaene for kurset er grunnleggende algebra med regneregler, regnerekkefølgen, brøk, ligninger

Detaljer

Tall og formler MÅL. for opplæringen er at eleven skal kunne

Tall og formler MÅL. for opplæringen er at eleven skal kunne 8 1 Tall og formler MÅL for opplæringen er at eleven skal kunne anslå svar, regne med og uten tekniske hjelpemidler i praktiske oppgaver og vurdere rimeligheten av resultatene tolke, bearbeide, vurdere

Detaljer

SAMMENDRAG OG FORMLER

SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER Nye Mega 8A Kapittel A GEOMETRI LINJE, LINJESTYKKE OG STRÅLE linje stråle linjestykke VINKLER VINKELBEIN OG TOPPUNKT En vinkel har et toppunkt. Denne vinkelen

Detaljer

Terminprøve i matematikk for 10. trinn

Terminprøve i matematikk for 10. trinn Terminprøve i matematikk for 10. trinn Høsten 2006 bokmål Til noen av oppgavene skal du bruke opplysninger fra informasjonsheftet. Disse oppgavene er merket med dette symbolet: Navn: DELPRØVE 1 Maks. poengsum:

Detaljer

Geometri. Mål. for opplæringen er at eleven skal kunne

Geometri. Mål. for opplæringen er at eleven skal kunne 8 1 Geometri Mål for opplæringen er at eleven skal kunne bruke geometri i planet til å analysere og løse sammensatte teoretiske og praktiske problemer knyttet til lengder, vinkler og areal 1.1 Vinkelsummen

Detaljer

Tallinjen FRA A TIL Å

Tallinjen FRA A TIL Å Tallinjen FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til tallinjen T - 2 2 Grunnleggende om tallinjen T - 2 3 Hvordan vi kan bruke en tallinje T - 4 3.1 Tallinjen

Detaljer

Kapittel 5. Lengder og areal

Kapittel 5. Lengder og areal Kapittel 5. Lengder og areal Dette kapitlet handler om å: Beregne sider i rettvinklede trekanter med Pytagoras setning. Beregne omkrets av trekanter, firkanter og sirkler. Beregne areal av enkle figurer,

Detaljer

Terminprøve i matematikk for 9. trinn

Terminprøve i matematikk for 9. trinn Terminprøve i matematikk for 9. trinn Våren 2006 bokmål Til noen av oppgavene skal du bruke opplysninger fra informasjonsheftet. Disse oppgavene er merket med dette symbolet: Navn: DELPRØVE 1 Maks. poengsum:

Detaljer

Oppgavesett med fasit

Oppgavesett med fasit TIL ENT3R ELEVENE Oppgavesett med fasit Tommy Odland Sist oppdatert: 1. november 2013 http://is.gd/ent3rknarvik http://tommyodland.com/ent3r 1 INNHOLD 1 Om dette dokumentet 3 1.1 Formål og oppbygging..................................

Detaljer

Kapittel 2. Algebra. Kapittel 2. Algebra Side 29

Kapittel 2. Algebra. Kapittel 2. Algebra Side 29 Kapittel. Algebra Algebra kalles populært for bokstavregning. Det er ikke mye algebra i Matematikk P-Y. Det viktigste er å kunne løse enkle likninger og regne med formler. Kapittel. Algebra Side 9 1. Forenkling

Detaljer

Løsning del 1 utrinn Høst 13

Løsning del 1 utrinn Høst 13 //06 Løsning del utrinn Høst - matematikk.net Løsning del utrinn Høst Contents DEL EN Oppgave + 679 = 0 89 78 = 8 c) 7,, 6 = 6, 6 d) : 0, = 0 : = 80 Oppgave 78 dl = 7,8 L, mil = kilometer = 000 m c), t

Detaljer

Løsning del 1 utrinn Vår 10

Løsning del 1 utrinn Vår 10 /15/016 Løsning del 1 utrinn Vår 10 - matematikk.net Løsning del 1 utrinn Vår 10 Contents Oppgave 1 4 + 465 = 799 854 8 = 56 c) d) 64 :4 = 66 Oppgave c) d)650 g = 650 : 1000 kg = 6,50kg Oppgave 4, 7 =

Detaljer

En konstant er et symbol med en fast verdi. 2 og er eksempler pô konstanter.

En konstant er et symbol med en fast verdi. 2 og er eksempler pô konstanter. Algebra Variabel Konstant trekke sammen Algebra er bokstavregning. Det er et verktöy som forenkler regneoperasjonene i forskjellige omrôder av matematikken. Bokstavene er symboler for tall og skal behandles

Detaljer

Eksamen MAT1011 1P, Våren 2012

Eksamen MAT1011 1P, Våren 2012 Eksamen MAT1011 1P, Våren 2012 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (18 poeng) a) 14,90 kroner per flaske 48,20 kroner

Detaljer

2 Likninger. 2.1 Førstegradslikninger med én ukjent

2 Likninger. 2.1 Førstegradslikninger med én ukjent MATEMATIKK: 2 Likninger 2 Likninger 2.1 Førstegradslikninger med én ukjent Ulike problemer kan løses på ulike måter. I den gamle folkeskolen brukte man delingsregning ved løsning av enkelte oppgaver. Eksempel

Detaljer

INNHOLD SAMMENDRAG ALGEBRA OG FUNKSJONER

INNHOLD SAMMENDRAG ALGEBRA OG FUNKSJONER INNHOLD ALGEBRA OG FUNKSJONER... PARENTESER... USYNLIGE PARENTESER... USYNLIGE MULTIPLIKASJONSTEGN... DE TI GRUNNLEGGENDE ALGEBRAISKE LOVENE... REGNEUTTRYKK INNSATT FOR VARIABLER... 3 SETTE OPP FORMLER...

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Skriv som prosent a) 0,451 b) 5 25 Oppgave 2 (2 poeng) a) Forklar at de to trekantene ovenfor er formlike. b) Bestem lengden av siden BC ved regning. Eksamen

Detaljer

1P eksamen høsten Løsningsforslag

1P eksamen høsten Løsningsforslag 1P eksamen høsten 2017 - Løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) En vare koster 640 kroner. Butikkeieren

Detaljer

8 Likninger med to ukjente rette linjer

8 Likninger med to ukjente rette linjer 8 Likninger med to ukjente rette linjer 8. Likninger med to ukjente Per vil teste kameratens matematiske kunnskaper. Han forteller at han har ni mnter med en samlet verdi på 40 kroner i lommeboken sin.

Detaljer

Niels Henrik Abels matematikkonkurranse 2013 2014. Løsninger

Niels Henrik Abels matematikkonkurranse 2013 2014. Løsninger Niels Henrik Abels matematikkonkurranse 0 04. Løsninger Første runde 7. november 0 Oppgave. Siden er et primtall, vil bare potenser av gå opp i 0. Altså,,,,..., 0 i alt tall........................................

Detaljer

3 Formler, likninger og ulikheter

3 Formler, likninger og ulikheter Formler, likninger og ulikheter KATEGORI 1.1 Likninger Oppgave.110 4 + 4x = x + 8 5x 6 = 4x 5 1 x = x + 1 d) x = x 5 Oppgave.111 x + x = x 4 5x = x 14 x 1 = 4x + 4 d) x + x = 0 Oppgave.11 x = 4x 10 x 8

Detaljer

Bokmål. Eksamensinformasjon

Bokmål. Eksamensinformasjon Eksamen 27052010 REA022 Matematikk R1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del 2: Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer: Del

Detaljer

ARBEIDSHEFTE I MATEMATIKK

ARBEIDSHEFTE I MATEMATIKK ARBEIDSHEFTE I MATEMATIKK Temahefte r Hvorda du reger med poteser Detaljerte forklariger Av Matthias Loretze mattegriseforlag.com Opplsig: E potes er e forkortet skrivemåte for like faktorer. E potes består

Detaljer

Løsning eksamen 2P våren 2010

Løsning eksamen 2P våren 2010 Løsning eksamen 2P våren 2010 Oppgave 1 a) Prisen for diesel er 10,91 kr. Hvis Liv hadde fylte diesel, hadde prisen for 41,5 l vært mindre enn 11 kr 42 = 462 kr Det stemmer ikke i det hun betalte 509,

Detaljer

Kapittel 4. Algebra. Mål for kapittel 4: Kompetansemål. Mål for opplæringen er at eleven skal kunne

Kapittel 4. Algebra. Mål for kapittel 4: Kompetansemål. Mål for opplæringen er at eleven skal kunne Kapittel 4. Algebra Mål for kapittel 4: Kompetansemål Mål for opplæringen er at eleven skal kunne gjøre overslag over svar, regne praktiske oppgaver, med og uten digitale verktøy, presentere resultatene

Detaljer

Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig

Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig Sensurveiledning Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1 Semester: VÅR År: 2016 Eksamenstype: Skriftlig Oppgave 1 Figuren viser hvordan en nettside forklarer en metode for addisjon og

Detaljer

REGEL 1: Addisjon av identitetselementer

REGEL 1: Addisjon av identitetselementer REGEL 1: Addisjon av identitetselementer Addisjon av identitetselementer a + 0 = a x + 0 = x Et identitetselement (nøytralt element) er et element som ikke medfører noen endring når det kombineres med

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) 1,0 g salt inneholder 0,4 g natrium. Helsemyndighetene anbefaler et inntak av natrium på maksimalt 2,4 g per dag. a) Hvor mange gram salt kan du maksimalt innta

Detaljer

Brøk Vi på vindusrekka

Brøk Vi på vindusrekka Brøk Vi på vindusrekka Brøken... 2 Teller og nevner... 3 Uekte brøk... 5 Blanda tall... 6 Desimalbrøk... 8 Pluss/minus... 9 Multiplikasjon... 11 Likeverdige brøker... 12 Utviding... 13 Forkorting... 14

Detaljer

Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K

Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K ORDINÆR EKSAMEN 11.1.009 Oppgave 1 a) En følge av parallellaksiomet er at samsvarende vinkler ved parallelle linjer er like store.

Detaljer

Kapittel 7. Lengder og areal

Kapittel 7. Lengder og areal Kapittel 7. Lengder og areal Dette kapitlet handler om å: Beregne sider i rettvinklede trekanter med Pytagoras setning. Beregne omkrets av trekanter, firkanter og sirkler. Beregne areal av enkle figurer,

Detaljer

NAVN: INNHOLD. IVAR RICHARD LARSEN/algebra - oppsummering, Side 1 av 18

NAVN: INNHOLD. IVAR RICHARD LARSEN/algebra - oppsummering, Side 1 av 18 NAVN: INNHOLD FORORD... 2 LÆREPLAN... 3 ALGEBRA.... 3 REGNING MED VARIABLER... 3 MONOM... 3 POLYNOM... 3 TREKKE SAMMEN UTTRYKK (addisjon/subtraksjon)... 4 MULTIPLIKASJON... 4 DIVISJON... 4 ADDISJON AV

Detaljer

Oppgaver til julekalenderen 2005 for mellomtrinnet; 5. - 7.trinn

Oppgaver til julekalenderen 2005 for mellomtrinnet; 5. - 7.trinn Oppgaver til julekalenderen 2005 for mellomtrinnet; 5. - 7.trinn Løsningsord for kalenderen er RAKETTBASE PRESIS KLOKKA TO A B C D E F G H I J K L M N O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 P Q R S T U

Detaljer

Matematikk med familien. Lofsrud skole 20.01.2016

Matematikk med familien. Lofsrud skole 20.01.2016 Matematikk med familien Lofsrud skole 20.01.2016 Siv.ing. Magnus Jakobsen Lektor med opprykk, F21 www.lektorjakobsen.no Hanan Abdelrahman Lektor med opprykk, Lofsrud skole www.fb.com/matematikkhjelperen

Detaljer

Høsten 2015 Bokmål. Prøveinformasjon. Prøvetid: Hjelpemidler på Del 1 og Del 2: Framgangsmåte og forklaring: Del 1 (32,5 poeng) Del 2 (29 poeng)

Høsten 2015 Bokmål. Prøveinformasjon. Prøvetid: Hjelpemidler på Del 1 og Del 2: Framgangsmåte og forklaring: Del 1 (32,5 poeng) Del 2 (29 poeng) Høsten 2015 Bokmål Navn: Gruppe: Prøveinformasjon Prøvetid: Hjelpemidler på Del 1 og Del 2: Framgangsmåte og forklaring: 5 timer totalt. Del 1 og Del 2 blir utdelt samtidig. Del 1 skal du levere innen

Detaljer

Telle i kor steg på 120 frå 120

Telle i kor steg på 120 frå 120 Telle i kor steg på 120 frå 120 Erfaringer fra utprøving Erfaringene som er beskrevet i det følgende er gjort med lærere og elever som gjennomfører denne typen aktivitet for første gang. Det var fire erfarne

Detaljer

oppgaver fra abels hjørne i dagbladet

oppgaver fra abels hjørne i dagbladet oppgaver fra abels hjørne i dagbladet sett 9 dag 1 1. Kjetil og Øystein skal kjøre fra Stavanger til Oslo i hver sin bil. Kjetil starter først og holder en konstant fart på 75 km/t. Øystein starter en

Detaljer

Eksamen MAT1013 Matematikk 1T Våren 2012

Eksamen MAT1013 Matematikk 1T Våren 2012 Eksamen MAT1013 Matematikk 1T Våren 01 DEL 1 Uten hjelpemidler Oppgave 1 (18 poeng) a) Regn ut 1) 8 33 10 1 833 8 694 1 ) 1 9 3 3 1 3 3 3 33 3 3 3 6 6 3 3 1 3 6 4 3 3 81 b) Regn ut og skriv svaret på standardform

Detaljer

Matematikk for yrkesfag

Matematikk for yrkesfag John Engeseth Odd Heir BOKMÅL fo re nk Håvard Moe l t e Særtrykk Matematikk for yrkesfag Innhold 1 Tall Vi øver på å legge sammen og trekke fra 4 Regning med positive og negative tall 5 Vi øver på å gange

Detaljer

1P eksamen høsten 2018 løsning

1P eksamen høsten 2018 løsning 1P eksamen høsten 018 løsning DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter timer, del etter 5 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler.

Detaljer

Løsningsforslag eksamen 1T våren 2010 DEL 1. Oppgave 1. a) Funksjonen f er gitt ved f x 2x 3. Tegn grafen og finn nullpunktene for f f x 2x 3 Grafen

Løsningsforslag eksamen 1T våren 2010 DEL 1. Oppgave 1. a) Funksjonen f er gitt ved f x 2x 3. Tegn grafen og finn nullpunktene for f f x 2x 3 Grafen Løsningsforslag eksamen T våren 00 DEL Oppgave a) Funksjonen f er gitt ved f 3. Tegn grafen og finn nullpunktene for f f 3 Grafen y 0 8 6 4-4 -3 - - 3 4 - -4 Nullpunkt 3 0 3 Nullpunkt når 3 b) Løs likningen

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO929A Matematikk Prøve-eksamen Dato 13. desember 2007 Tidspunkt 09.00-1.00 Antall oppgaver Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 a) Likningen

Detaljer

Eksamen 25.05.2011. MAT1011 Matematikk 1P. Nynorsk/Bokmål

Eksamen 25.05.2011. MAT1011 Matematikk 1P. Nynorsk/Bokmål Eksamen 25.05.2011 MAT1011 Matematikk 1P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Løsningsforslag. 7(x + 1/2) 5 = 5/6. 7x = 5/ /2 = 5/6 + 3/2 = 14/6 = 7/3. Løsningen er x = 1/3. b) Finn alle x slik at 6x + 1 x = 5.

Løsningsforslag. 7(x + 1/2) 5 = 5/6. 7x = 5/ /2 = 5/6 + 3/2 = 14/6 = 7/3. Løsningen er x = 1/3. b) Finn alle x slik at 6x + 1 x = 5. Prøve i FO99A - Matematikk Dato: 3. desember 01 Målform: Bokmål Antall oppgaver: 5 (0 deloppgaver) Antall sider: Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

1T 2014 høst LØSNING 25000000000 0, 0005 = 2, 5 10 10 5 10 4 = 12, 5 10 6 = 1, 25 10 7. 2 2+ x 2 = 2 4 x 2 4 + x = 8 x = 4

1T 2014 høst LØSNING 25000000000 0, 0005 = 2, 5 10 10 5 10 4 = 12, 5 10 6 = 1, 25 10 7. 2 2+ x 2 = 2 4 x 2 4 + x = 8 x = 4 3/8/06 T 0 høst LØSNING - matematikk.net T 0 høst LØSNING Contents Diskusjon av denne oppgaven Løsning av del Matteprat spørsmål om oppgave 6 del DEL EN Oppgave 5000000000 0, 0005 =, 5 0 0 5 0 =, 5 0 6

Detaljer

DEL 1 Uten hjelpemidler 2 timer

DEL 1 Uten hjelpemidler 2 timer DEL 1 Uten hjelpemidler timer Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 a Regn ut tallet som mangler. 1 450 cm m 0,50 m L b Else løp 400 meter på 50 sekunder.

Detaljer

Kapittel 6. Trekanter

Kapittel 6. Trekanter Kapittel 6. Trekanter Mål for kapittel 6: Kompetansemål Mål for opplæringen er at eleven skal kunne bruke og grunngi bruk av formlikhet, målestokk og Pytagoras setning til beregninger i praktisk arbeid

Detaljer

www.skoletorget.no Tall og algebra Matematikk Side 1 av 6

www.skoletorget.no Tall og algebra Matematikk Side 1 av 6 Side 1 av 6 Hva = en ligning? Sist oppdatert: 15. november 2003 I dette kapittelet skal vi se på noen grunnregler for løsning av ligninger med én ukjent. Det viser seg at balanse er et helt sentralt prinsipp

Detaljer

Løsningsforslag Eksamen eksempeloppgave R1 - REA3022 - Desember 2007

Løsningsforslag Eksamen eksempeloppgave R1 - REA3022 - Desember 2007 Løsningsforslag Eksamen eksempeloppgave R1 - REA022 - Desember 200 eksamensoppgaver.org October 2, 2008 eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksempeloppgave i R1

Detaljer

Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den?

Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den? side 1 Detaljert eksempel om Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den? Dette er et forslag til undervisningsopplegg der utgangspunktet er sentrale problemstillinger

Detaljer

99 matematikkspørsma l

99 matematikkspørsma l 99 matematikkspørsma l TALL 1. Hva er et tall? Et tall er symbol for en mengde. Et tall forteller om antallet i en mengde. 5 sauer eller 5 epler eller 5.. 2. Hvilket siffer står på eneplassen i tallet

Detaljer

Kvikkbilde 8 6. Mål. Gjennomføring. Planleggingsdokument Kvikkbilde 8 6

Kvikkbilde 8 6. Mål. Gjennomføring. Planleggingsdokument Kvikkbilde 8 6 Kvikkbilde 8 6 Mål Generelt: Sammenligne og diskutere ulike måter å se et antall på. Utfordre elevene på å resonnere omkring tallenes struktur og egenskaper, samt egenskaper ved regneoperasjoner. Spesielt:

Detaljer

Eksamen 2P, Høsten 2011

Eksamen 2P, Høsten 2011 Eksamen P, Høsten 011 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (18 poeng) a) Skriv på standardform 1) 533 milliarder 9 11

Detaljer

Terminprøve Sigma 1T høsten 2009

Terminprøve Sigma 1T høsten 2009 Terminprøve Sigma 1T høsten 2009 Prøvetid 5 klokketimer for Del 1 og Del 2 til sammen. Vi anbefaler at du ikke bruker mer enn to klokketimer på Del 1. Du må levere inn Del 1 før du tar fram hjelpemidler.

Detaljer

Verktøyopplæring i kalkulator for elever

Verktøyopplæring i kalkulator for elever Verktøyopplæring i kalkulator for elever Innholdsfortegnelse Enkel kalkulator... 2 Kalkulator med brøk og parenteser... 7 GeoGebra som kalkulator... 11 H. Aschehoug & Co. www.lokus.no Side 1 Enkel kalkulator

Detaljer

Kapittel 1. Tallregning

Kapittel 1. Tallregning Kapittel 1. Tallregning Regning med tall er grunnlaget for mer avansert matematikk. I dette kapitlet repeteres følgende fra grunnskolen: Brøkregning Desimaltall Regning med positive og negative tall Potenser

Detaljer

03.10.2013 Manual til. GeoGebra. Ungdomstrinnet. Ressurs til. Grunntall 8 10. Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS

03.10.2013 Manual til. GeoGebra. Ungdomstrinnet. Ressurs til. Grunntall 8 10. Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS 03.10.2013 Manual til GeoGebra Ungdomstrinnet Ressurs til Grunntall 8 10 Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS Innhold Verktøy... 4 Hva vinduet i GeoGebra består av...

Detaljer

Kapittel 1. Tallregning

Kapittel 1. Tallregning Kapittel 1. Tallregning Regning med tall er grunnlaget for mer avansert matematikk. I dette kapitlet repeteres følgende fra grunnskolen: Brøkregning Desimaltall Regning med positive og negative tall Potenser

Detaljer

OVERFLATE FRA A TIL Å

OVERFLATE FRA A TIL Å OVERFLATE FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til overflate... 2 2 Grunnleggende om overflate.. 2 3 Overflate til:.. 3 3 3a Kube. 3 3b Rett Prisme... 5 3c

Detaljer

JULETENTAMEN, 9. KLASSE, 2015. FASIT

JULETENTAMEN, 9. KLASSE, 2015. FASIT JULETENTAMEN, 9. KLASSE, 2015. FASIT DELPRØVE 1. OPPGAVE 1.1: 367 + 254 = 621 c: 67. 88 536 536 = 5896 e: 18,4-9,06 = 9,34 24,8 + 7,53 = 32,33 d: 3,2 : 0,8 = 32 : 8 = 4 32 f: 12 2. 5 2 = 12 2. 25 = 12

Detaljer

H. Aschehoug & Co www.lokus.no Side 1

H. Aschehoug & Co www.lokus.no Side 1 1 Bli kjent med GeoGebra GeoGebra er et dynamisk geometriprogram. Det vil si at vi kan gjøre en del endringer på figurene vi tegner, uten å måtte tegne dem på nytt, figuren endres dynamisk. Dette gir oss

Detaljer

oppgaver fra abels hjørne i dagbladet

oppgaver fra abels hjørne i dagbladet oppgaver fra abels hjørne i dagbladet sett 43 dag 1 1. Line-Marie strikker et lilla skjerf. Skjerfet er 80 masker bredt, og det tar 1 sekund å strikke en maske. Det går 3 rader per centimeter, og skjerfet

Detaljer

http://www.nelostuote.fi/norja/discoveryregler.html

http://www.nelostuote.fi/norja/discoveryregler.html Sivu 1/6 Innhold 2 kart (spillebrett), 2 gjennomsiktige plastark (som legges oppå spillebrettene), Sjekkometer, 28 sjekkometerkort, 18 utstyrskort, 210 terrengbrikker, 2 tusjpenner. Hvem vinner? I Discovery

Detaljer

Eksamen 23.11.2011. MAT1015 Matematikk 2P. Nynorsk/Bokmål

Eksamen 23.11.2011. MAT1015 Matematikk 2P. Nynorsk/Bokmål Eksamen 3.11.011 MAT1015 Matematikk P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : Framgangsmåte: 5 timer: Del 1 skal leveres inn etter timer. Del

Detaljer

Kanter, kanter, mange mangekanter

Kanter, kanter, mange mangekanter Kanter, kanter, mange mangekanter Nybegynner Processing PDF Introduksjon: Her skal vi se på litt mer avansert opptegning og bevegelse. Vi skal ta utgangspunkt i oppgaven om den sprettende ballen, men bytte

Detaljer

oppgaver fra abels hjørne i dagbladet

oppgaver fra abels hjørne i dagbladet oppgaver fra abels hjørne i dagbladet sett 4 dag 1 1. Hvor mange av de ett hundre første positive heltallene, 1, 2, 3,, 99, 100, er delelig med 2, 3, 4 og 5? A)0 B) 1 C) 2 D) 3 E) 4 2. Ett tusen terninger

Detaljer

3. Løs oppgavene ved hjelp av likning a. Summen av tre tall som følger etter hverandre er 51. Hvilke tre tall er det?

3. Løs oppgavene ved hjelp av likning a. Summen av tre tall som følger etter hverandre er 51. Hvilke tre tall er det? Likninger av første grad med en ukjent 1. Løs følgende likninger x 3 + 4x a. + = 16 2x 7 2 x 1 x + 3 b. + 2 = 0 x x 2 1 1 1 c. (2x + 3) (3 4x) = (4x 7) 3 2 6 d. 2 x + 3( 2 x) = 3 2. Lag en likning som

Detaljer

Kapittel 1. Metoder. Mål for Kapittel 1, Metoder. Kompetansemål. Mål for opplæringen er at eleven skal kunne

Kapittel 1. Metoder. Mål for Kapittel 1, Metoder. Kompetansemål. Mål for opplæringen er at eleven skal kunne Kapittel 1. Metoder Mål for Kapittel 1, Metoder Kompetansemål Mål for opplæringen er at eleven skal kunne gjøre overslag over svar, regne praktiske oppgaver, med og uten digitale verktøy, presentere resultatene

Detaljer

Areal. Arbeidshefte for lærer

Areal. Arbeidshefte for lærer Arbeidshefte for lærer Areal Mange elever forklarer areal ved å si at det er det samme som lengde gange bredde. Disse elevene gjengir formelen for hvordan man finner arealet av et rektangel i stedet for

Detaljer

Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. og setter f u ln

Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. og setter f u ln Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) Deriver funksjonene a) 3 f( ) 3 f 3 4 3 b) g( ) ln( ) Vi bruker kjerneregelen

Detaljer

Geogebra er viktig i dette kapitlet, samt passer, linjal, blyant og viskelær! Tommy og Tigern:

Geogebra er viktig i dette kapitlet, samt passer, linjal, blyant og viskelær! Tommy og Tigern: Tempoplan: Etter dette kapitlet repetisjon og karaktergivende prøver! 7: Geometri Kunnskapsløftet de nye læreplanene legger vekt på konstruksjon av figurer! I utgangspunktet kan det høres ganske greit

Detaljer

Eksamen 23.11.2011. MAT1011 Matematikk 1P. Nynorsk/Bokmål

Eksamen 23.11.2011. MAT1011 Matematikk 1P. Nynorsk/Bokmål Eksamen 23.11.2011 MAT1011 Matematikk 1P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Eksamen MAT1013 Matematikk 1T Våren 2013

Eksamen MAT1013 Matematikk 1T Våren 2013 DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 750 000 0,005 5 7,510 7,5 5 3 8 3 10 1,5 10 510 5 Oppgave (1 poeng) Løs likningssystemet x3y7 5xy8 Velger å løse likningen

Detaljer

Grafer og funksjoner

Grafer og funksjoner 14 4 Grafer og funksjoner Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder omforme en praktisk problemstilling

Detaljer

Kapittel 4. Algebra. Mål for Kapittel 4, Algebra. Kompetansemål. Mål for opplæringen er at eleven skal kunne

Kapittel 4. Algebra. Mål for Kapittel 4, Algebra. Kompetansemål. Mål for opplæringen er at eleven skal kunne Kapittel 4. Algebra Mål for Kapittel 4, Algebra. Kompetansemål Mål for opplæringen er at eleven skal kunne gjøre overslag over svar, regne praktiske oppgaver, med og uten digitale verktøy, presentere resultatene

Detaljer