Tilhørighet og genetisk variasjon av storvokst ørret fra Altevatn bestemt med mikrosatellitter

Størrelse: px
Begynne med side:

Download "Tilhørighet og genetisk variasjon av storvokst ørret fra Altevatn bestemt med mikrosatellitter"

Transkript

1 . Rapport Tilhørighet og genetisk variasjon av storvokst ørret fra Altevatn bestemt med mikrosatellitter og SNPs med henblikk på kultivering og bevarelse av adaptive egenskaper. Kim Præbel Øyvind Kanstad-Hanssen

2 Rapport nr Antall sider - 30 Tittel - Tilhørighet og genetisk variasjon av storvokst ørret fra Altevatn bestemt med mikrosatellitter og SNPs med henblikk på kultivering og bevarelse av adaptive egenskaper. ISBN Forfatter(e) - Kim Præbel og Øyvind Kanstad-Hanssen Oppdragsgiver - Statkraft Energi AS Referat: I forbindelse med konkretisering av kultiveringsstrategi for storvokst ørret i Altevatn ble det i 2012 gjennomført nye, utvidede genetiske undersøkelser som omfattet ungfisk fanget i Oustoelva, Gamasjohka og Maissajohka og voksen ørret fanget i Altevatn. Med bakgrunn i tidligere og nye genetiske analyser skulle fire oppgaver besvares gjennom dette studiet: 1) Kan storvokst ørret fra Altevatn knyttes til en bestemt lokalitet, 2) Beskrive den totale genetiske variasjonen og estimere effektiv populasjonsstørrelse, 3) Avgjøre om storvokst ørret fra Altevatn kan kobles til adaptive genetiske egenskaper og 4) Sammenfatte 1-3 og tilråde kultiveringsopplegg for storvokst ørret med fokus på uttak av stamfisk fra vassdraget og stamfiskhold med henblikk på å bevare en eventuell unik storørretstamme og den genetiske diversitet. Resultatene fra de nye genetiske analysene støttet tidligere funn, og totalt sett kunne 92 % av ørret klassifisert som s torørret knyttes til Oustoelva og all ørret større enn 60 cm ble knyttet til Oustoelva. Analysene viste videre at Oustoørret er utsatt for retningsbestemt seleksjon og lokale tilpasninger, men det kan ikke konkluderes at egenskapen "storvokst ørret" er genetisk betinget. Imidlertid er Oustoørreten klart genetisk isolert fra de andre ørretpopulasjonene rundt Altevatn, og sannsynligvis har Oustoørret en sterk grad av assortativ parring. Analysene identifiserte 83 loci som potensielt er påvirket av retningsbestemt seleksjon, og sammenlignende tester mellom Oustoelv- og Gamasjohka populasjonene identifiserte 28 loci som potensielt er relatert til egenskapen "storvokst ørret". Undersøkelsen gir altså klare indikasjoner på at ørreten i Oustoelva har gjennomgått lokale tilpasninger og at en storvoks egenskap er knyttet til populasjonen. Videre er den storvokste egenskap koblet til lokale tilpasninger drevet av en sterk naturlig seleksjon. Estimatene av effektiv populasjonsstørrelse i Oustoelva viste verdier fra N e =18-37, men trolig må dette estimatet oppfattes som et klart minimumsestimat og registrering av faktisk populasjonsstørrelse anbefales. Lav effektiv populasjonsstørrelse i forhold til størrelsen på den utsatte populasjonen vurderes som en trussel for den unike Oustoørreten, og allerede ved en innblanding av utsatt fisk på % må redusert effektiv populasjonsstørrelse og tap av genetisk variasjon og adaptive egenskaper forventes. En overordnet konklusjon basert på tidligere og ny genetiske analyser er at det blir vanskelig å oppfylle målet om å etablere et stamfiskprogram til populasjonsfremmende utsettinger som ikke har negative konsekvenser for villfisken i Oustoelva. Det er spesielt to forhold som veier tungt for en slik konklusjon: 1) erfaringer viser at populasjonsfremmende utsettinger gir tilfeldige (stokastiske) resultater og 2) adaptive egenskaper i kombinasjon med lav effektiv populasjonsstørrelse gjør Oustoørreten svært sårbar for endringer i seleksjonstrykk og innblanding fra utsatt fisk. Vi anser at beslutninger angående bevarings-/kultiveringstiltak i Altevatn kan gå i to retninger; I) der bevaringsaspektet av Oustoørreten gis høyest prioritet og II) der delvis eller fullstendig tap av den unike storørretstammen risikeres og aksepteres for å skape et fiske på utsatt fisk. Gitt alternativ I) anbefales storørreten fredet, stamfiskprogram stanses og tynningsfiske på den sympatriske røyebestanden igangsettes for å forbedre ørretens oppvekstvilkår i innsjøen. Gitt alternativ II) anbefales kun Oustoørret brukt som stamfisk, og stamfiskprogram baseres på voksen fisk samlet inn fra Altevatn. I tillegg må villfisken i Oustoelva overvåkes nøye for å avdekke eventuelle genetiske endringer (tap av adaptive egenskaper), og utsettinger fra stamfiskprogrammet må holdes moderate til slike undersøkelser avklarer effektene på Oustoørretbestanden. Tromsø, oktober 2013 Postadresse : postboks Lødingen Telefon : / E-post : ferskvannsbiologen@online.no forsidefoto: T. Solberg

3 Forord Miljøvernavdelingen hos Fylkesmannen i Troms har bedt Statkraft Energi AS å konkretisere en kultiverinsstrategi for storrørretstammen i Altevatn. Denne rapporten beskriver og drøfter resultatene fra utvidede genetiske undersøkelser av ørret i Altevatn/Oustoelva og øvrige elver som regnes å kunne bidra til storørretpopulasjonen i Altevatn. Analyser er basert på tidligere innsamlet materiale, samt nye innsamlinger av ungfisk fra Oustoelva, Gamasjohka og Maissajohka og stor ørret fanget i Altevatn i Innhold Forord 2 1. Innledning 3 2. Material og metode 3 3. Resultater 7 4. Diskusjon Litteratur 21 Kim Præbel har stått som ansvarlig for prosjektet og har gjennomført de genetiske vurderingene. Øyvind Kanstad-Hanssen har hatt ansvaret for feltarbeid og innsamling av nytt fiskemateriale. Sjur Gammelsrud har vært kontaktperson hos oppdragsgiver, og Statkraft Energi takkes herved for oppdraget. Kim Præbel prosjektleder side 2

4 1. Innledning I forbindelse med konkretiseringsfasen av kultiveringsstrategien for storvokst ørret fra Altevatn var det ønskelig å utføre ytterligere genetiske undersøkelser av ørret i Altevatn og nærliggende områder. Det overordnede mål er å bevare storørretbestanden som har sin tilknytning til Altevatn, herunder spesielt den genetiske variasjonen, og gjenoppbygge en høstbar bestand som kan danne grunnlag for et attraktivt fiske. Prosjektet kan deles inn i fire ulike oppgaver: 1. Avklare om storvokst ørret i Altevatn kan knyttes til én bestemt lokalitet ved bruk av nøytrale og selekterte genetiske markører 2. Beskrive av den totale genetiske variasjonen i systemet og beregne effektiv populasjonsstørrelse i en eventuell storørretstamme for bruk i vurdering av kultiveringsstrategien 3. Avklare om storvokst ørret i Altevatn kan kobles til adaptive genetiske egenskaper 4. Sammenfatte 1., 2., og 3 for tilrådning til kultiveringsopplegg for storvokst ørret i Altevatn med fokus på uttak av stamfisk fra vassdraget og stamfiskhold med henblikk på bevarelse av en eventuell unik storvokst ørretstamme og dennes genetiske diversitet. For generell bakgrunn henvises til (Præbel 2011), (Præbel et al. 2011) og (Hanssen & Præbel 2012). 2. Material og metode For områdebeskrivelse og informasjon vedrørende innsamling av materiale refereres til (Westgaard 2002) og (Hanssen & Præbel 2012). I tillegg til materialet fra disse tidligere undersøkelser ble det innsamlet materiale i 2012 fra Altevatn, Gamaselva, Maissajohka, og Oustoelva (Tabell 1). Dette for å verifisere/undersøke om den overveiende del av storvokst ørret i Altevatn; 1). har opprinnelse i Oustoelva, 2) har tilstrekkelig genetisk variasjon til å etablere et stamfiskeprogram, og 3) kan assosieres med lokale tilpasninger (naturlig seleksjon). I tidligere genetiske undersøkelser (se Præbel 2011) var flere av de genetiske estimaterne preget av manglene informasjon om kjønn og vekt/størrelse, noe som gjorde det ønskelig at fenotypisk informasjon ble inkludert i denne undersøkelsen. Dessverre ble det ikke innsamlet nok individer fra Altevatn i den supplerende innsamlinga til å kunne bruke denne informasjon i kombinasjon med de genetiske data. Fiskelengden er den eneste parameteren som er tilgengelig for alle individene og denne brukes derfor som et mål for størrelse/vekst på individer fra Altevatn. De juvenile fiskene innsamlet i 2012 fra Maissajohka, Gamaselva og Oustoelva ble lengdemålt og veid slik at Fultons K (kondisjonsfaktor) kunne bestemmes vha. formelen: K=(Vekt/Lengde 3 )x100. Dette blir selvsagt bare et grovt estimat på fitness/kondisjon. Mer avanserte vekstmodeller ville kreve informasjon fra 100-vis av individer, hvilket ikke var mulig å samle inn innenfor rammen av dette prosjektet. Gjennomsnittlig kondisjonsfaktor for hver lokalitet ble sammenlignet parvis via to-sidet Students T-Tests hvor det ble antatt at grupper av observasjoner hadde lik varians. Genomisk DNA ble isolert fra fettfinner, gjellefilamenter eller skjell fra totalt ca. 450 ørret ved hjelp av E-Z96 Tissue DNA Kit (OMEGA Bio-tek) etter produsentens anvisninger eller vanlig saltlysis protokoll (Aljanabi & Martinez 1997). Dessverre var kvaliteten på en stor del av prøvene for dårlig til videre analyser. Totalt ble 288 individer inkludert i analysene. side 3

5 Alle individer (også tidligere innsamlet med relevans for problemstillingen) ble kjønnsbestemt ved hjelp av en DNA markør. Metoden har mer enn 99 % treffsikkerhet på kjønnsbestemmelsen av ørret. Testen ble for dette prosjektet videreutviklet fra manuell verifisering på agarose gel til automatisert bestemmelse på sekvenseringsmaskin ved hjelp av to mikrosatellitter utviklet til formålet. Analyser spesifikke for mikrosatellitter Alle individer ble genotypet med 21 vanlige mikrosatellitter, 2 mikrosatellitter koblet til gener for parasitt og sykdomsresistens (Grimholt et al. 2002; Hansen et al. 2007) og 1 mikrosatellitt koplet til gener med funksjon relatert til utvikling og beskyttelse av lever/vekst (Väsemagi et al. 2005) (Appendiks 1). Mikrosatellittene ble amplifisert ved hjelp av polymerase chain reaction (PCR) og størrelsesvariasjonen bestemt på en ABI 3130xl automatisert sekvenseringsmaskin (Applied Biosystems). Alleler ble scoret automatisk i predefinerte bins i GeneMapper 3.7 (Applied Biosystems) og manuelt verifisert. I tillegg ble 2-5 % av genotypene re-isolert og kjørt på alle mikrosatellitter for å sikre robuste genotyper (Se f.eks. (Pompanon et al. 2005)). Der ble ikke identifisert uoverensstemmelser mellom de originale og re-isolerte genotyper. Loci Sssp2215, SsaA124 og SalE38SFU var ikke variable og ble derfor fjernet fra datasettet. I tillegg viste kvalitetstest med programmet MicroChecker (Van Oosterhout et al. 2004) at loci SsoSL438 og Smm17 kunne være assosierte med null-alleler i alle populasjoner og disse loci ble derfor også fjernet fra analysen. Det totale antall mikrosatellitter ble derfor 19, hvorav 3 er linket til gener. For å sikre at videre estimater baseres på nøytrale loci og for å undersøke om mikrosatellittene linket til gener er påvirket av naturlig seleksjon, ble det gjort en seleksjonstest i Arlequin 3.5 (Excoffier & Lischer 2010). Det ble fortatt de anbefalte permutasjoner for å oppnå 95 og 99 % konfidensintervaller. Loci påvirket av naturlig seleksjon ble identifisert med et konservativt lavt konfidensintervall (95%) for å sikre nøytralitet for de genetiske estimatene. Dataanalyser ble heretter gjort med to datasett: et som kun inneholder nøytrale loci (12 loci) og et som inneholder alle 19 loci. Resultatet av seleksjonstesten er vist i Appendiks 2. For tilrådning vedrørende uttak av stamfisk ble familiestrukturen og den effektive populasjonsstørrelsen av populasjonen av storvokst ørret bestemt (Oustoelvaørret, se resultatavsnitt). Det nøytrale mikrosatellittdatasettet ble brukt til estimering av disse parametere. Den effektive populasjonsstørrelsen (Ne) 1 av storvokst ørret, ble bestemt med Bayesisk analyse av flere diversitetsmål i programmet ONeSAMP (Tallmon et al. 2008), ved hjelp av koblingslikevekt i programmet LDNe (Waples & Do 2008) og ved hjelp av en sannsynlighetsmetode implementert i Colony 2.0 (Jones & Wang 2009). Temporal tilnærming ble valgt bort da det nylig er vist at det krever mange generasjoners adskillelse mellom prøvene for å gi et mer presist estimat av Ne sammenlignet med estimater bestemt med koblingslikevekt/bayesisk statistikk (Waples & Do 2010). I ONeSAMP ble antatt min/max generasjonsstørrelse satt til 2/100 eller 2/50, og resten av variablene ble anvendt i standart setting; theta (~(4Ne*u)) random nummer mellom 2 og 12, 2 (min) og 8 (max) generasjoner og min/maks migrasjonsrate 0.001/0.01 og alt testet med iterasjoner for bestemmelse av kredibilitetsintervaller. For LDNe ble programmets parametere brukt og det rapporteres konfidensgrenser (Cl) estimert ved JackKnife metoden. I Colony ble Ne estimert via søsken bestemmelsene hvor tilfeldig parring ble antatt og konfidensgrenser (Cl) ble estimert via full likelihood metode. 1 Ne beskriver antallet av individer som bidra til den neste generasjon. Dermed beskriver Ne også raten av genetisk drift og er derfor direkte relatert til raten hvormed genetisk diversitet mistes og innavl økes Wright S (1951). Bemerk at raten av innavl (df), og dermed hastigheten hvormed heterozygositet mistes, er proporsjonal med den inverse effektive populasjonsstørrelse (df = 1/2Ne). Antallet av individer som bidrag til neste generasjon (den ideale populasjonen) er nesten alltid mindre enn den reelle populasjonen siden denne sjeldent følger antagelsene for en ideal populasjon (f.eks. tilfeldig paring, konstant populasjonsstørrelse, diskrete generasjoner, og samme bidrag fra alle individer til neste generasjon). Med andre ord, hvis en populasjon består av 100 individer, men Ne bestemmes til 50, oppfører populasjonen (genetisk sett) som den bare hadde 50 individer. side 4

6 Familiestrukturen ble bestemt i Colony 2.0 (Jones & Wang 2009) separat på hvert av de temporale datasettene (altså Oustoelva 2009 og 2012) og ørret fra Altevatn identifisert som tilhørende Oustoelva ble kjønnsbestemt og brukt i modellen som mulige foreldre (9 hunfisk og 12 hanfisk). En tilpasset maximum-likelihood algoritme implementert i programmet ble brukt til å estimere antall søskengrupper, individenes tilhørighet til disse grupper og deres innbyrdes relasjon (full og halvsøsken), og andelen av mulige fedre og mødre som har bidratt til disse gruppene, og sist antall familier (familieindex). For familieindeks gis den inklusive sannsynlighet for at alle individer i en gitt fullsøsken familie, i den beste konfigurasjon, er fullsøsken. I tillegg brukes den eksklusive sannsynlighet for at alle individer i en gitt fullsøsken familie, i den beste konfigurasjon, er full søsken og ingen andre individer er fullsøsken innen denne fullsøskenfamilie. Det ble videre antatt at innsamlet Altevatn ørret identifisert som tilhørende Oustoelva kunne være en potensiell forelder og at de kunne bidra til mer enn en familie. I tillegg ble det antatt at sjansen for foreldrene har en innbyrdes familie struktur (søsken) var lav (<1%). Modellen ble kjørt uten bidrag fra innavl (som anbefalt i programmanualen) og effekten av genotypefeil ble justert til 1 % for hvert locus. Analyser spesifikke for enkelt nukleotid polymorfismer (SNPs) Genotyping av enkelt nukleotid polymorfismer (SNPs) ble utført på loci ved hjelp av SNPpanelet for ørret utviklet av Centre for Integrative Genetics (CIGENE, Norway) med Illumina infinium assay (Illumina, San Diego, CA, USA) etter produsentens anvisninger. Genotypingen ble utført på 288 individer, inkludert 2 blanke (vann) og 18 tilfeldige replikaer. Klassifisering av SNPs i ulike kategorier; enkelt locus SNPs, paralog sekvensvarianter (PSVs), og hyppig forkommende varianter fra laksefiskenes genomduplisering ( multi-site variants, MSVs), ble utført visuelt. Kun enkelt locus SNPs ble inkludert i den videre dataanalysen. Videre ble også loci som var monomorfe (et allel i alle prøver), SNPs med replikasjonsproblemer, loci med minst forekommende allelfrekvenser mindre enn 1% ( minor allele frequency MAF < 0.01), og loci som ikke amplifiserte i mer enn 5% av individene ekskludert. I tillegg ble den individuelle prøvekvaliteten sikret ved bare å inkludere SNPs med en kallerate over 0.95 (call rate; CR > 0.95) etter overfor nevnte filtre. Global og per SNP observert og forventet heterozygositet ble bestemt innen hver kildepopulasjon og Altevatngruppe (temporale replikaer adskilt) med POWERMARKER (Liu & Muse 2005). Generelle analyser populasjonsstruktur og differensiering Populasjonsstruktur og tilhørighet av Atlevatnindivider til lokale gytelokaliteter ble bestemt med en Bayesisk strukturanalyse som implementert i STRUCTURE (Pritchard et al. 2000). Analysen ble gjort med en modell som antok admiksing og korrelerte allelfrekvenser mellom K populasjoner (varierende burn-ins på (mikrosatellitter), (SNPs) replikasjoner og deretter (mikrosatellitter), (SNPs) MCMC replikasjoner. Scenariet ble kjørt uavhengig 15 ganger for å sikre konsistens. Analysene ble gjort i intervallet K = Den beste grupperingen og antall populasjoner (K) i datasettet ble visualisert med STRUCTURE HARVESTER (Earl & vonholdt 2012). Det ble brukt den avledede ΔK fremfor K, da denne tilnærming er vist å gi et mer presist estimat av den faktiske populasjonsstrukturen (se e.g. Warnock et al og Earl & vonholdt 2012). Videre ble STRUCTURE 2.3 brukt til å tilordne ørret fra Altevatn til gytelokaliteter. Populasjonsstruktur og tilordning ble kontrollert ved å analysere dataen i en prinsipal komponent analyse i GenAlEx 6.0 (Peakall & Smouse 2006). Denne tilnærming bruker, til forskjell fra STRUCTURE, ikke basis genetiske prinsipper (f.eks. Hardy-Weinberg likevekt) til å gruppere individene og gir derfor et estimat som må påregnes å reflektere variasjonen i allele frekvenser mellom undersøkte grupper av individer. Den genetiske diversiteten per prøve, populasjon (bestemt via STRUCTURE) og locus ble bestemt i Genepop 4.0 (Rousset 2007) og GenAlEx 6.0 (Peakall & Smouse 2006). Hardy-Weinberg likevekt ble testet med eksakt test i Genepop 4.0. side 5

7 Graden av reproduktiv adskillelse mellom de ulike ørretpopulasjonene bestemt i STRUCTURE ble estimert ved F ST (Weir & Cockerham 1984) og det ble testet for statistisk signifikans med permutasjoner ved hjelp av ARLEQUIN 3.5 (Excoffier & Lischer 2010). Generelle analyser naturlig seleksjon For å identifisere SNP loci som potentielt er påvirket av naturlig seleksjon ble det utført en seleksjonstest i Arlequin 3.5 (Excoffier & Lischer 2010). Denne testen er lik Fdist testen utviklet av (Beaumont & Nichols 1996). Det ble kjørt fire forskjellige kjørsler; 1) på alle prøvene separat, hvor det da vil være lokalitet/tid som testes, 2) sammenligning av gruppene bestemt i STRUCTURE, hvor ikke størrelse, men effekten av lokaliteten har betydning, 3) sammenligning av store vs. små individer fra Altevatn uten hensyntagen til tilhørighet og 4) sammenligning av store individer (jvf. Resultater - Karakteristikk av system) fra Altevatn som ble tilordnet til Oustoelva mot små individer fra Altevatn tilordnet til Gamaselva. Alle sammenligninger ble foretatt med P < 0.01 signifikansnivå. Spesielt sammenligning 2 og 4 er i denne sammenheng. I 2) er gruppene bestemt i STRUCTURE representative for lokaliteten og loci som blir forslått påvirket av seleksjon vil derfor representere adaptive genetiske egenskaper, som f.eks. vekst. Videre er sammenligningen i 4) viktig da > 90 % av de storvokste individene i Altevatn kan tilordnes Oustoelva, i tillegg til at Gamaselva ikke er vist å produsere nevneverdige mengder av storvokst fisk (se f.eks. Hanssen & Præbel 2012). Derfor må det forventes at loci som viser seg å være påvirket av naturlig seleksjon i denne sammenligningen kan være assosiert til den storvokste egenskapen. Analyser relatert til kultiveringsopplegg for storvokst ørret i Altevatn For å bidra med et estimat på hvilken effekt utsetninger av kultivert ørret kan ha på den ville storørretstammen brukes Rymans og Laikres ligning (Ryman & Laikre 1991, men se også f.eks. Christie et al. 2012): hvor Nwc er den totale effektive populasjonsstørrelsen av vill og kultivert fisk i systemet, Nc er den effektive populasjonsstørrelsen av kultivert fisk (altså i stamfiskpopulasjonen), Nw er den effektive populasjonsstørrelsen av vill fisk før påvirkning av kultivert fisk og x er forholdet av bidrag fra utsatt kultivert fisk til den ville populasjonen. Nwc undersøkes med modellen for Nw i variasjonsområdet bestemt for den effektive populasjonsstørrelsen av storørret og for Nc i området fra 10 til 20. Området for Nc ble fastsatt ut fra antagelsen at det ikke er mulig å oppnå samme genetiske diversitet/variasjon i et kultiveringsopplegg som det finnes i den naturlige populasjonen. Dertil kommer effektene av manglene naturlig seleksjon som vil fremme effekter av tilfeldig genetisk drift og innavl. side 6

8 3. Resultater Karakteristikk av system Av totalt 42 Altevatnindivider hadde 37 individer lengdedata og disse varierte mellom 122 og 770 mm (Figur 1), med et gjennomsnitt på 417 mm (S.D. 169 mm; 95 % Cl 57 mm). Storvokst ørret ble definert som individer større enn 474 mm (gjennomsnittslengden + 95 % Cl) og i alt 13 storvokste individer ble identifisert i datasettet. Figur 1. Størrelse og kjønnsfordeling av de 37 ørret fra Altevatn med lengdedata. Gjennomsnittslengde (mean) og 95% konfidensintervaller (Cl) er vist. Kjønnet av ørreten er bestemt ved hjelp av en molekylær kjønnstest. Den molekylære kjønnstesten viste at Altevatnindividene bestod av 52 % hunn fisk, 43 % hannfisk og 5 % uidentifisert (grunnet dårlig DNA) (Appendiks 3). Resultatet fra kjønnstesten stemte overens med hva som var observert i felt. Videre ga 1-2 replikakjørsler av ca. 20 % av individene et resultat i fullstendig overensstemmelse med den opprinnelige kjønnsbestemmelsen. Kjønnsfordelingen av de 13 storvokste individer var 46 % hunn og 54 % hannfisk. I de to prøver av juvenile fisk fra Oustoelva fra 2009 og 2012 var kjønnsfordelingen hhv. 33/64/3 % og 48/42/10 % av hunn/hann/uidentifiserte individer. Hvis det antas at det relativt begrensede materialet stilt til rådighet her er dekkende for det generelle mønster i systemet, er det ingen tegn på at den storvokste egenskap er relatert til kjønn - hverken på de tidlige eller seine livsstadier. Sammenligning av Fultons K mellom de juvenile fiskene innsamlet i 2012 viste at individene fra Oustoelva hadde en signifikant høyere kondisjonsfaktor sammenlignet med Gamaselva (P=0.036) og Maissajohka (P<0.001) (Figur 2). Videre, hadde Gamaselva en signifikant høyere kondisjonsfaktor enn Maissajohka (P<0.001). Signifikant høyere gjennomsnittlig kondisjonsfaktor for individene fra Oustoelva kan indikere at Oustoelva har bedre oppvekstforhold enn de andre undersøkte elvene. Men det påpekes at antallet av individer er noe lavt med henblikk på statistisk testing. side 7

9 Figur 2. Gjennomsnittlig kondisjonsfaktor ± S.E.M. av de juvenile individer i Maissajohka, Gamaselva (2012) og Oustoelva (2012). Individene fra Oustoelva hadde en signifikant høyere kondisjonsfaktor sammenlignet med Gamaselva (P=0.036) og Maissajohka (P<0.001). Videre hadde Gamaselva en signifikant høyere kondisjonsfaktor enn Maissajohka (P<0.001). Karakteristikk av genetiske markører og standard genetiske estimater for prøver Ut av de opprinnelige 24 mikrosatellitter ble fem sortert bort under kvalitetssikringen av datasettet, slikt at materialet ble undersøkt for variasjon ved 19 mikrosatellitter (Appendiks 1). Etter kvalitetssikringen viste testen for Hardy-Weinberg likevekt at 39 ut av 152 loci-prøver kombinasjoner avvek fra likevekt, mens bare 12 kombinasjoner, fordelt på 10 loci og fire lokaliteter, avvek etter korreksjon for flere parvise sammenligninger (Bonferroni korreksjon). Tabell 1. Basis genetiske estimater for lokaliteter og prøver inkludert i studiet bestemt ved mikrosatellitter. Kode (Kode) for genetiske analyser, antall individer (N) inkludert i analysene, gjennomsnittlig antall alleler over alle loci (N A ), gjennomsnittlig antall private alleler (N PA ), gjennomsnittlig forventet heterozygositet (H e ), fixation index (F IS ) med P-verdi for test for Hardy-Weinberg likevekt (P HWE ) for alle loci og nøytrale loci. Alle loci Nøytrale loci Prøve År Kode N N A N PA H e F IS P HWE F IS P HWE Altevatn 2010/12 Alt 42 7,2 0,2 0,637 0,190 0,000 0,200 0,000 Barduelva 2000 Bar ,3 1,5 0,640 0,044 0,004 0,107 0,004 Gamaselva 2000 Gam ,1 0,5 0,544 0,022 0,147 0,001 0,425 Gamaselva 2012 Gam ,5 0,3 0,533-0,059 0,000-0,036 0,000 Golivatn 2000 Gol 37 2,9 0,3 0,324 0,117 0,000 0,114 0,000 Maissajohka 2012 Mai 37 4,6 0,2 0,520-0,016 0,000-0,020 0,000 Oustoelva 2009 Ous ,3 0,1 0,541 0,038 0,062 0,058 0,012 Oustoelva 2012 Ous ,3 0,3 0,518 0,014 0,060 0,012 0,061 side 8

10 Siden avviket kunne relateres til seks avvik i Altevatnprøven 2 og avviket for de resterende loci ikke kunne relateres til noe spesielt mønster, ble det valgt å beholde disse loci i datasettet for å sikre statistisk styrke. Antallet av alleler varierte fra en for locus SSspG7 i f.eks. Barduelva til 22 for locus Sco212 i Altevatnprøven og forventet og observert heterozygositet hhv. 0,000 og 0,000 for locus SsspG7 i Barduelva til 0,922 og 0,930 i hhv. Altevatn og Gamaselva 00 (Appendiks 1). Gjennomsnittlig antall alleler over alle mikrosatellitt loci varierte fra 2,9 (Golivatn) til 7,2 (Altevatn) og antall private alleler over alle mikrosatellitt loci varierte fra 0,1 i Oustoelva 2009 til 1,5 i Barduelva (Tabell 1). Forventet heterozygositet varierte fra 0,324 i Golivatn til 0,640/0,637 i Barduelva/Altevatn. Det skal dog bemerkes at ikke alle disse estimater ikke er veiledende, da prøvene representerer lokaliteter og derfor inneholder blandinger av flere populasjoner. Testen for nøytralitet blant mikrosatellittene viste at fire loci var påvirket av seleksjon på 0,99 konfidens nivå og ytterligere tre loci kan være påvirket av seleksjon hvis 0,95 konfidens nivået inkluderes (Appendiks 2). For å sikre at estimatene av effektive populasjonsstørrelser og familiestruktur baseres på nøytrale loci splittes datasettet i to; et datasett med 12 nøytrale loci og et med alle 19 mikrosatellitter. Som nevnt ovenfor var Altevatnprøven assosiert med flest avvik fra HWE (6/4 hhv. før/etter Bonferroni korreksjon) og viste sterkt positiv F IS verdi både ved nøytrale og alle loci (Tabell 1). Siden avvikene er assosiert med homozygot overskudd (positiv F IS ) er det mest sannsynlig underliggende populasjonsstruktur/wahlund effekt som gir opphav (som også indikert i fotnote 2). Golivatn skiller seg også ut med en signifikant og stor positiv F IS -verdi. I dette tilfelle må avviket tilskrives innavl fremfor blanding av populasjoner, hvilket også er reflektert i de genetiske diversitets mål. Gamaselva 2012 prøven viste også avvik fra HWE men med liten negativ F IS. Men bare 1 ut av 7 prøver var signifikante etter Bonferroni korreksjon. Kun Oustoelva 2009 prøven på nøytrale loci viste avvik fra HWE assosiert med positiv F IS. Men dette var ikke signifikant etter Bonferroni korreksjon og bør derfor ikke bemerkes ytterligere. Tabell 2. Genetiske parametere bestemt med SNPs: antall genotypet individer (N), antall gjenværende individer etter filtrering (N RET ), og gjennomsnittlig forventet (H e ) og observert (H o ) heterozygositet. Prøve År N N RET H e H o Altevatn ,293 0,259 Altevatn ,277 0,241 Barduelva ,317 0,319 Gamaselva ,231 0,236 Gamaselva ,218 0,230 Golivatn ,072 0,076 Maissajohka ,232 0,236 Oustoelva ,281 0,287 Oustoelva ,259 0,264 2 Altevatnprøven forventes at avvike fra HWE, da denne prøve inneholder individer fra ulike populasjoner og dermed ikke oppfyller et av kravene for HWE. side 9

11 Figur 3. Prinsipal komponent analyse med; A nøytrale mikrosatellitter; B alle mikrosatellitter. Av de opprinnelige 6500 SNP loci kunne 3449 klassifiseres som enkelt locus SNPs og viste 2 alleler i databasen. Sammenligningen av de replikate prøver viste at bare 30 loci avvek fra den originale genotypen og da bare i et individ. Dette gir en framragende repeterbarhet på mer enn 99 %. 262 loci ble etterfølgende ekskludert grunnet MAF < 0.01 og 12 SNPs ble ekskludert da de bare ble funnet i mindre enn 5 % av individene. Seks individer ble ekskludert fra analysene siden mindre enn 95 % av de restene SNPs kunne kalles. Altså inneholder det endelige datasett 262 individer genotypet på 3135 SNPs. Gjennomsnittlig forventet (H e ) og observert (H o ) heterozygositet varierte fra 0,072 og 0,076 i Golivatn til 0,317 og 0,319 i Barduelva (Tabell 2). Tilhørighet av storvokst ørret For å verifiserer at Oustoelva er gytelokalitet for storvokst ørret i Altevatn ble det innsamlet flere individer i Altevatn, Gamaselva, Oustoelva samt Maissajohka for å øke antallet av mulige gytelokaliteter, øke den genetiske variasjonen (gjennom at øke antall individer) og øke antallet av storvokst ørret inkludert i datasettet. Tilhørighet og populasjonsstruktur ble estimert med to ulike tilnærminger, hvor en grupperer individer på basis av allele frekvenser (prinsipal komponent analysen) og de resulterende prinsipale komponenter, mens STRUCTURE analysen ligger vekt på Hardy-Weinberg og koblingslikevekt mellom individer og loci. Videre ble tilhørighet og populasjonsstrukturen undersøkt med både nøytrale og alle mikrosatellitter og 3135 SNPs. Prinsipal komponent analysen med bare nøytrale mikrosatellitter forklarte 36,1 % og 32,0 % av variasjonen i systemet og grupperte de to prøver fra Oustoelva i tillegg til 22 individer fra Altevatn i en dimensjon (Figur 3). Gamaselva, Barduelva, Maissajohka, og 14 individer fra Altevatn i en annen dimensjon og Golivatn i en egen dimensjon. Analysen med alle mikrosatellittene viste samme mønster og forklarte 34,5 % og 31,7 % av variasjonen i systemet. Bare seks og fem individer fra Altevatn (nøytrale/alle mikrosatellitter) ble ikke tilordnet noen gruppe med denne tilnærming. STRUCTURE analysen med alle mikrosatellittene viste samme gruppering som prinsipal komponent analysene (Figur 4) og tilordnet de samme Altevatn individer, i tillegg til at ytterligere tre individer fra Altevatn ble tilordnet til Gamaselva (Appendiks 3). side 10

12 Figur 4. STRUCTURE-analyse med 19 mikrosatellitter (A) og 3135 SNPs (B) av de otte prøver inkludert i denne undersøkelse. STRUCTURE-analysen ble utført uten a priori informasjon om individets lokalitet resulterte i identifisering av tre (DK = 3) genetiske grupper. Hver horisontale linje representerer den genetiske sammensetning for ett individ og andel av farge tilkjennegir forholdet av genetisk tilhørighet til de identifiserte genetiske enheten. Bemerk at tilordning av individer fra Altevatnprøven til Gamas og Oustoelvagruppene er helt lik for de to markørtyper. STRUCTURE analysen med de 3135 SNPs viste akkurat den samme gruppering og tilordning av individer fra Altevatn som analysene med mikrosatellitter (Figur 4). Alle estimater var i tillegg assosiert med q-verdier > 0,80, noe som støtter sterk strukturering. Sammenlignes graden av reproduktiv reproduksjon mellom de identifiserte grupper av individer er Oustoelva-gruppen signifikant forskjellig fra Gamaselva (F ST hhv. 0,206 og 0,196 for mikrosatellitter og SNPs) og fra Golivatn (F ST hhv. 0,381 og 0,439 for mikrosatellitter og SNPs) (Tabell 3). Tabell 3. Parvise F ST -verdier mellom de identifiserte grupper av individer fra Oustoelva, Gamaselva og Golivatn bestemt med mikrosatellitter (over diagonalen) og SNPs (under diagonalen). Alle verdier er høysignifikante (P < 0.001). Gamas-Gruppe Ousto-Gruppe Goli-Gruppe Gamas-Gruppe - 0,206 0,347 Ousto-Gruppe 0,196-0,381 Goli-Gruppe 0,418 0,439 - side 11

13 Figur 5. Sammenheng mellom lengde og tilhørighet for de 37 Altevatnindivider. Lengden (mm) av individene ble gruppert i grupper av 100 mm. Tilordningsanalysene identifiserte 21 individer i Altevatn som tilhører Oustoelva og som har lengde og kjønnsinformasjon. Av disse individer er 9 hunfisk og 12 hanfisk. Sett bort fra en juvenil fisk på 122 mm var gjennomsnittslengden ± Cl for hhv. hunn og hanfisk på 520 ± 117 mm og 499 ± 100 mm. Hvis lengden for Altevatnindividene assosieres med gruppene som ble identifisert i tilordningsanalysene tilordnes 100 % av individene mellom 601 og 800 mm og 80 % av individene mellom 501 mm og 600 mm til Oustoelva. Derimot tilordnes individer opp til 500 mm likt til Ousto og Gamaselva (Figur 5). Altså kan 92 % (12 ut av 13 individer) av individene som ble definert som storvokst ørret tilordnes Oustoelva (Figur 5, Appendiks 3). Dette er et sjeldent klart resultat og det antas derfor, basert på dette materialet, at Oustoelva representerer gytelokaliteten for den overveiende del av storvokst Altevatn ørret. Genetisk variasjon i identifiserte grupper av ørret og familiestruktur i Oustoelva Gruppen av Oustoelva individer viste et færre gjennomsnittlig antall alleler og lavere forventet heterozygositet bestemt ved mikrosatellitter enn Gamaselva, men fler/høyere en Golivatn (Tabell 4). Derimot har Oustoelva høyere forventet heterozygositet når estimatet baseres på SNPs. Altså er det ingen klare mønstre for genetisk variasjon mellom de identifiserte gruppene. Tabell 4. Genetisk diversitet bestemt med mikrosatellitter og SNPs for gruppene av ørret identifisert ved tilhørighetsanalysen. Antall genotypet individer (N) med mikrosatellitter, antall genotypet individer med SNPs etter filtrering (N RET ), gjennomsnittlig antall alleler (mikrosatellitter), og gjennomsnittlig forventet (H e ) heterozygositet (mikrosatellitter/snps). Mikrosatellitter SNPs Prøve N/Nret N A H e H e Gamas-Gruppe 131/112 6,9 0,605 0,255 Ousto-Gruppe 94/92 5,8 0,551 0,277 Goli-Gruppe 37/24 2,9 0,324 0,072 side 12

14 Tabell 5. Effektiv populasjonsstørrelse (N e ) med konfidensintervall av ørret fra Oustoelva innsamlet i 2009 og 2012 bestemt med tre ulike metoder. Prøve Ne (Cl) OneSamp LDNe Colony Oustoelva (18-31) 18 (12-28) 24 (14-47) Oustoelva (24-45) 37 (20-103) 24 (15-47) Den effektive populasjonsstørrelsen for de to prøvene (2009/2012) av Oustoelva ørret og ved de tre ulike bestemmelsesmetoder var ikke signifikant forskjellig og varierte mellom 18 ( CL 12-28) og 37 (Cl ) (Tabell 5). Blant undersøkte ungfisk fra Oustoelva ble det identifisert hhv. 7 og 6 fullsøsken og 98 og 76 halvsøsken i prøvene av ungfisk innsamlet i Oustoelva i 2009 og 2012 (Figur 6). Det ble estimert at 12 fedre og 11 mødre er det parentale opphav til ungfisken i 2009 prøven og 13 fedre og 11 mødre er det parentale opphav til ungfisken i 2012 prøven (Appendiks 4) og at det fantes 30 familier i hver prøve. Det ble estimert at individ Alt12038 (hanfisk) har bidratt til en familie i 2009 prøven og individene Alt12017 (hunfisk) og Alt12022 (hanfisk) har bidratt til 3 og 1 familier i 2012 prøven. Naturlig seleksjon i identifiserte genetiske grupper Seleksjonstesten av mikrosatellitter viste at loci SSspG7 og SaSa_UBA er påvirket av retningsbestemt seleksjon (Appendiks 2). Funksjonen til locus SSspG7 er ukjent og tidligere studier gjort med dette locus har ikke identifisert dette. Locus SaSa_UBA ble derimot inkludert i dette studiet, da det er vist å være sterkt linket til MHC I i laksefisk. Sammenlignes allelfrekvensen for dette locus med de grupper som ble identifisert i STRUCTURE er det klart at dette locus nesten er fiksert på allel 298 for Ousto-gruppen, hvor i mot individene inkludert i Gamas-gruppen viser større variasjon (Figur 7). Sammen med seleksjonstesten antyder at dette at individene i Ousto-gruppen antageligvis har gjennomgått lokale tilpasninger for denne egenskap. Figur 6. Individbasert plots fra COLONY 1.2 av fullsøsken og halvsøsken kombinasjoner estimert på basis av 12 nøytrale mikrosatellitt loci analysert i ungfisk innfanget i Oustoelva i 2009 og Den inklusive og eksklusive sannsynlighet var satt konservativt høyt (p < 0,01). side 13

15 Figur 7. Allelfrekvenser for locus SaSa_UBA (MHC I) i Ousto- og Gamas-gruppene bestemt i STRUCTURE og som ble vist at være påvirket av retningsbestemt seleksjon. Seleksjonstesten over de 3135 SNPs og alle prøver identifiserte 83 loci, med en F ST - range på 0,473 til 0,980, som potentielt er påvirket av retningsbestemt seleksjon (Figur 8, Tabell 6). Dette indikerer at disse 83 loci medvirker sterkt, via lokal adaptasjon, til den strukturering som generelt er observert i dette studiet. Dette støttes videre av de høye F ST -verdier assosiert med disse loci. Ved å sammenligne Ousto- vs. Gamas-gruppene ble det identifisert 43 loci, med en F ST - range på 0,480 til 0,880, som potentielt er påvirket av retningsbestemt seleksjon. Selv om dette viser at gruppene i systemet er påvirket av retningsbestemt seleksjon og sannsynligvis har gjennomgått lokale tilpasninger, gir det ingen informasjon om egenskapen storvokst ørret et genetisk betinget. Derfor ble data filtrert og det ble foretatt en Store mot Små -individer sammenligning i Altevatn prøven. Denne testen identifiserte 11 loci med F ST på 0,473 til 0,551. Derimot, når store individer fra Altevatn som ble tilordnet til Oustoelva ble sammenlignet små individer som ble tilordnet til Gamaselva, ble det identifisert 28 loci som potentielt er påvirket av naturlig seleksjon (Figur 8). Disse 28 loci viste F ST verdier fra 0,720 til 0,920 (Tabell 6) og er dermed drivere for den reproduktive isolasjonen mellom storvokste Oustoørret og små Gamasørret. Dette betyr også at de 28 loci potentielt kan være den genetiske basis for den storvokste egenskapen i Oustoørreten. Tabell 6. Oversikt over SNP loci som ble identifisert som potentielt påvirket av rettbestemt seleksjon identifikasjon i ulike hierarkiske sammenligner. Se også Metode avsnitt for ytterligere forklaring. Sammenligning Antall loci Nedre F ST Øvre F ST identifisert verdi verdi Alle prøver 83 0,473 0,980 Ousto- vs. Gamaselvagruppe 43 0,480 0,880 Altevatn stor vs. små fenotype 11 0,473 0,551 Altevatn Stor fra Ousto- vs. lille Gamaselvagruppe 28 0,720 0,920 side 14

16 Figur 8. Seleksjonstest for outlier loci blant de 3135 SNPs via ulike hierarkiske tilnærminger. Outliers ble estimert over alle lokaliteter, i Oustu- vs. Gamasgruppen, mellom storvokste individer fra Altevatn som ble tilordnet til Oustoelva og Gamas-gruppen, og mellom store og små individer i Altevatn. Signifikansnivå for outliers P < Analyser relatert til kultiveringsopplegg for storvokst ørret i Altevatn Det ble modellert hvilke potensielle effekter utsetninger av kultivert ørret kan ha på den effektive populasjonsstørrelsen av det samlede system, altså vill fisk og kultivert fisk. Det ble anvendt effektive populasjonsstørrelser tilsvarende det som ble bestemt i dette studiet for Oustoelva vill fisk (Nw = 25-45) og Nc fra 10 til 20 for kultivert fisk under antagelsen at det ikke er mulig at oppnå samme variasjon i et kultiveringsprogram som i villfisk. Modellen viste at ved lave bidrag av kultivert fisk til den samlede populasjonen ses en økning av Nwc opptil cirka % hvoretter bidraget vil ha en negativ effekt på systemet (Figur 9). Dette spesielt hvis kultivert fisk har lav effektiv populasjonsstørrelse. side 15

17 Figur 9. Modellering av effekten ved innblanding av kultivert fisk med ulike effektiv populasjonsstørrelse (Nc) på den totale effektive populasjonsstørrelsen (Nwc) under ulike effektiv populasjonsstørrelser av vill fisk (Nw). 4 Diskusjon Denne undersøkelsen hadde til formål 1) å bestemme om storvokst ørret i Altevatn kan knyttes til én bestemt lokalitet ved bruk av nøytrale og selekterte genetiske markører, 2) å beskrive den genetiske variasjonen i systemet og effektiv populasjonsstørrelse i en eventuell storørretstamme for bruk i vurdering av kultiveringsstrategien, 3) å undersøke om storvokst ørret kunne assosieres med adaptive genetiske egenskaper, 4) å syntetisere 1), 2), og 3) for tilrådning til bevarelse av en eventuell unik storvokst ørretstamme samt kultiveringsopplegg for storvokst ørret i Altevatn. Genetisk struktur og tilhørighet av storvokst ørret i Altevatnsystemet De to temporale prøver fra Oustoelva dannet sammen med 50 % av Altevatnindividene sin egen gruppe, mens Gamaselvaindividene ble gruppert med prøver fra Maissajohka, Barduelva og 41% av Altevatnindividene. Denne genetiske strukturen ble støttet av begge de statistiske metodene og resultatet var uavhengig av om det anvendes mikrosatellitter eller SNPs til bestemmelsen. Samme uavhengighet av metode og markørtype var også gjeldende for tilordning av individer fra Altevatn til spesifikke lokaliteter og estimatene var assosiert med høye q-verdier. Dette understøttes videre i graden av reproduktiv adskillelse mellom de identifiserte grupper av fisk. Sammenholdes F ST verdiene med STRUCTURE resultatene er det klart at der er særdeles lite genetisk utveksling mellom Oustoelva- og Gamaselva-gruppen, hvilket også er reflektert i Hardy-Weinberg estimatene for Oustoelva. Altså er Oustoelva særdeles genetisk isolert fra alle andre prøver/lokaliteter i systemet. Videre er det spesielt at lokaliteter (Maissajohka) oppstrøms Oustoelva grupperer seg med Gamaselva og ikke seg selv eller Oustoelva. Dette viser at Oustoelvaindividene sannsynligvis har en sterk grad av assortativ parring 3 og at avkommet/populasjonen er utsatt for sterke selektive krefter som effektivt hindrer hybridisering (innblanding) fra andre populasjoner. Generelt viser overstående at den estimerte genetiske strukturen og tilordning av individer fra Altevatn til de ulike gyteelvene er ganske sikker. 3 det forhold at individer med samme arveegenskaper bevist søker sammen side 16

18 I denne undersøkelsen ble > 90% (12/13) av de storvokste individene tilordnet Oustoelva, hvilket er i overensstemmelse med resultatene funnet av Hanssen & Præbel (2012). Det er bemerkelsesverdig at alle de største individene (> 601 mm) ble tilordnet Oustoelva. Materialet som denne undersøkelsen bygger på er fremdeles ikke spesielt stort siden det er 13 storvokste individer ut av 42 individer totalt. Men siden fenotypen (storvokst) er så tett assosiert med genotypen (Oustoelva) er det lite som tyder på at ytterligere innsamlinger vil forandre på dette resultatet. Det konkluderes derfor at storvokst Altevatnørret overveiende har tilhørighet til Oustoelva. Genetisk variasjon og familiestruktur i Oustoelva Den genetiske variasjonen i Oustoelva bestemt med mikrosatellitter og SNPs var ikke forskjellig fra de andre lokaliteter/grupper inkludert i denne undersøkelsen. Dette gjelder både for sammenligning mellom temporale og spatiale prøver og for gruppene bestemt i STRUCTURE. Bare Barduelva skiller seg ut med høyere antall alleler og forventet heterozygositet i forhold til prøvene i Altevatnsystemet, hvilket også er funnet i tidligere undersøkelser i dette området (Præbel et al. 2011). Men Barduelva antas at ha lite innflytelse på populasjonene i Altevatnsystemet, da genflyt fra Barduelva til Altevatnsystemet er fysisk umulig på grunn av Altevatndemningen. Estimatene av den effektive populasjonsstørrelsen for de to temporale prøver av ungfisk fra Oustoelva viste verdier fra N e = 18 (CL 12-28) til N e = 37 (Cl ). Siden 95% konfidensintervall overlapper mellom ulike år ogmellom de tre ulike metodene er det ikke signifikant forskjellige resultater, og den faktiske populasjonsstørrelsen av Oustoelv-ørret må derfor påregnes å være mindre enn 50. Generelt er disse estimater lave sammenlignet med ørret fra andre systemer (f.eks. Hansen et al. 2007). Følges generelle føringer i litteraturen er den effektive populasjonsstørrelsen for Oustoelva mindre enn det som tilrådes i et forvaltningsmessig perspektiv (se f.eks. Rieman & Allendorf 2001). Men det er generelt vanskelig at vurderer den absolutte betydningen av den effektive populasjonsstørrelsen, siden populasjonsspesifikke karakterer (se fotnote 1) vil ha effekt på estimatet. I denne sammenheng må f.eks. assortativ parring forventes å påvirke resultatet, dette spesielt siden den storvokste fenotypen vil forsterke et selektivt partnervalg. Det må derfor forventes at N e ikke reflekterer det absolutte antall gytere og den genetiske variasjonen i systemet er sannsynligvis høyere enn estimert her. Det bør derfor foretas en vurdering av faktisk populasjonsstørrelse bestemt ved f.eks. telemetri, gjenfangst av merket fisk og/eller faktiske observasjoner, for eventuelle konkrete tilrådninger basert på dette estimatet. Det parentale opphav i de to temporale prøvene fra Oustoelva ble estimert til 12/13 fedre og 11/11 mødre i 2009/2012, hvilket i begge prøver ble estimert å resultere i 30 fullsøskenfamilier. Dette støtter opp om tidligere analyser (Præbel 2011), og indikerer basert på disse to prøver at gytepopulasjonens størrelse er konstant. Samtidig viser dette også at det er begrenset med individer som gyter hvert år, hvilket også stemmer med estimatene av den effektive populasjonsstørrelsen. Dette spesielt siden det ikke er realistisk at den fulle variasjon er innsamlet i dette prosjektet. Uansett viser resultatet at det sannsynligvis ikke skal skje store reduksjoner i antall foreldre før den effektive populasjonsstørrelsen (N e ) forandres. Det ble estimert at tre individer fra Altevatnprøven har bidratt til totalt fire familier i prøvematerialet, hvilket er positivt med henblikk på styrken av analysen og ved eventuelle fremtidige undersøkelser av dette system. Individ Alt12022 ble estimert til å være foreldre i 2012 prøven, men individet ble innsamlet i 2010 og dette blir derfor et usikkert estimat. Aldersavlesningen på ungfisk i systemet viste at ungfisken var mellom 1 og 3 år gammel. Videre er det observert at ungfisk blir i elvene rundt Altevatn frem til 3 års alderen (pers. medd.. Kanstad-Hanssen). Det er derfor ikke usannsynlig at individ Alt12022 faktisk har bidratt til 2012 prøven. Uansett understreker dette at slike tester forblir estimater så lenge metoden ikke kan kalibreres gjennom f.eks. test på kjente foreldre versus. avkom. side 17

19 Adaptive signaturer i Altevatnsystemet Loci som er påvirket av naturlig seleksjon er viktige for den generelle genetiske strukturering av systemer siden de er involvert i lokale tilpasninger og dermed driver den reproduktive adskillelsen mellom populasjoner (se f.eks. Bernatchez et al. 2010; Bradbury et al. 2013). I et forvaltningsmessig perspektiv er lokale tilpasninger (adaptive signaturer) av stor viktighet, siden det er tilpasninger til miljøet som i stor grad driver opprettholdelse og utvikling av genetisk variasjon i naturlige systemer. Adaptive signaturer bør derfor vektlegges tungt i beslutninger som vedrører bevarelse av naturlige resurser, spesielt siden ny forskning viser at slike signaturer kan forandres i stamfiskeproduksjon og ved menneskelig påvirkning (se f.eks. Baskett et al. 2013; Milot et al. 2013). Undersøkelser av lokale tilpasninger har ikke tidligere været en del av vurderingen i dette prosjektet, primært grunnet metodiske utfordringer. Utviklingen av metoder til undersøkelse av genomiske signaturer av naturlig seleksjon har muliggjort at slik informasjon nå kan inkluderes i vurderingen. Denne undersøkelsen viste at mikrosatellitt SaSa_UBA, som er linket til MHC I, er påvirket av retningsbestemt naturlig seleksjon i Altevatn systemet. Denne locus/egenskap er derfor forventet å bidra til lokale adaptasjoner og drive den reproduktive adskillelsen mellom populasjonene. Dette locus ble videre vist å være nesten fiksert i Oustoelva, mens de andre undersøkte lokaliteter derimot viste større allelvariasjon. Fiksering av loci kan i prinsippet fremkomme via flere ulike mekanismer (f.eks. vilkårlig genetisk drift, innavl og seleksjon), men siden Oustoelva ikke viser tegn til at være mer påvirket av genetisk drift eller innavl (basert på N A, H e og F IS ) enn de andre prøver fra Altevatnsystemet, er det rimelig at anta at fikseringen skyldes naturlig seleksjon. Dette er i overensstemmelse med hva andre studier har rapportert for dette locus (F.eks. Hansen et al. 2007). Analysen av de 3135 SNPs identifiserte 83 loci som potensielt er påvirket av retningsbestemt seleksjon i Altevatnsystemet. De 83 loci er dermed er signaturer på lokale tilpasninger og vil bidra sterkt til den genetiske struktureringen innen systemet. Dette ble også vist ved at F ST verdiene for de 83 SNP loci (F ST = 0,473-0,980) er mye høyere enn F ST verdiene som ble bestemt med alle 3135 SNP loci mellom populasjonene (F ST = ). Omtrent halvparten så mange SNPs (43) viste signaturer på adaptive forskjeller når det bare ble sammenlignet mellom Ousto- og Gamas-gruppene bestemt i STRUCTURE. Men resultatet viser at populasjonene har utviklet lokale adaptasjoner til deres respektive lokaliteter og at naturlig seleksjon fremdeles påvirker systemet. Det ble forsøkt å koble den storvokste fenotypen sammen med SNP analysene for å undersøke om den storvokste egenskap kunne relateres til adaptive forskjeller. Først ble det sammenlignet storvokste og små individer i Altevatnprøven på tvers av de identifiserte gruppene. Det ble estimert at 11 SNPs er påvirket av naturlig retningsbestemt seleksjon, men med relativt lave F ST verdier sammenlignet med de øvrige sammenligninger. Svakheten i denne sammenligning er at storvokste individer kan ha opphav i andre lokaliteter enn Oustoelva, som tilfellet for det ene individet som ble tilordnet til Gamaselva. Dertil kommer at små individer kan være juvenile fisk fra Oustoelva selv. Derfor ble de storvokste individene som ble tilordnet til Oustoelva sortert ut og sammenlignet med Gamas-gruppen. Denne sammenligningen resulterte i at det ble identifisert 28 loci som potensielt er relatert til den storvokste egenskap. Disse 28 loci viste videre F ST fra 0,720 til 0,920, hvilket tilsier at disse loci er nær fiksert i de pågjeldende individer og dermed driver den adaptive adskillelse mellom de to fenotyper. Et slikt resultat er bemerkelsesverdig og tilsier et kraftig seleksjonspress for de 28 loci assosiert til de to fenotypene. Det er altså klare indikasjoner på adaptive signaturer i systemet og dermed på at ørreten i Oustoelva har gjennomgått lokale tilpasninger og at denne populasjonen er relatert til en storvokst egenskap. Videre er den storvokste egenskap koblet til lokale tilpasninger drevet av en sterk naturlig seleksjon. Dette ble vist via de adaptive loci men også via den sterke reproduktive adskillelsen mellom de ulike populasjonene i systemet. Det vil til tross for lav Ne sannsynligvis bidra til å opprettholde en genetisk avgrenset populasjon. For eksempel ble det vist at juvenile individer fra Oustoelva har en høyere kondisjonsfaktor enn individer fra andre potensielle storørretlokaliteter i Altevatnsystemet. En høyere kondisjonsfaktor bør gi en fordel under utvandringen til Altevatn, i tillegg til å fremme potensielt høyere overlevelse i elven (f.eks. Saloniemi et al. 2004). Om denne egenskapen er oppstått grunnet side 18

Rømming 1-2015 Sporing av rømt oppdrettslaks fanget i Ørstaelva høsten 2015

Rømming 1-2015 Sporing av rømt oppdrettslaks fanget i Ørstaelva høsten 2015 Rømming 1-2015 Sporing av rømt oppdrettslaks fanget i Ørstaelva høsten 2015 Wennevik, V., Quintela, M., Sørvik, A.G.E., Skaala, Ø., Glover, K.A. Havforskningsinstituttet, Postboks 1870, Nordnes, 5817 Bergen

Detaljer

Genetisk variasjon, betydning for bestanders overlevelse og avgjørende for vellykket kultivering

Genetisk variasjon, betydning for bestanders overlevelse og avgjørende for vellykket kultivering Genetisk variasjon, betydning for bestanders overlevelse og avgjørende for vellykket kultivering Sten Karlsson Storørreten en glemt nasjonalskatt, Lillehammer 23-24 november 216 Viktige momenter ved utsetting

Detaljer

Fiskebiologisk undersøkelse i Langvatn i Kvæfjord kommune 2012

Fiskebiologisk undersøkelse i Langvatn i Kvæfjord kommune 2012 . Rapport 213-3 Fiskebiologisk undersøkelse i Langvatn i Kvæfjord kommune 212 Øyvind Kanstad-Hanssen Rapport nr. 213-3 sider - 8 Tittel - Fiskebiologisk undersøkelse i Langvatn, Kvæfjord kommune i 212.

Detaljer

Hvordan bevarer vi den genetiske variasjonen i foredlingen samtidig som vi henter ut størst mulig gevinst?

Hvordan bevarer vi den genetiske variasjonen i foredlingen samtidig som vi henter ut størst mulig gevinst? Hvordan bevarer vi den genetiske variasjonen i foredlingen samtidig som vi henter ut størst mulig gevinst? Hva er genetisk variasjon? Man kan se på genetisk variasjon på mange nivå Variasjon i egenskaper

Detaljer

R Opphavet til rømt smolt i Oltesvikbekken i Ryfylke våren 2008 A P P O R T. Rådgivende Biologer AS 1168

R Opphavet til rømt smolt i Oltesvikbekken i Ryfylke våren 2008 A P P O R T. Rådgivende Biologer AS 1168 R Opphavet til rømt smolt i Oltesvikbekken i Ryfylke våren 2008 A P P O R T Rådgivende Biologer AS 1168 Rådgivende Biologer AS RAPPORT TITTEL: Opphavet til rømt laksesmolt i Oltesvikbekken i Ryfylke våren

Detaljer

Rapport 2012-07 Laks i øvre del av Salangselva - ungfiskregistrering og drivtelling i 2011

Rapport 2012-07 Laks i øvre del av Salangselva - ungfiskregistrering og drivtelling i 2011 . Rapport 2012-07 Laks i øvre del av Salangselva - ungfiskregistrering og drivtelling i 2011 Øyvind Kanstad-Hanssen Rapport nr. 2012-07 Antall sider - 6 Tittel - Laks i øvre del av Salangselva - ungfiskregistrering

Detaljer

Rømming 1-2014 Sporing av rømt oppdrettslaks fanget i flere elver i Ryfylke høsten 2013

Rømming 1-2014 Sporing av rømt oppdrettslaks fanget i flere elver i Ryfylke høsten 2013 Rømming 1-214 Sporing av rømt oppdrettslaks fanget i flere elver i Ryfylke høsten 213 Wennevik, V., Quintela, M., Sørvik, A.G.E., Skaala, Ø., Glover, K.A*. * = kontaktperson Havforskningsinstituttet, Postboks

Detaljer

Hvordan drive en god fiskekultivering i ei lakseelv? Årsmøte NL 24.mai 2016 Drammen Anne Kristin Jøranlid

Hvordan drive en god fiskekultivering i ei lakseelv? Årsmøte NL 24.mai 2016 Drammen Anne Kristin Jøranlid Hvordan drive en god fiskekultivering i ei lakseelv? Årsmøte NL 24.mai 2016 Drammen Anne Kristin Jøranlid Kort om retningslinjene Genetisk veileder Opphavskontrollen Retningslinjer for utsetting av anadrom

Detaljer

Genetisk struktur hos ørret i Mjøsa

Genetisk struktur hos ørret i Mjøsa HiT skrift nr 2/2011 Genetisk struktur hos ørret i Mjøsa Jens Wollebæk, Knut H. Røed og Jan Heggenes Institutt for natur, helse og miljø (Bø) Høgskolen i Telemark Porsgrunn 2011 HiT skrift nr 2/2011 ISBN

Detaljer

Genetiske interaksjoner: Kunnskapsstatus og innblanding av oppdrettsfisk i elvene. Kevin A. Glover Ø. Skaala, V. Wennevik G.L. Taranger og T.

Genetiske interaksjoner: Kunnskapsstatus og innblanding av oppdrettsfisk i elvene. Kevin A. Glover Ø. Skaala, V. Wennevik G.L. Taranger og T. Genetiske interaksjoner: Kunnskapsstatus og innblanding av oppdrettsfisk i elvene Kevin A. Glover Ø. Skaala, V. Wennevik G.L. Taranger og T. Svåsand Bakgrunn Norge er verdens største produsent av atlantisk

Detaljer

Forekomst av rømt ungfisk i elver nær settefiskanlegg i Sør-Trøndelag og Møre og Romsdal våren 2016 R A P P O R T. Rådgivende Biologer AS 2243

Forekomst av rømt ungfisk i elver nær settefiskanlegg i Sør-Trøndelag og Møre og Romsdal våren 2016 R A P P O R T. Rådgivende Biologer AS 2243 Forekomst av rømt ungfisk i elver nær settefiskanlegg i Sør-Trøndelag og Møre og Romsdal våren 2016 R A P P O R T Rådgivende Biologer AS 2243 Rådgivende Biologer AS RAPPORT-TITTEL: Forekomst av rømt ungfisk

Detaljer

Oppdretts- og villaks i Altaelva og Repparfjordelva 2014. Forskningsleder Tor F. Næsje

Oppdretts- og villaks i Altaelva og Repparfjordelva 2014. Forskningsleder Tor F. Næsje Oppdretts- og villaks i Altaelva og Repparfjordelva 2014 Forskningsleder Tor F. Næsje Meny Sportsfisket i Repparfjordelva Sportsfisket i Altaelva Høstfisket i Repparfjorelva Høstfisket i Altaelva Sportsfiske

Detaljer

Genbankbasert Kultivering

Genbankbasert Kultivering Genbankbasert Kultivering Sten Karlsson, Ola Ugedal, Arne Jensen NINA, Trondheim Håvard Lo, Espen Holthe, Bjørn Bjøru, Veterinærinstituttet, Trondheim Rune Limstand, Tor Næss, Monika Klungervik, Daniela

Detaljer

Genetisk variasjon i naturlige populasjoner. grunnlag for foredling. Mari Mette Tollefsrud. Foto: Arne Steffensrem

Genetisk variasjon i naturlige populasjoner. grunnlag for foredling. Mari Mette Tollefsrud. Foto: Arne Steffensrem Genetisk variasjon i naturlige populasjoner grunnlag for foredling Mari Mette Tollefsrud Foto: Arne Steffensrem Genetisk variasjon Summen av forskjeller i genotypene til individene i en populasjon Oppstår

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1120 Statistiske metoder og dataanalyse 2. Eksamensdag: Tirsdag 2. juni 2009. Tid for eksamen: 14.30 17.30. Oppgavesettet

Detaljer

FLERVALGSOPPGAVER EVOLUSJON

FLERVALGSOPPGAVER EVOLUSJON FLERVALGSOPPGAVER EVOLUSJON FLERVALGSOPPGAVER FRA EKSAMEN I BIOLOGI 2 V2008 - V2011 Disse flervalgsoppgavene er hentet fra eksamen i Biologi 2 del 1. Det er fire (eller fem) svaralternativer i hver oppgave,

Detaljer

Ny kunnskap i avlsprogram. Anna K. Sonesson

Ny kunnskap i avlsprogram. Anna K. Sonesson Ny kunnskap i avlsprogram Anna K. Sonesson Avlsprogram Design: strategien som brukes for å forbedre genetiske anlegg Avlsverdiberegning/seleksjonskriterium Avlsmål/ definisjon av egenskaper Nye teknikker

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere

Detaljer

Dødelighet og avstander til akuttmedisinske tjenester - en eksplorerende analyse*

Dødelighet og avstander til akuttmedisinske tjenester - en eksplorerende analyse* og avstander til akuttmedisinske tjenester - en eksplorerende analyse* Nina Alexandersen og Terje P. Hagen Avdeling for helseledelse og helseøkonomi, Universitetet i Oslo Kommunikasjon: t.p.hagen@medisin.uio.no

Detaljer

Kartlegging av fiskebestandene i Fustavassdraget i forkant av rotenonbehandling

Kartlegging av fiskebestandene i Fustavassdraget i forkant av rotenonbehandling . Rapport 213-6 Kartlegging av fiskebestandene i Fustavassdraget i forkant av rotenonbehandling Øyvind Kanstad Hanssen Øyvind Kanstad-Hanssen Rapport nr. 213-6 sider - 4 Tittel - Kartlegging av fiskebestandene

Detaljer

Øving 12, ST1301 A: B:

Øving 12, ST1301 A: B: Øving 12, ST1301 Oppgave 1 En to-utvalgs t-test forutsetter at observasjonene i hvert utvalg X 1 ; X 2 ; : : : ; X n og Y 1 ; Y 2 ; : : : ; Y m er uavhengige normalfordelte variable. Hvis testen oppfører

Detaljer

sporing av «rømt» laks med SNP-basert slektskapstesting Kjøglum S., Lien S., Kent M.; Grove H.; Lie Ø.

sporing av «rømt» laks med SNP-basert slektskapstesting Kjøglum S., Lien S., Kent M.; Grove H.; Lie Ø. Konseptbevisgenetisk sporing av «rømt» laks med SNP-basert slektskapstesting Kjøglum S., Lien S., Kent M.; Grove H.; Lie Ø. Bakgrunn Myndigheter, NGO-er og FHL vil ansvarlig gjøre norske oppdrettere for

Detaljer

Registrering av laks og sjøørret i fisketrappa i Nedre Fiskumfoss 2012

Registrering av laks og sjøørret i fisketrappa i Nedre Fiskumfoss 2012 KLV-notat nr 2, 2013 Registrering av laks og sjøørret i fisketrappa i Nedre Fiskumfoss 2012 Namsos, juni 2013 Karina Moe Foto: Karina Moe Sammendrag I perioden 31.mai til 18.oktober 2012 ble oppgangen

Detaljer

Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG

Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG AVDELING FOR MAT- OG MEDISINSK TEKNOLOGI Matteknologisk utdanning Kandidatnr: Eksamensdato:

Detaljer

Hvor er responsen når vi ikke bruker den? Tore Vignes og Stein Evensen

Hvor er responsen når vi ikke bruker den? Tore Vignes og Stein Evensen Hvor er responsen når vi ikke bruker den? Tore Vignes og Stein Evensen Responser Noen bruker vi hele tiden Noen bruker vi sjelden Noen har vi nesten ikke brukt! Where is the f.. response!? Klasser Funksjonelle

Detaljer

6.2 Signifikanstester

6.2 Signifikanstester 6.2 Signifikanstester Konfidensintervaller er nyttige når vi ønsker å estimere en populasjonsparameter Signifikanstester er nyttige dersom vi ønsker å teste en hypotese om en parameter i en populasjon

Detaljer

Bedømmelse av usikkerhet

Bedømmelse av usikkerhet Bedømmelse av usikkerhet Karl Halvor Teigen Psykologisk institutt Universitetet i Oslo Hvorfor bedømmingspsykologi? All planlegging inneholder usikkerhet Graden av usikkerhet beror ofte på skjønn Usikkerhet

Detaljer

Indekser i avlsarbeidet: Kan vi se om de virker? Jørgen Ødegård Avlsforsker

Indekser i avlsarbeidet: Kan vi se om de virker? Jørgen Ødegård Avlsforsker Indekser i avlsarbeidet: Kan vi se om de virker? Jørgen Ødegård Avlsforsker Gentisk fremgang Hver generasjon står på skulderne til forrige generasjon Fremgangen er varig Selv om avlsarbeidet skulle stoppe

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK1000 Innføring i anvendt statistikk Eksamensdag: Torsdag 2. desember 2010. Tid for eksamen: 09.00 13.00. Oppgavesettet er på

Detaljer

Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/

Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/ Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator

Detaljer

Page 1 EN DAG PÅ HELSESTASJONEN. Lises klassevenninnner. Formelen: Du har en hypotese om vanlig høyde

Page 1 EN DAG PÅ HELSESTASJONEN. Lises klassevenninnner. Formelen: Du har en hypotese om vanlig høyde 1 E DAG PÅ HELSESTASJOE Lises klassevenninnner Lise er veldig liten Hva gjør at du sier at hun er liten? Du har en hypotese om vanlig høyde Du har en hypotese om vanlig høyde Du sammenligner Lises høyde

Detaljer

AVLSDATA FRA FØLLFESTIVALEN DEL 1 av Unn Reierstad, cand.scient (NLH/UMB), veterinær (NVH) / RR Reierstad Ridehest

AVLSDATA FRA FØLLFESTIVALEN DEL 1 av Unn Reierstad, cand.scient (NLH/UMB), veterinær (NVH) / RR Reierstad Ridehest AVLSDATA FRA FØLLFESTIVALEN DEL 1 av Unn Reierstad, cand.scient (NLH/UMB), veterinær (NVH) / RR Reierstad Ridehest MATERIALE & METODER : AVLSLÆRE For ethvert dyr er P = GEN + ENV, der P, GEN og ENV er

Detaljer

Vurdering av kvaliteten på undersøkelser om virkninger av trafikksikkerhetstiltak

Vurdering av kvaliteten på undersøkelser om virkninger av trafikksikkerhetstiltak Sammendrag: Vurdering av kvaliteten på undersøkelser om virkninger av trafikksikkerhetstiltak TØI-rapport 984/2008 Forfatter(e): Rune Elvik Oslo 2008, 140 sider Denne rapporten presenterer en undersøkelse

Detaljer

Registrering av laks og sjøørret i fisketrappa i Tømmeråsfossen i 2010

Registrering av laks og sjøørret i fisketrappa i Tømmeråsfossen i 2010 KLV-notat nr. 4 2011 Registrering av laks og sjøørret i fisketrappa i Tømmeråsfossen i 2010 Namsos, januar 2010 Magdalene Langset og Anders Lamberg Innholdsfortegnelse 1. Sammendrag... 2 2. Metode... 3

Detaljer

Genetiske interaksjoner villfisk-oppdrettsfisk

Genetiske interaksjoner villfisk-oppdrettsfisk Genetiske interaksjoner villfisk-oppdrettsfisk Jørgen Ødegård og Celeste Jacq Nofima AHA Oppstartkonferanse Leikanger, april 2011 Rømming av oppdrettslaks - trusselbilde Oppdrettsfisk kan rømme og krysse

Detaljer

Genetiske interaksjoner mellom vill og oppdrettet laks

Genetiske interaksjoner mellom vill og oppdrettet laks Genetiske interaksjoner mellom vill og oppdrettet laks Céleste Jacq, Jørgen Ødegård, Hans B. Bentsen og Bjarne Gjerde Havforskermøtet 2011 Trondheim Rømming av oppdrettslaks - trusselbilde Oppdrettsfisk

Detaljer

KYSTTORSK OG SKREI I LOFOTEN 2009

KYSTTORSK OG SKREI I LOFOTEN 2009 KYSTTORSK OG SKREI I LOFOTEN 2009 Resultater fra DNA-typing av torsk ved bruk av PCR metode Websaknr. 09/12473 Fiskeridirektoratet region Nordland Fiskerikontoret i Svolvær Mai 2009 Erun Thesen Bioingeniør/Inspektør

Detaljer

Sør-Trøndelag Rømt oppdrettslaks i vassdrag F&H, særnr. 2b 2016

Sør-Trøndelag Rømt oppdrettslaks i vassdrag F&H, særnr. 2b 2016 Sør-Trøndelag Vassdragsvise grunnlagsdata I vedleggsrapportene presenterer vi det komplette datamaterialet som er brukt for vurderingen av innslaget rømt slaks i vassdragene. Vi presenterer her resultatet

Detaljer

Brukerundersøkelse ved NAV-kontor i Oslo 2014

Brukerundersøkelse ved NAV-kontor i Oslo 2014 Brukerundersøkelse ved NAV-kontor i Oslo 2014 Januar 2015 Oslo kommune Helseetaten Velferdsetaten Arbeids- og velferdsetaten NAV Oslo Forord Høsten 2014 ble det gjennomført en undersøkelse for å kartlegge

Detaljer

Sjørøye - økologisk og/eller genetisk segregering? Martin-A. Svenning Kim Præbel Øyvind Kanstad-Hanssen Morten Falkegård. Lengde (cm) Alder (år)

Sjørøye - økologisk og/eller genetisk segregering? Martin-A. Svenning Kim Præbel Øyvind Kanstad-Hanssen Morten Falkegård. Lengde (cm) Alder (år) Sjørøye - økologisk og/eller genetisk segregering? Martin-A. Svenning Kim Præbel Øyvind Kanstad-Hanssen Morten Falkegård 30 Lengde (cm) 20 10 0 0 1 2 3 4 5 6 7 8 9 Alder (år) NINAs publikasjoner NINA Rapport

Detaljer

Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

DNA-profiler. DNA analyse fra ekskrementer. Foredragets oppbygning. DNA framtidens overvåkingsmetodikk på store rovdyr?

DNA-profiler. DNA analyse fra ekskrementer. Foredragets oppbygning. DNA framtidens overvåkingsmetodikk på store rovdyr? DNA framtidens overvåkingsmetodikk på store rovdyr? Øystein Flagstad Foredragets oppbygning Generell innledning; metodikk og aktuelle problemstillinger Case study; bestandsovervåkning av jerv Videreutvikling

Detaljer

Utpekning og analyse av ulykkesbelastede steder og sikkerhetsanalyser av vegsystemer

Utpekning og analyse av ulykkesbelastede steder og sikkerhetsanalyser av vegsystemer TØI-rapport 919/2007 Forfattere: Michael Sørensen og Rune Elvik Oslo 2007, 96 sider Sammendrag: Utpekning og analyse av ulykkesbelastede steder og sikkerhetsanalyser av vegsystemer Beste metoder og implementering

Detaljer

Verdens statistikk-dag.

Verdens statistikk-dag. Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator

Detaljer

Kvalitetsnorm for ville bestander av atlantisk laks (Salmo salar)

Kvalitetsnorm for ville bestander av atlantisk laks (Salmo salar) Kvalitetsnorm for ville bestander av atlantisk laks (Salmo salar) Fastsatt ved kgl.res. 23.08.2013 med hjemmel i lov 19. juni 2009 nr 100 om forvaltning av naturens mangfold 13. Fremmet av Miljøverndepartementet.

Detaljer

Å måle det upresise: Årsaker til og konsekvenser av togforsinkelser

Å måle det upresise: Årsaker til og konsekvenser av togforsinkelser Sammendrag: Å måle det upresise: Årsaker til og konsekvenser av togforsinkelser TØI rapport 1459/2015 Forfatter(e): Askill Harkjerr Halse, Vegard Østli og Marit Killi Oslo 2015 71 sider I denne rapporten

Detaljer

TETTHETSSTATUS OVER FISKEBESTANDENE AV AURE OG LAKS I BØYAELVI, HJALMAELVA, KJØLSDALSELVA, MAURSTADELVA OG RIMSTADELVA

TETTHETSSTATUS OVER FISKEBESTANDENE AV AURE OG LAKS I BØYAELVI, HJALMAELVA, KJØLSDALSELVA, MAURSTADELVA OG RIMSTADELVA TETTHETSSTATUS OVER FISKEBESTANDENE AV AURE OG LAKS I BØYAELVI, HJALMAELVA, KJØLSDALSELVA, MAURSTADELVA OG RIMSTADELVA I SOGN OG FJORDANE HØSTEN 2 IS B ER AS UN LABORATORIUM FOR FERSKVANNSØKOLOGI OG INNLANDSFISKE

Detaljer

Forvaltning av moskus på Dovrefjell

Forvaltning av moskus på Dovrefjell 1 Forvaltning av moskus på Dovrefjell Bjørn Rangbru Fylkesmannen i Sør-Trøndelag Hjerkinn 2. juni 2015 2 Rein Utbredelse Moskus (blå utsatt) Moskus lever lenger nord 3 Forvaltning av moskus på Dovrefjell

Detaljer

Skjønn og skivebom: Hvordan vi bedømmer usikkerhet

Skjønn og skivebom: Hvordan vi bedømmer usikkerhet Skjønn og skivebom: Hvordan vi bedømmer usikkerhet Karl Halvor Teigen Psykologisk institutt Universitetet i Oslo Beskrivelse av usikkerhet I tall: Det er en 50% sjanse for regn Med ord: Det er en mulighet

Detaljer

1 8-1: Oversikt. 2 8-2: Grunnleggende hypotesetesting. 3 Section 8-3: Å teste påstander om andeler. 4 Section 8-5: Teste en påstand om gjennomsnittet

1 8-1: Oversikt. 2 8-2: Grunnleggende hypotesetesting. 3 Section 8-3: Å teste påstander om andeler. 4 Section 8-5: Teste en påstand om gjennomsnittet 1 8-1: Oversikt 2 8-2: Grunnleggende hypotesetesting 3 Section 8-3: Å teste påstander om andeler 4 Section 8-5: Teste en påstand om gjennomsnittet Definisjoner Hypotese En hypotese er en påstand om noe

Detaljer

Løsningsforslag ST2301 Øving 11

Løsningsforslag ST2301 Øving 11 Løsningsforslag ST230 Øving Kapittel 6 Exercise I en diploid populasjon i Wright-Fisher-modellen, hvor mange generasjoner tar det før 90% av heterozygotene er tapt? Antar at det er N individer i populasjonen

Detaljer

Videoovervåking av laks og sjøørret i Skjoma i 2006

Videoovervåking av laks og sjøørret i Skjoma i 2006 Videoovervåking av laks og sjøørret i Skjoma i 26 Laksesmolt med tydelige svarte tegninger på finnene Trondheim 9.3.27 Anders Lamberg Håvard Wibe og Martin Osmundsvåg Norsk Naturovervåking AS 1 Bakgrunn

Detaljer

Rapport fra prøvefiske i Fiskebekksjøen 2006

Rapport fra prøvefiske i Fiskebekksjøen 2006 Rapport fra prøvefiske i Fiskebekksjøen Trysil Fellesforening for jakt og fiske Fiskebekksjøen Fiskebekksjøen er et kunstig oppdemt fjellvann (818 m.o.h.) som ligger i Trysil- Knuts Fjellverden i Nordre

Detaljer

168291/S20: Transport av farlig gods på veg, sjø og bane. Jørn Vatn Prosjektleder SINTEF

168291/S20: Transport av farlig gods på veg, sjø og bane. Jørn Vatn Prosjektleder SINTEF 168291/S20: Transport av farlig gods på veg, sjø og bane Jørn Vatn Prosjektleder SINTEF 1 Tema for presentasjon Kan risikoanalysen benyttes som bevisføring for at en løsning er bedre enn en alternativ

Detaljer

Populasjonsgenomikk på torsk -et verktøy for identifisering av viktige genomiske regioner for oppdrettsnæringen.

Populasjonsgenomikk på torsk -et verktøy for identifisering av viktige genomiske regioner for oppdrettsnæringen. Programkonferansen HAVBRUK 2012, Stavanger, 16.-18. april 2012 Populasjonsgenomikk på torsk -et verktøy for identifisering av viktige genomiske regioner for oppdrettsnæringen. Paul R. Berga, Bastiaan Stara,

Detaljer

Statistikk 1. Nico Keilman. ECON 2130 Vår 2014

Statistikk 1. Nico Keilman. ECON 2130 Vår 2014 Statistikk 1 Nico Keilman ECON 2130 Vår 2014 Pensum Kap 1-7.3.6 fra Løvås «Statistikk for universiteter og høgskoler» 3. utgave 2013 (eventuelt 2. utgave) Se overspringelsesliste på emnesiden Supplerende

Detaljer

Hvilke rekrutteringskanaler benytter bedriftene?

Hvilke rekrutteringskanaler benytter bedriftene? Hvilke rekrutteringskanaler benytter bedriftene? Av Johannes Sørbø og Kari-Mette Ørbog Sammendrag Vi ser i denne artikkelen på hvilke rekrutteringskanaler bedriftene benyttet ved siste rekruttering. Vi

Detaljer

MASTER I IDRETTSVITENSKAP 2014/2016. Individuell skriftlig eksamen. STA 400- Statistikk. Fredag 13. mars 2015 kl. 10.00-12.00

MASTER I IDRETTSVITENSKAP 2014/2016. Individuell skriftlig eksamen. STA 400- Statistikk. Fredag 13. mars 2015 kl. 10.00-12.00 MASTER I IDRETTSVITENSKAP 2014/2016 Individuell skriftlig eksamen i STA 400- Statistikk Fredag 13. mars 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator Eksamensoppgaven består av 10 sider inkludert forsiden

Detaljer

Prøvefiske Vulusjøen. Utført av Frol Bygdeallmenning i samarbeid med Levanger Jakt- og Fiskelag 31.08 02.09.07

Prøvefiske Vulusjøen. Utført av Frol Bygdeallmenning i samarbeid med Levanger Jakt- og Fiskelag 31.08 02.09.07 Prøvefiske Vulusjøen Utført av Frol Bygdeallmenning i samarbeid med Levanger Jakt- og Fiskelag 31.08 02.09.07 Sverre Øksenberg, Levanger 06.09.2007 Bakgrunn for undersøkelsen Frol Bygdeallmenning arbeider

Detaljer

Aust- og Vest-Agder Rømt oppdrettslaks i vassdrag F&H, særnr. 2b 2016

Aust- og Vest-Agder Rømt oppdrettslaks i vassdrag F&H, særnr. 2b 2016 Aust- og Vest-Agder Vassdragsvise grunnlagsdata I vedleggsrapportene presenterer vi det komplette datamaterialet som er brukt for vurderingen av innslaget rømt slaks i vassdragene. Vi presenterer her resultatet

Detaljer

Beskatning og bestandsstørrelse av laks i Namsenvassdraget i 2010

Beskatning og bestandsstørrelse av laks i Namsenvassdraget i 2010 Beskatning og bestandsstørrelse av laks i Namsenvassdraget i 2010 Eva B. Thorstad 1, Peder Fiske 1, Frode Staldvik 2 & Finn Økland 1 1 Norsk instututt for naturforskning (NINA), 2 Kunnskapssenter for Laks

Detaljer

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt.

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt. EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir forlag) OPPGAVESETTET

Detaljer

Prøvefiske i Frøylandsvatnet i september 2009

Prøvefiske i Frøylandsvatnet i september 2009 NOTAT Til: Aksjon Jærvassdrag Fra: Harald Lura Dato:.1. SAK: Prøvefiske Frøylandsvatn 9 Prøvefiske i Frøylandsvatnet i september 9 Innledning Siden 5 er det gjennomført flere undersøkelser for å kartlegge

Detaljer

Genetikk hos elvemusling - Prinsipper, Kunnskapsstatus, Kultivering og Veien videre. Elvemuslingseminar Stjørdal

Genetikk hos elvemusling - Prinsipper, Kunnskapsstatus, Kultivering og Veien videre. Elvemuslingseminar Stjørdal Genetikk hos elvemusling - Prinsipper, Kunnskapsstatus, Kultivering og Veien videre Elvemuslingseminar Stjørdal 04.02.15 Sten Karlsson Innhold Prinsipper ved bevaring av genetisk variasjon Kunnskapsstatus

Detaljer

Løsningsforslag ST2301 Øving 10

Løsningsforslag ST2301 Øving 10 Løsningsforslag ST2301 Øving 10 Kapittel 5 Exercise 6 Hva er innavlskoeffisienten for individ I i følgende stamtre? Svar: Her er det best å bruke en annen metode enn løkkemetoden. Slektskapskoeffisientmetoden

Detaljer

Løsningsforslag Til Statlab 5

Løsningsforslag Til Statlab 5 Løsningsforslag Til Statlab 5 Jimmy Paul September 6, 007 Oppgave 8.1 Vi skal se på ukentlige forbruk av søtsaker blant barn i et visst område. En pilotstudie gir at standardavviket til det ukentige forbruket

Detaljer

7.2 Sammenligning av to forventinger

7.2 Sammenligning av to forventinger 7.2 Sammenligning av to forventinger To-utvalgs z-observator To-utvalgs t-prosedyrer To-utvalgs t-tester To-utvalgs t-konfidensintervall Robusthet To-utvalgs t-prosedyrerår variansene er like Sammenlikning

Detaljer

Hva vet vi om effekten av kultivering?

Hva vet vi om effekten av kultivering? Hva vet vi om effekten av kultivering? Ingerid Julie Hagen Arnesen, Arne Jensen, Ola Ugedal, Geir Bolstad, Ola Diserud, Kjetil Hindar, Bjørn Bjøru, Bjørn Florø-Larsen, Bjart Are Helland, Espen Holthe,

Detaljer

3.A IKKE-STASJONARITET

3.A IKKE-STASJONARITET Norwegian Business School 3.A IKKE-STASJONARITET BST 1612 ANVENDT MAKROØKONOMI MODUL 5 Foreleser: Drago Bergholt E-post: Drago.Bergholt@bi.no 11. november 2011 OVERSIKT - Ikke-stasjonære tidsserier - Trendstasjonaritet

Detaljer

Løsningsforslag til obligatorisk innlevering 3.

Løsningsforslag til obligatorisk innlevering 3. svar3.nb 1 Løsningsforslag til obligatorisk innlevering 3. Oppgave 1 * Vi skal sammenlikne to sensoere A og B. Begge har rettet den samme oppgaven. Hvis populasjonen er eksamensoppgavene, har vi altså

Detaljer

Nr. 22 2013. rømning av laksesmolt fra merd. og smoltstørrelse. Torstein Harboe og Ole Fredrik Skulstad RAPPORT FRA HAVFORSKNINGEN. www.imr.no.

Nr. 22 2013. rømning av laksesmolt fra merd. og smoltstørrelse. Torstein Harboe og Ole Fredrik Skulstad RAPPORT FRA HAVFORSKNINGEN. www.imr.no. RAPPORT FRA HAVFORSKNINGEN Nr. 22 2013 Undersøkelse Effekt av maskeåpning av maskeåpning på skader og rømning av laksesmolt fra merd og smoltstørrelse Torstein Harboe og Ole Fredrik Skulstad www.imr.no

Detaljer

Bedre bilist etter oppfriskningskurs? Evaluering av kurset Bilfører 65+

Bedre bilist etter oppfriskningskurs? Evaluering av kurset Bilfører 65+ Sammendrag: Bedre bilist etter oppfriskningskurs? Evaluering av kurset Bilfører 65+ TØI-rapport 841/2006 Forfatter: Pål Ulleberg Oslo 2006, 48 sider Effekten av kurset Bilfører 65+ ble evaluert blant bilførere

Detaljer

Oppgaven består av 10 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1

Oppgaven består av 10 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1 ECON 130 EKSAMEN 005 VÅR SENSORVEILEDNING Oppgaven består av 10 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom , Oppgave 1 I denne oppgaven kan du anta at

Detaljer

ESTIMATION OF PREANALYTICAL UNCERTAINTY IN CLINICAL CHEMISTRY

ESTIMATION OF PREANALYTICAL UNCERTAINTY IN CLINICAL CHEMISTRY ESTIMATION OF PREANALYTICAL UNCERTAINTY IN CLINICAL CHEMISTRY Marit Sverresdotter Sylte NKK-møtet, Solstrand, 14. mars 2014 Hovedveileder: Statistiker: Bjørn J. Bolann Tore Wentzel-Larsen HOVEDMÅLET FOR

Detaljer

Automatisk og manuell vurdering av vanninnhold i klippfisk

Automatisk og manuell vurdering av vanninnhold i klippfisk Rapport Å0717 Automatisk og manuell vurdering av vanninnhold i klippfisk Ann Helen Hellevik Oktober 2007 MØREFORSKING Ålesund Møreforsking Ålesund Postboks 5075 6021 ÅLESUND Telefon: 70 11 16 00 Telefaks:

Detaljer

BIO 1000 LAB-ØVELSE 2. Populasjonsgenetikk 20. september 2005

BIO 1000 LAB-ØVELSE 2. Populasjonsgenetikk 20. september 2005 Navn: Parti: Journalen leveres senest tirsdag 27. September 2005 i kassen utenfor labben. BIO 1000 LAB-ØVELSE 2 Populasjonsgenetikk 20. september 2005 Faglig ansvarlig: Eli K. Rueness Hovedansvarlig for

Detaljer

Kompleksitetsanalyse Helge Hafting 25.1.2005 Opphavsrett: Forfatter og Stiftelsen TISIP Lærestoffet er utviklet for faget LO117D Algoritmiske metoder

Kompleksitetsanalyse Helge Hafting 25.1.2005 Opphavsrett: Forfatter og Stiftelsen TISIP Lærestoffet er utviklet for faget LO117D Algoritmiske metoder Helge Hafting 25.1.2005 Opphavsrett: Forfatter og Stiftelsen TISIP Lærestoffet er utviklet for faget LO117D Algoritmiske metoder Innhold 1 1 1.1 Hva er en algoritme?............................... 1 1.2

Detaljer

Rapport 2008. Rapport vedrørende Kvikksølvinnhold i. brosme, blåskjell og kongesnegl fanget. ved Skjervøyskjæret ved vraket av. lasteskipet Orizaba

Rapport 2008. Rapport vedrørende Kvikksølvinnhold i. brosme, blåskjell og kongesnegl fanget. ved Skjervøyskjæret ved vraket av. lasteskipet Orizaba Rapport 2008 Rapport vedrørende Kvikksølvinnhold i brosme, blåskjell og kongesnegl fanget ved Skjervøyskjæret ved vraket av lasteskipet Orizaba Kåre Julshamn og Sylvia Frantzen Nasjonalt institutt for

Detaljer

Nyheter i Office 2016 NYHETER, FUNKSJONER, FORKLARING

Nyheter i Office 2016 NYHETER, FUNKSJONER, FORKLARING Nyheter i Office 2016 NYHETER, FUNKSJONER, FORKLARING 1 Word 1.1 Gjør ting raskt med Fortell meg det Du vil legge merke til en tekstboks på båndet i Word 2016 med teksten Fortell meg hva du vil gjøre.

Detaljer

Løsningsforslag. n X. n X 1 i=1 (X i X) 2 og SY 2 = 1 ny S 2 X + S2 Y

Løsningsforslag. n X. n X 1 i=1 (X i X) 2 og SY 2 = 1 ny S 2 X + S2 Y Statistiske metoder 1 høsten 004. Løsningsforslag Oppgave 1: a) Begge normalplottene gir punkter som ligger omtrent på ei rett linje så antagelsen om normalfordeling ser ut til å holde. Konfidensintervall

Detaljer

Registrering av laks og sjøørret i fisketrappa i Berrefossen i 2012

Registrering av laks og sjøørret i fisketrappa i Berrefossen i 2012 KLV-notat nr. 1 2013 Registrering av laks og sjøørret i fisketrappa i Berrefossen i 2012 Namsos, juni 2013 Karina Moe Innhold Sammendrag... 3 Metode... 4 Diskusjon... 9 Referanser... 10 2 Sammendrag Et

Detaljer

Fiskestell/kultivering i Torpa statsallmenning

Fiskestell/kultivering i Torpa statsallmenning Fiskestell/kultivering i Torpa statsallmenning 2009 Innledning De siste årene er det gjort ulike undersøkelser som er tenkt skal inngå i driftsplan for fiske i Torpa Statsallmenning. Dette gjelder bl.a.

Detaljer

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem MAT400 PROSJEKTOPPGAVE: Statistikk i S2 Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem 20. mai 205 Innhold. Stokastisk Variabel.. Stokastiske variable som funksjoner 3 2. Forventningsverdi

Detaljer

1 Sentrale resultat i årets rapport

1 Sentrale resultat i årets rapport 1 Sentrale resultat i årets rapport I februar 2004 ble alle døgninstitusjoner innen psykisk helsevern for voksne tilskrevet og bedt om å gi opplysninger om bruk av tvangsmidler og skjerming i 2003 på et

Detaljer

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0 Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir

Detaljer

Oppgave 1 (25 %) Resultater fra QM: a) Maximin = 0 ved ikke å lansere. b) Maximax = 27000000 for produkt 2.

Oppgave 1 (25 %) Resultater fra QM: a) Maximin = 0 ved ikke å lansere. b) Maximax = 27000000 for produkt 2. Oppgave 1 (25 %) Resultater fra QM: a) Maximin = 0 ved ikke å lansere. b) Maximax = 27000000 for produkt 2. c) EMV max = 1000000 * 0.8 + 27000000 * 0.2 = 4600000 for produkt 2. d) 0.2 * 27000000 4600000

Detaljer

1 Section 7-2: Estimere populasjonsandelen. 2 Section 7-4: Estimere µ når σ er ukjent

1 Section 7-2: Estimere populasjonsandelen. 2 Section 7-4: Estimere µ når σ er ukjent 1 Section 7-2: Estimere populasjonsandelen 2 Section 7-4: Estimere µ når σ er ukjent Kapittel 7 Nå begynner vi med statistisk inferens! Bruke stikkprøven til å 1 Estimere verdien til en parameter i populasjonen.

Detaljer

Heuristiske søkemetoder III

Heuristiske søkemetoder III Heuristiske søkemetoder III Lars Aurdal Intervensjonssenteret Lars.Aurdal@labmed.uio.no 14. september 2003 Plan Eksempel: Bildebehandling, segmentering: Hva er segmentering? Klassisk metode, terskling.

Detaljer

Matematisk evolusjonær genetikk (ST2301)

Matematisk evolusjonær genetikk (ST2301) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 9 Matematisk evolusjonær genetikk (ST2301) Tirsdag 19. mai 2009 Løsningsforslag (For flere av oppgavene finnes det

Detaljer

Nasjonale prøver i lesing, regning og engelsk på 5. trinn 2015

Nasjonale prøver i lesing, regning og engelsk på 5. trinn 2015 Nasjonale prøver i lesing, regning og engelsk på 5. trinn 2015 Resultater fra nasjonale prøver på 5. trinn høsten 2015 er nå publisert i Skoleporten. Her er et sammendrag for Nord-Trøndelag: - I snitt

Detaljer

Fiskesymposiet, Bergen 15.-16- februar 2012. Kva skjer i fjordane? Øystein Skaala

Fiskesymposiet, Bergen 15.-16- februar 2012. Kva skjer i fjordane? Øystein Skaala Fiskesymposiet, Bergen 15.-16- februar 2012 Kva skjer i fjordane? Øystein Skaala 7. Oppsummering mål og tiltak Talet på smolt sett i sjø i 2010 og tal på matfiskanlegg Biomasse 2010 Andel rømt laks Kilde:

Detaljer

INNOVASJON OG PRODUKTUTVIKLING

INNOVASJON OG PRODUKTUTVIKLING Nina Santi -Nyheter fra AquaGen INNOVASJON OG PRODUKTUTVIKLING Produktutviklingsløp for QTL-innOva Fenotyping Genotyping QTL-søk Utvikle test Validere Markeds -lansere Felt evalueri ng Mekanis me 1-3 år

Detaljer

Rapport. Reisemiddelfordeling i Ringerike, Jevnaker og Hole. Forfatter Terje Tretvik. SINTEF Teknologi og samfunn Transportforskning 2013-09-11

Rapport. Reisemiddelfordeling i Ringerike, Jevnaker og Hole. Forfatter Terje Tretvik. SINTEF Teknologi og samfunn Transportforskning 2013-09-11 - Åpen Rapport Reisemiddelfordeling i Ringerike, Jevnaker og Hole Forfatter Terje Tretvik SINTEF Teknologi og samfunn Transportforskning 2013-09-11 SINTEF Teknologi og samfunn Transportforskning 2013-09-11

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig

Detaljer

Rovebekken. Undersøkelser av ørretbestanden. August 2008. En undersøkelse utført av

Rovebekken. Undersøkelser av ørretbestanden. August 2008. En undersøkelse utført av Rovebekken Undersøkelser av ørretbestanden August 2008 En undersøkelse utført av Forord Denne rapporten er utarbeidet på oppdrag for Sandefjord Lufthavn AS. Rapporten er en del av miljøoppfølgingen overfor

Detaljer

MASTER I IDRETTSVITENSKAP 2014/2016. Utsatt individuell skriftlig eksamen. STA 400- Statistikk. Mandag 24. august 2015 kl. 10.00-12.

MASTER I IDRETTSVITENSKAP 2014/2016. Utsatt individuell skriftlig eksamen. STA 400- Statistikk. Mandag 24. august 2015 kl. 10.00-12. MASTR I IDRTTSVITNSKAP 2014/2016 Utsatt individuell skriftlig eksamen i STA 400- Statistikk Mandag 24. august 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator ksamensoppgaven består av 10 sider inkludert

Detaljer

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

I N G A R A A S E S T A D PÅ OPPDRAG FRA SANDEFJORD LUFTHAVN AS: ROVEBEKKEN OVERVÅKNING AV ØRRETBESTANDEN 2014

I N G A R A A S E S T A D PÅ OPPDRAG FRA SANDEFJORD LUFTHAVN AS: ROVEBEKKEN OVERVÅKNING AV ØRRETBESTANDEN 2014 I N G A R A A S E S T A D PÅ OPPDRAG FRA SANDEFJORD LUFTHAVN AS: ROVEBEKKEN OVERVÅKNING AV ØRRETBESTANDEN 2014 SAMMENDRAG Dette er tolvte året Naturplan foretar undersøkelser av ørret på oppdrag fra Sandefjord

Detaljer

Løsningsforslag ST2301 Øving 6

Løsningsforslag ST2301 Øving 6 Løsningsforslag ST230 Øving 6 Kapittel 2 Exercise 0 Anta at tre genotyper har fitnesser A A A A 2 A 2 A 2 4 0 3. Hva er likevektsfrekvensen? 2. Er denne stabil? 3. Hvorfor kan vi ikke bare bruke formlene

Detaljer

Veiledning Tittel: Veiledning for utarbeiding av økonomiske analyser Dok.nr: RL065

Veiledning Tittel: Veiledning for utarbeiding av økonomiske analyser Dok.nr: RL065 Veiledning Tittel: Dok.nr: RL065 Rev.nr: 02 Utarbeidet av: Konkurransetilsynet Side: 1 av 5 INNHOLD 1 Bakgrunn og formål... 2 2 Generelle prinsipper... 2 2.1 Klarhet og transparens... 2 2.2 Kompletthet...

Detaljer