RF5100 Lineær algebra Leksjon 2

Størrelse: px
Begynne med side:

Download "RF5100 Lineær algebra Leksjon 2"

Transkript

1 RF5100 Lineær algebra Leksjon 2 Lars Sydnes, NITH 27.august 2013

2 I. LINEÆRE SYSTEM

3 SKJÆRINGSPUNKTET FOR TO LINJER l 1 : x + y = 1 P l 2 : x + y = 3 Geometri: (i) P ligger på linjen l 1 (ii) P ligger på linjen l 2 Algebra: (i) eq 1 : x + y = 1 (ii) eq 2 : x + y = 3

4 LØSNING eq 1 + eq 2 : 2y = 4 eq 2 : x + y = 3 eq 1 2 : y = 2 eq 2 : x + y = 3 eq 1 : y = 2 eq 2 eq 1 : x = 1 Resultat: Vi har omformet de opplysningene vi hadde om P til x = 1, y = 2. Metode: Vi dannet lineærkombinasjoner av ligningene.

5 NAIV GAUSS-JORDAN-ELIMINASJON n ligninger eq 1, eq 2,..., eq n. n variabler x 1, x 2,..., x n. Bruk eq 1 til å eliminere x 1 fra de andre ligningene. Bruk den oppdaterte versjonen av eq k til å eliminere x k fra de andre ligningene. Resultat: Siste versjon av eq k inneholder kun variabelen x k : eq 1 : a 1 x 1 = b 1 eq 2 : a 2 x 2 = b 2. eq n : a n x n = b n Altså: x i = b i /a i.

6 PIVOTERING OG AVRUNDINGSFEIL x y = x y = 1 GIVEN MATRIX: { 1.234e e e+19 } { 1.000e e e+00 } Straightforward Gauss Elimination: { 1.000e e e+11 } { 0.000e e e+01 } Error indicator: e+11 Scaled pivoting: { 1.000e e e+01 } { 0.000e e e+01 } Error indicator: e+00 METODEVALG PÅVIRKER NUMERISK STABILITET

7 PIVOTERING n ligninger eq 1, eq 2,..., eq n. n variabler x 1, x 2,..., x n. Finn fram til den ligningen eq i1 som egner seg best for eliminasjon av variabelen x 1. Utfør eliminasjonen og merk ligningen eq i1 som brukt. Steg k: Finn fram til ligningen eq ik som egner seg best for eliminasjon av variabelen x k. Let blant de oppdaterte versjonene av de ubrukte ligningene. Utfør eliminasjonen og merk eq ik som brukt. Resultat: Siste versjon av eq ik inneholder kun variabelen x k : eq ik : a k x k = b k

8 HVILKEN LIGNING EGNER SEG BEST? Svaret er ikke opplagt Tradeoff: Velegnethet vs. Ressursbruk. Absolutt verdi av koeffesienter: Velg den ligningen der x k sin koeffesient har størst absoluttverdi. (Delvis pivotering / Partial pivoting) Relativ verdi av koeffesienter: Velg den ligningen der koeffesienten til variabelen x k har størst absoluttverdi relativt til de andre variablene. (Skalert pivotering / Scaled pivoting)

9 II. LINEÆRE SYSTEM PÅ MATRISEFORM

10 KOEFFESIENTMATRISEN Lineært system: x + y + z = 1 x + 2y + 2z = 3 x + 2y + 3z = 6 Koeffesientmatrisen: (Arbeidsdata) double[][] coefficients;

11 HVA MATRISER ER 1.0 Matriser holder orden på koeffesienter. Lineært system Koeffesientmatrisen

12 RADOPERASJONER

13 III. MATRISER

14 IV. LINEÆRE SYSTEM OG MATRISELIGNINGER

15 V. INVERSJON OG TRANSPONERING

16 VI. OPPSUMMERING

17 OPPSUMMERING I ETTERKANT Eksempel: Skjæringspunktet mellom to linjer bestemmes av 2 lineære ligninger i to variabler. Eksempel: Tre ligninger med tre ukjente x, y, z. Systematikk: Gausseliminasjon (Enkelt grunnprinsipp): Eliminer variabelen x ved å kombinere ligning 1 med de to andre ligningene. Eliminer variabelen y ved å kombinere ligning 2 med de to andre ligningene. Eliminer variabelen z ved å kombinere ligning 3 med de to andre ligningene.

18 EKSEMPEL x + y + z = 1 x + 2y + 2z = 3 x + 2y + 3z = 6 Trekker ligning 1 fra de to andre, og variabelen x står igjen alene i første kolonne: x + y + z = y + z = y + 2z = 5 Trekker ligning 2 fra de to andre, og variabelen y står igjen alene i andre kolonne: x = y + z = z = 3

19 EKSEMPEL Trekker ligning 3 fra ligning 2, og variabelen z står igjen alene i tredje kolonne: x = 1 Altså må: 0 + y + 0 = z = 3 x = 1, y = 1 og z = 3 De opprinnelige ligningene bestemmer x, y, z-verdiene, vi former ligningene om og gjør dem gjennomsiktige. Vi hverken legger til eller trekker fra informasjon.

20 GAUSS-JORDAN-ELIMINASJON n ligninger e 1, e 2,..., e n. (Altså n opplysninger) n variabler x 1, x 2,..., x n. (Altså n ukjente) Bruk ligning e k til å frigjøre x k fra de andre ligninge- Steg 1: ne. Steg k: ne. Bruk ligning e 1 til å frigjøre x 1 fra de andre ligninge- Aber: Vi forutsetter her at x k forekommer i ligning k etter steg k 1. Dette kan vi ikke garantere!!

21 PROBLEMEKSEMPEL Systemet x + y + z = 1 2x + 2y + 3z = 3 3x + 3y z = 4 omformes til følgende system etter ett steg: x + y + z = z = z = 1 Vi får ikke til å eliminere y. Vi har to forslag til z-verdier: z = 1, z = 1 4. Systemet er altså selvmotsigende. Vi har utledet en absurditet av det.

22 MILDERE PROBLEMEKSEMPEL Systemet x + y + z = 1 2x + 2y + 3z = 3 2x + 3y z = 4 omformes til følgende system etter ett steg: x + y + z = z = y + 3z = 2 Her kan vi gå videre, men vi må bruke ligning 3 for å eliminere y-variabelen i de andre ligningene. Vi er tjent med svakere kobling mellom ligningene og variablene

23 VII. OPPGAVER

24 REGNEOPPGAVER Noen ligningsystem å bryne seg på: x + 2y 3z = 6 2x y + 4z = 1 x y + z = 3 x + 2y + z = 4 3x + 8y + 7z = 20 2x + 7y + 9z = 23 Den neste har en twist in the tail: 3x 8y + 10z = 22 x 3y + 2z = 5 2x 9y 8z = 11 Og: Hvorfor ikke bruke rad 2 til å eliminere x? Da blir aritmetikken enklere. Løs disse systemene med å arbeide med ligningene og/eller matriseformen til systemet.

25 LAB: MATRISER Skriv en matriseklasse i Java. Ta gjerne utgangspunkt i RF5100/kode/matLib/Matrix.java eller Denne må man vel også ha for å få koden til å kompilere: ~sydlar/rf5100/kode/matlib/dimensionerror.java Her er de lineære matriseoperasjonene allerede implementert. Studer dem og kritiser dem. Arbeid med følgende: public Matrix multiply(matrix other);

26 LAB: GAUSSELIMINASJON Arbeid med: util/solvers.java.

27 REFERANSER -Lineære system : A & R : Kap. 1 D & P: Matriser: D & P:

Gauss-eliminasjon og matrisemultiplikasjon

Gauss-eliminasjon og matrisemultiplikasjon DUMMY Gauss-eliminasjon og matrisemultiplikasjon Lars Sydnes 9 september 2015 Sammendrag Dette notatet handler om hvordan man løser lineære ligningssystemer, altså systemer av flere ligninger i flere ukjente,

Detaljer

Forelesning 14 Systemer av dierensiallikninger

Forelesning 14 Systemer av dierensiallikninger Forelesning 14 Systemer av dierensiallikninger Eivind Eriksen 9. april 010 Dierensiallikninger En dierensiallikning inneholder en avhengig variabel (typisk y ) og en uavhengig variabel (typisk x), som

Detaljer

RF5100 Lineær algebra Leksjon 12

RF5100 Lineær algebra Leksjon 12 RF5100 Lineær algebra Leksjon 12 Lars Sydnes, NITH 26. november 2013 I. GAUSS-ELIMINASJON 2x + 3y + z = 1 2x + 5y z = 1 4x + 7y + 4z = 3 x + 3/2 y + 1/2 z = 1/2 x + 2z = 2 y z = 1 3z = 2 x + 2z = 2 y z

Detaljer

RF3100 Matematikk og fysikk Leksjon 1

RF3100 Matematikk og fysikk Leksjon 1 RF3100 Matematikk og fysikk Leksjon 1 Lars Sydnes, NITH 30. august 2013 I. INFORMASJON FAGLÆRER Kontakt: Lars Sydnes lars.sydnes@nith.no 93035685 Ved NTNU: Doktorgrad i Matematikk 2012, Siv.ing. Industriell

Detaljer

Projeksjoner av vektorer Analyse av værdata

Projeksjoner av vektorer Analyse av værdata Projeksjoner av vektorer Analyse av værdata Lars Sydnes 11. september 2013 1 Osloserien Ved værstasjoner rundt omkring i verden måler man temperaturen hver eneste dag. Vi har tilgang til målinger gjort

Detaljer

RF5100 Lineær algebra Leksjon 9

RF5100 Lineær algebra Leksjon 9 RF5100 Lineær algebra Leksjon 9 Lars Sydnes, NITH 11. november 2013 I. DATASKJERMEN DATASKJERMEN (0, 0) x (wp os x, wp os y ) y winres x (wcenter x, wcenter y ) winres x (devres x, devres y ) Merk: Det

Detaljer

RF3100 Matematikk og fysikk Leksjon 1

RF3100 Matematikk og fysikk Leksjon 1 RF3100 Matematikk og fysikk Leksjon 1 Lars Sydnes, NITH 30. august 2013 I. INFORMASJON FAGLÆRER Kontakt: Lars Sydnes lars.sydnes@nith.no 93035685 Ved NTNU: Doktorgrad i Matematikk 2012, Siv.ing. Industriell

Detaljer

Lineære likningssett.

Lineære likningssett. Lineære likningssett. Forelesningsnotater i matematikk. Lineære likningssystemer. Side 1. 1. Innledning. La x 1, x, x n være n ukjente størrelser. La disse størrelsene være forbundet med m lineære likninger,

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 5 Implementasjon av lister

PG4200 Algoritmer og datastrukturer Forelesning 5 Implementasjon av lister PG4200 Algoritmer og datastrukturer Forelesning 5 Implementasjon av lister Lars Sydnes, NITH 5. februar 2014 I. Implementasjoner Tabell-implementasjon av Stakk Tabellen er den lettest tilgjengelige datastrukturen

Detaljer

RF5100 Lineær algebra Leksjon 1

RF5100 Lineær algebra Leksjon 1 RF5100 Lineær algebra Leksjon 1 Lars Sydnes, NITH 20.august 2013 I. INFORMASJON FAGLÆRER Kontakt: Lars Sydnes lars.sydnes@nith.no 93035685 Bakgrunn: Doktorgrad i Matematikk fra NTNU (2012), Siv.ing. Industriell

Detaljer

Obligatorisk innlevering 3 - MA 109, Fasit

Obligatorisk innlevering 3 - MA 109, Fasit Obligatorisk innlevering - MA 9, Fasit Vektorer Oppgave: Avgjør om, og er lineært uavhengige Dette er spørsmålet om det finnes vekter x, x, x - ikke alle lik - slik at x + x + x = Vi skriver det på augmentert

Detaljer

Vektorer og matriser

Vektorer og matriser DUMMY Vektorer og matriser Lars Sydnes 1.september 2014 OBS: UNDER UTVIKLING Oppgaver Det finnes passende oppgaver og løsningsforslag til dette notatet. 1 Innledning La oss se på et system av tre lineære

Detaljer

Projeksjoner av vektorer Analyse av værdata

Projeksjoner av vektorer Analyse av værdata Projeksjoner av vektorer Analyse av værdata Lars Sydnes NITH 12. september 2013 1 Osloserien Ved værstasjoner rundt omkring i verden måler man temperaturen hver eneste dag. Vi har tilgang til målinger

Detaljer

Minste kvadraters løsning, Symmetriske matriser

Minste kvadraters løsning, Symmetriske matriser Minste kvadraters løsning, Symmetriske matriser NTNU, Institutt for matematiske fag 19. november 2013 Inkonsistent ligningsystem Anta at Ax = b er et inkonsistent ligningsystem, da er b ikke i Col(A).

Detaljer

RF5100 Lineær algebra Løsningsforslag til prøveeksamen

RF5100 Lineær algebra Løsningsforslag til prøveeksamen RF5 Lineær algebra Løsningsforslag til prøveeksamen NITH 6. desember Oppgave (a) Jeg skal løse et system av tre ligninger med tre ukjente. Dette gjør jeg ved å utføre radoperasjoner på matrisen tilhørende

Detaljer

Lineær algebra-oppsummering

Lineær algebra-oppsummering Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:

Detaljer

10 Radrommet, kolonnerommet og nullrommet

10 Radrommet, kolonnerommet og nullrommet Radrommet kolonnerommet og nullrommet La A være en m n matrise Vi kan beskrive matrisen ved hjelp av dens rader r A r r i R n r m eller dens kolonner A [ c c c n ci R m Definisjon (se Def 7 i boka) For

Detaljer

MAKE MAKE Arkitekter AS Maridalsveien Oslo Tlf Org.nr

MAKE MAKE Arkitekter AS Maridalsveien Oslo Tlf Org.nr en omfatter 1 Perspektiv I en omfatter 2 Perspektiv II en omfatter 3 Perspektiv III en omfatter 4 Perspektiv IV en omfatter 5 Perspektiv V en omfatter 6 Perspektiv VI en omfatter 7 Perspektiv VII en omfatter

Detaljer

Avdeling for lærerutdanning. Lineær algebra. for allmennlærerutdanningen. Inger Christin Borge

Avdeling for lærerutdanning. Lineær algebra. for allmennlærerutdanningen. Inger Christin Borge Avdeling for lærerutdanning Lineær algebra for allmennlærerutdanningen Inger Christin Borge 2006 Innhold Notasjon iii 1 Lineære ligningssystemer 1 1.1 Lineære ligninger......................... 1 1.2 Løsningsmengde

Detaljer

LP. Leksjon 2. Kapittel 2: simpleksmetoden, forts. initialisering to faser ubegrenset løsning geometri

LP. Leksjon 2. Kapittel 2: simpleksmetoden, forts. initialisering to faser ubegrenset løsning geometri LP. Leksjon 2. Kapittel 2: simpleksmetoden, forts. initialisering to faser ubegrenset løsning geometri 1 / 16 Repetisjon LP problem tillatt løsning, optimal løsning basisliste basis, basisvariable og ikkebasisvariable

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 2

PG4200 Algoritmer og datastrukturer Forelesning 2 PG4200 Algoritmer og datastrukturer Forelesning 2 Lars Sydnes, NITH 15. januar 2014 I. Forrige gang Praktisk eksempel: Live-koding II. Innlevering Innlevering 1 2.februar Offentliggjøring: 22.januar Innhold:

Detaljer

MAT 1110: Bruk av redusert trappeform

MAT 1110: Bruk av redusert trappeform Tom Lindstrøm 10/5, 2006: MAT 1110: Bruk av redusert trappeform I Lays bok brukes den reduserte trappeformen til matriser til å løse en rekke problemer knyttet til ligningssystemer, lineærkombinasjoner,

Detaljer

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning Lineær Algebra og Vektorrom Eivind Eriksen Høgskolen i Oslo, Avdeling for Ingeniørutdanning c Eivind Eriksen 2005. Innhold Kapittel 1. Lineære likningssystemer 1 1.1. Lineære likningssystemer i to variable

Detaljer

4.2 Nullrom, kolonnerom og lineære transformasjoner

4.2 Nullrom, kolonnerom og lineære transformasjoner 4.2 Nullrom, kolonnerom og lineære transformasjoner Utover Span {v 1, v 2,..., v p } er det en annen måte vi får lineære underrom på! Ser nå på V = R n. Skal se at det er visse underrom knyttet til en

Detaljer

Oppgaver som illustrerer alle teknikkene i 1.4 og 1.5

Oppgaver som illustrerer alle teknikkene i 1.4 og 1.5 Oppgaver som illustrerer alle teknikkene i 1.4 og 1.5 Gitt 3 punkter A 1,1,1,B 2,1,3,C 3,4,5 I Finne ligning for plan gjennom 3 punkt Lager to vektorer i planet: AB 1, 0,2 og AC 2,3, 4 Lager normalvektor

Detaljer

EGENDEFINERTE FUNKSJONER I SAS OG LITT OM OPEN SOURCE INTEGRASJON SAS FANS I STAVANGER 21.10.2015, MARIT FISKAAEN (SAS INSTITUTE)

EGENDEFINERTE FUNKSJONER I SAS OG LITT OM OPEN SOURCE INTEGRASJON SAS FANS I STAVANGER 21.10.2015, MARIT FISKAAEN (SAS INSTITUTE) EGENDEFINERTE FUNKSJONER I SAS OG LITT OM OPEN SOURCE INTEGRASJON SAS FANS I STAVANGER 21.10.2015, MARIT FISKAAEN (SAS INSTITUTE) EGENDEFINERTE FUNKSJONER INNLEDNING 2 På FANS 4. mars 2015 ble det vist

Detaljer

Forelesning 22 MA0003, Mandag 5/11-2012 Invertible matriser Lay: 2.2

Forelesning 22 MA0003, Mandag 5/11-2012 Invertible matriser Lay: 2.2 Forelesning 22 M0003, Mandag 5/-202 Invertible matriser Lay: 2.2 Invertible matriser og ligningssystemet x b Ligninger på formen ax b, a 0 kan løses ved å dividere med a på begge sider av ligninger, noe

Detaljer

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over. Lineær algebra H. Fausk 09.03.2015 Andre utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er det enkelt, men det blir fort veldig mange regneoperasjoner som

Detaljer

Forelesning 10 Cramers regel med anvendelser

Forelesning 10 Cramers regel med anvendelser Forelesning 10 Cramers regel med anvendelser Eivind Eriksen 25. mars 2010 Lineære likningssystemer Vi minner om at ethvert lineært likningssystem Ax = b kan løses ved hjelp av Gauss eliminasjon, som er

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 10

PG4200 Algoritmer og datastrukturer Forelesning 10 PG4200 Algoritmer og datastrukturer Forelesning 10 Lars Sydnes, NITH 9. april 2014 NOE Å STUSSE PÅ? Quadratic probing i Hash-tabell: ( ) 2 i + 1 p = p + ( 1) i+1 2 Underforstått forutsetning: Heltallsaritmetikk

Detaljer

John Haugan. Matematikk for ingeniørstudenter: Lineær algebra

John Haugan. Matematikk for ingeniørstudenter: Lineær algebra John Haugan Matematikk for ingeniørstudenter: Lineær algebra Studieprogram Energi og miljø i bygg, 25-26 2 John Haugan Matematikk for ingeniørstudenter: Lineær algebra Studieprogram Energi og miljø i bygg,

Detaljer

Lineære likningssystemer, vektorer og matriser

Lineære likningssystemer, vektorer og matriser Lineære likningssystemer, vektorer og matriser Kompendium 1 i MAT1001 Matematikk 1 Høsten 2008 Inger Christin Borge Matematisk institutt, UiO Forord Velkommen til Universitetet i Oslo, og til MAT1001!

Detaljer

Kapittel 2: simpleksmetoden, forts.

Kapittel 2: simpleksmetoden, forts. LP. Leksjon 2 Kapittel 2: simpleksmetoden, forts. initialisering to faser ubegrenset løsning geometri LP. Leksjon 2: #1 of 14 Repetisjon LP problem tillatt løsning, optimal løsning basisliste basis, basisvariable

Detaljer

Repetisjon: om avsn og kap. 3 i Lay

Repetisjon: om avsn og kap. 3 i Lay Repetisjon: om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p der b j -ene er i R n for hver j. Produktet

Detaljer

Allotment. Innhold. Allotment

Allotment. Innhold. Allotment Allotment Copyright 2008 VisBook AS all rights reserved Dato: 28. mai 2008 - Revisjon: 8 Innhold Allotment...1 Definisjoner...2 Bruksområde...3 Hvordan komme igang med allotment...4 Tillatelser til allotmentbrukeren:...4

Detaljer

Leksjon 3. Kontrollstrukturer

Leksjon 3. Kontrollstrukturer 6108 Programmering i Java Leksjon 3 Kontrollstrukturer Del 2 Løkker Roy M. Istad 2015 Utførelse av et program Programflyt så langt start setning setning setning setning Sekvensielt Alle setninger utføres,

Detaljer

EKSAMEN RF5100, Lineær algebra

EKSAMEN RF5100, Lineær algebra Side av 5 Oppgavesettet består av 5 (fem) sider. EKSAMEN RF500, Lineær algebra Tillatte hjelpemidler: Godkjent kalkulator og utdelt formelark Varighet: 3 timer Dato: 4. oktober 04 Emneansvarlig: Lars Sydnes

Detaljer

Diskretisering av 1D - varmelikningen

Diskretisering av 1D - varmelikningen Diskretisering av D - varmelikningen Vi vil løse numerisk den tidsuavhengige en-dimensjonale varmeledningslikningen uten kilde/sluk ledd. Differensiallikningen forenkles da til d T d x d dt Vi representerer

Detaljer

Bruk av egendefinert kode i SAS Data Integration Studio

Bruk av egendefinert kode i SAS Data Integration Studio Bruk av egendefinert kode i SAS Data Integration Studio D a g H å k o n S o l b e r g C e n t r i c i n n o v a t i o n S A S F A N S 2 6. 1 1. 1 5 Etablert i 2011, men med røtter tilbake til slutten av

Detaljer

Kapittel 1 og 2: eksempel og simpleksmetoden

Kapittel 1 og 2: eksempel og simpleksmetoden LP. Leksjon 1 Kapittel 1 og 2: eksempel og simpleksmetoden et eksempel fra produksjonsplanlegging simpleksalgoritmen, noen begreper algoritmen LP. Leksjon 1: #1 of 14 Eksempel: produksjonsplanlegging Produkter:

Detaljer

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår 2003. Erling Berge Institutt for sosiologi og statsvitenskap NTNU

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår 2003. Erling Berge Institutt for sosiologi og statsvitenskap NTNU SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår 2003 Erling Berge Institutt for sosiologi og statsvitenskap NTNU Vår 2004 Erling Berge 2004 1 Forelesing IV Multivariat

Detaljer

3.9 Teori og praksis for Minste kvadraters metode.

3.9 Teori og praksis for Minste kvadraters metode. 3.9 Teori og praksis for Minste kvadraters metode. Vi fortsetter med minste kvadraters problem. Nå skal vi se nærmere på noen teoretiske spørsmål, bl.a. hvordan normallikningene utledes. Minner om MK problemstillingen:

Detaljer

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Mandag 6. juni 2011 løsningsforslag

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Mandag 6. juni 2011 løsningsforslag Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 EKSAMEN I TMA4 MATEMATIKK 3 Bokmål Mandag 6. juni løsningsforslag Hjelpemidler (kode C): Enkel kalkulator (HP3S eller

Detaljer

Lineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.

Lineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over. Lineær algebra H. Fausk 09.03.2015 Første utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. Selv om løsningen av lineære likingsystem i prinsippet er elementært blir det fort

Detaljer

Norges Informasjonstekonlogiske Høgskole

Norges Informasjonstekonlogiske Høgskole Oppgavesettet består av 9 (ni) sider. Norges Informasjonstekonlogiske Høgskole RF5100 Lineær algebra Side 1 av 9 Tillatte hjelpemidler: Kalkulator, vedlagt formelark Varighet: 3 timer Dato: 11.desember

Detaljer

b) Lag to likninger med ulik vanskegrad (en ganske lett og en vanskelig), der svaret i begge skal bli x = -3. Løs også likningene.

b) Lag to likninger med ulik vanskegrad (en ganske lett og en vanskelig), der svaret i begge skal bli x = -3. Løs også likningene. Oppgave I Likninger og ulikheter a) Løs likningen: x + 2 a. + (3x + 4) 3 6 2 ( x + 2)6 6 6 + (3x + 4) 3 6 2 2x + 4 + 9x + 2 2x 9x 2 5 x b) Lag to likninger med ulik vanskegrad (en ganske lett og en vanskelig),

Detaljer

100 ENKLERE OPPGAVER MED HINT OG LØSNINGSFORSLAG I LINEÆR ALGEBRA (OG NOEN I DISKRET MATEMATIKK)

100 ENKLERE OPPGAVER MED HINT OG LØSNINGSFORSLAG I LINEÆR ALGEBRA (OG NOEN I DISKRET MATEMATIKK) ENKLERE OPPGAVER MED HINT OG LØSNINGSFORSLAG I LINEÆR ALGEBRA (OG NOEN I DISKRET MATEMATIKK) EIVIND ERIKSEN, TROND STØLEN GUSTAVSEN, AND HELGE HÜLSEN Introduksjon Dette kompendiet inneholder oppgaver med

Detaljer

Kapittel 3: degenerasjon.

Kapittel 3: degenerasjon. LP. Leksjon 3 Kapittel 3: degenerasjon. degenerasjon eksempel på sirkling den leksikografiske metoden andre pivoteringsregler fundamentaleoremet i LP LP. Leksjon 3: #1 of 15 Repetisjon simpleksalgoritmen:

Detaljer

Snakk om algebra! Et solid grunnlag for et avansert symbolspråk. Svein H. Torkildsen NSMO

Snakk om algebra! Et solid grunnlag for et avansert symbolspråk. Svein H. Torkildsen NSMO Snakk om algebra! Et solid grunnlag for et avansert symbolspråk Svein H. Torkildsen NSMO Riktig sykkel? Seterørslengde: fra toppen av sadelen til midten av krankakselen: Seterørslengde = Skrittlengde

Detaljer

Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B

Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B Oppgave 1 En parametrisk linje L og et plan P (i rommet)

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 7

PG4200 Algoritmer og datastrukturer Forelesning 7 PG4200 Algoritmer og datastrukturer Forelesning 7 Lars Sydnes, NITH 19. mars 2014 I. TERMINOLOGI FOR TRÆR TRÆR Lister: Lineære Trær: Hierarkiske Modell / Språk: Bestanddeler: Noder, forbindelser. Forbindelse

Detaljer

Bruksanvisning i Mathcad Videregående skoler i Oppland

Bruksanvisning i Mathcad Videregående skoler i Oppland Bruksanvisning i Mathcad Videregående skoler i Oppland Sverre Nygård, Sverre.Nygard@oppland.org. En kort bruksanvisning 7.4 Symbolsk løsning av ligninger.0 Symbolpalettene 5.5 Ulikheter. De mest brukte

Detaljer

Optimering av funksjoner av flere variable

Optimering av funksjoner av flere variable Optimering av funksjoner av flere variable av Tom Lindstrøm Matematisk insitutt/cma Universitetet i Oslo Dette notatet gir en kortfattet innføring i maksimums- og minimumsproblemer for funksjoner av flere

Detaljer

Programmering i Java med eksempler

Programmering i Java med eksempler Simulering av differenslikninger Programmering i Java med eksempler Forelesning uke 39, 2006 MAT-INF1100 Differenslikn. p. 1 Løsning av differenslikninger i formel Mulig for lineære likninger med konst.

Detaljer

Grafisk løsning av ligninger i GeoGebra

Grafisk løsning av ligninger i GeoGebra Grafisk løsning av ligninger i GeoGebra Arbeidskrav 2 Læring med digitale medier 2013 Magne Svendsen, Universitetet i Nordland Innholdsfortegnelse INNLEDNING... 3 GRAFISK LØSNING AV LIGNINGER I GEOGEBRA...

Detaljer

Høst 2014. Øving 5. 1 Teori. 2 Månedskalender. Norges teknisknaturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap

Høst 2014. Øving 5. 1 Teori. 2 Månedskalender. Norges teknisknaturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap TDT4105 IT Grunnkurs Høst 2014 Norges teknisknaturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Øving 5 1 Teori a) Hva er den binære ASCII-verdien av bokstaven E (stor e)?

Detaljer

Hva er en algoritme? Har allerede sett på mange algoritmer til nå i IT1101. Forholdet mellom en algoritme og et program. Algoritme program prosess

Hva er en algoritme? Har allerede sett på mange algoritmer til nå i IT1101. Forholdet mellom en algoritme og et program. Algoritme program prosess IT1101 Informatikk basisfag, dobbeltime 2/10 Hva er en algoritme? Fremgangsmåte for noe Hittil: Datarepresentasjon Datamanipulasjon Datamaskinarkutektur hvordan maskinen jobber Operativsystem Program som

Detaljer

Emne 7. Vektorrom (Del 1)

Emne 7. Vektorrom (Del 1) Emne 7. Vektorrom (Del 1) Første del av dette emnet innholder lite nytt regnemessig, men vi innfører en rekke nye begreper. Avbildning (image). R m T R n n image(t) Vi kan starte med samme skjematiske

Detaljer

Anordning og fremgangsmåte for kanalkoding og -dekoding i et kommunikasjonssystem som anvender low-density parity-check-koder

Anordning og fremgangsmåte for kanalkoding og -dekoding i et kommunikasjonssystem som anvender low-density parity-check-koder 1 Anordning og fremgangsmåte for kanalkoding og -dekoding i et kommunikasjonssystem som anvender low-density parity-check-koder BAKGRUNN FOR OPPFINNELSEN 5 1. Oppfinnelsens område 10 Den foreliggende oppfinnelsen

Detaljer

Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab

Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab For grunnleggende bruk av Matlab vises til slides fra basisintroduksjon til Matlab som finnes på kursets hjemmeside. I denne øvingen skal vi analysere

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3440 / INF 4440 Signalbehandling Eksamensdag: 27. oktober 2003 10. november 2003 Tid for eksamen: 12.00 12.00 Oppgavesettet

Detaljer

Digital Arbeidsbok i ELE 3719 Matematikk

Digital Arbeidsbok i ELE 3719 Matematikk Eivind Eriksen Digital Arbeidsbok i ELE 3719 Matematikk 3. april 215 Handelshøyskolen BI Innhold Del I Forelesninger i ELE3719 Matematikk 1 Vektorer og vektorregning......................................

Detaljer

Forelesning 13 Regresjonsanalyse

Forelesning 13 Regresjonsanalyse Forelesning 3 Regresjonsanalyse To typer bivariat analyse: Bivariat tabellanalyse: Har enhetenes verdi på den uavhengige variabelen en tendens til å gå sammen med bestemte verdier på den avhengige variabelen?

Detaljer

Husk at minustegn foran et tall eller en variabel er å tenke på som tallet multiplisert med det som kommer etter:

Husk at minustegn foran et tall eller en variabel er å tenke på som tallet multiplisert med det som kommer etter: Økonomisk Institutt, november 2006 Robert G. Hansen, rom 1207 ECON 1210: Noen regneregler og løsningsprosedyrer som brukes i kurset (A) Faktorisering og brøkregning (1) Vi kan sette en felles faktor utenfor

Detaljer

Øving 2 Matrisealgebra

Øving 2 Matrisealgebra Øving Matrisealgebra Gå til menyen Edit Preferences... og sett Format type of new output cells til TraditionalForm hvis det ikke allerede er gjort. Start med to eksempelmatriser med samme dimensjon: In[]:=

Detaljer

Lineære likningssystemer, vektorer og matriser

Lineære likningssystemer, vektorer og matriser Lineære likningssystemer, vektorer og matriser Kompendium i MAT00 Matematikk Høsten 2008 Inger Christin Borge Matematisk institutt, UiO Forord Velkommen til Universitetet i Oslo, og til MAT00! Selv om

Detaljer

Oversikt. INF1000 Uke 1 time 2. Repetisjon - Introduksjon. Repetisjon - Program

Oversikt. INF1000 Uke 1 time 2. Repetisjon - Introduksjon. Repetisjon - Program Oversikt INF1000 Uke 1 time 2 Variable, enkle datatyper og tilordning Litt repetisjon Datamaskinen Programmeringsspråk Kompilering og kjøring av programmer Variabler, deklarasjoner og typer Tilordning

Detaljer

Obligatorisk innlevering 2 - MA 109

Obligatorisk innlevering 2 - MA 109 Obligatorisk innlevering 2 - MA 9 Skriv fullt navn og studentnummer øverst på besvarelsen. Du skal bruke sifrene fra studentnummeret i besvarelsen. Studentnummeret ditt er E. Er studentnummeret ditt da

Detaljer

MAT 1001. Vår 2010. Oblig 1. Innleveringsfrist: Fredag 19.februar kl. 1430

MAT 1001. Vår 2010. Oblig 1. Innleveringsfrist: Fredag 19.februar kl. 1430 MAT Vår Oblig Innleveringsfrist: Fredag 9februar kl 43 Oppgaven leveres stiftet med forsideark på ekspedisjonskontoret til Matematisk institutt i 7 etg i Niels Henrik Abels hus innen fristen Oppgaven vil

Detaljer

Programmering i Java med eksempler

Programmering i Java med eksempler Differenslikn. p.124 Simulering av differenslikninger Programmering i Java med eksempler Forelesning uke 39, 2005 MAT-INF1100 Differenslikn. p.224 Differenslikning av orden 2 (1) Vi kjenner formler for

Detaljer

Kort innføring i problemløsningsmetodikk

Kort innføring i problemløsningsmetodikk 2016 Kort innføring i problemløsningsmetodikk Ali Ghaderi Høgskolen i Sørøst-Norge 14 January 2016 If I had an hour to solve a problem I d spend 55 minutes thinking about the problem and 5 minutes thinking

Detaljer

Matematikk R1 Oversikt

Matematikk R1 Oversikt Matematikk R1 Oversikt Lars Sydnes, NITH 20. mai 2014 I. ALGEBRA ANNENGRADSLIGNINGER Annengradsformelen: ax 2 + bx + c = 0 x = b ± b 2 4ac 2a (i) 0 løsninger hvis b 2 4ac < 0 (ii) 1 løsning hvis b 2 4ac

Detaljer

TDT4102 Prosedyre og Objektorientert programmering Vår 2015

TDT4102 Prosedyre og Objektorientert programmering Vår 2015 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap TDT4102 Prosedyre og Objektorientert programmering Vår 2015 Øving 6 Frist: 2015-02-27 Mål for denne øvinga:

Detaljer

Oppgavehefte om komplekse tall

Oppgavehefte om komplekse tall Oppgavehefte om komplekse tall Tore August Kro, tore.a.kro@hiof.no 11. august 009 1 Aritmetikk Eksempel 1.1 Vi skriver komplekse tall på kartesisk form z = a + ib. Tenk på i som et symbol som oppfyller

Detaljer

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B SAMMENDRAG OG FORMLER Nye Mega 9A og 9B 1 Sammendrag og formler Nye Mega 9A Kapittel A GEOMETRI Regulære mangekanter Når alle sidene er like lange og alle vinklene er like store i en mangekant, sier vi

Detaljer

AlgDat 12. Forelesning 2. Gunnar Misund

AlgDat 12. Forelesning 2. Gunnar Misund AlgDat 12 Forelesning 2 Forrige forelesning Følg med på hiof.no/algdat, ikke minst beskjedsida! Algdat: Fundamentalt, klassisk, morsomt,...krevende :) Pensum: Forelesningene, oppgavene (pluss deler av

Detaljer

INF1010 - Seminaroppgaver til uke 3

INF1010 - Seminaroppgaver til uke 3 INF1010 - Seminaroppgaver til uke 3 Oppgave 1 I denne oppgaven skal vi lage et klassehiearki av drikker. Alle klassene i hiearkiet skal implementere følgende grensesnitt p u b l i c i n t e r f a c e Drikkbar

Detaljer

Start et nytt Scratch-prosjekt. Slett kattefiguren, for eksempel ved å høyreklikke på den og velge slett.

Start et nytt Scratch-prosjekt. Slett kattefiguren, for eksempel ved å høyreklikke på den og velge slett. Hvor i All Verden? Del 1 Introduksjon Hvor i All Verden? er et reise- og geografispill hvor man raskest mulig skal fly innom reisemål spredt rundt i Europa. I denne første leksjonen vil vi se på hvordan

Detaljer

Plan for dagen. Vprg 4. Dagens tema - filbehandling! Strømmer. Klassen FilLeser.java. Tekstfiler

Plan for dagen. Vprg 4. Dagens tema - filbehandling! Strømmer. Klassen FilLeser.java. Tekstfiler Plan for dagen Vprg 4 LC191D Videregående programmering Høgskolen i Sør-Trøndelag Avdeling for informatikk og e-læring Anette Wrålsen Del: Intro til tekstfiler Del II: Mer om tekstfiler, Scanner-klassen

Detaljer

Viktige læringsaktiviteter

Viktige læringsaktiviteter Viktige læringsaktiviteter Læringsaktiviteter som dekkes av Aktiviteter Stille spørsmål. Utvikle og bruke modeller. = dekkes Planlegge og gjennomføre undersøkelser. Analysere og tolke data. Bruke matematikk,

Detaljer

Lineære likningssystemer

Lineære likningssystemer Kapittel 1 Lineære likningssystemer Jeg tenker på et tall slik at π ganger tallet er 12. 1.1 Lineære likninger Matematikk dreier seg om å løse problemer. Problemene gjøres ofte om til likninger som så

Detaljer

Fart og trafikkulykker: evaluering av potensmodellen

Fart og trafikkulykker: evaluering av potensmodellen TØI-rapport 740/2004 Forfattere: Rune Elvik, Peter Christensen, Astrid Amundsen Oslo 2004, 134 sider Sammendrag: Fart og trafikkulykker: evaluering av potensmodellen Sammenhengen mellom fart og trafikksikkerhet

Detaljer

MA1301 Tallteori Høsten 2014

MA1301 Tallteori Høsten 2014 MA1301 Tallteori Høsten 014 Richard Williamson 1. august 015 Innhold Forord 7 1 Induksjon og rekursjon 9 1.1 Naturlige tall og heltall............................ 9 1. Bevis.......................................

Detaljer

MATEMATIKK OG INFORMASJONSSØKNING PÅ NETTET. Eskilstuna 5 september 02

MATEMATIKK OG INFORMASJONSSØKNING PÅ NETTET. Eskilstuna 5 september 02 Leting på nettet 3 MATEMATIKK OG INFORMASJONSSØKNING PÅ NETTET Eskilstuna 5 september 02 Som så ofte når det gjelder spektakulære tekniske anvendelser, og spesielt når det gjelder verktøyene på nettet,

Detaljer

TMA4135 Matematikk 4D Kompendium i numerikk. Eirik Refsdal

TMA4135 Matematikk 4D Kompendium i numerikk. Eirik Refsdal TMA4135 Matematikk 4D Kompendium i numerikk Eirik Refsdal 2. august 2005 En mangel ved dagens autorative kompendium i matematikk 4, er at numerikkbiten i matematikk 4D er fullstendig utelatt. Dette er

Detaljer

INF1400 Kap 02 Boolsk Algebra og Logiske Porter

INF1400 Kap 02 Boolsk Algebra og Logiske Porter INF4 Kap 2 Boolsk Algebra og Logiske Porter Hovedpunkter Toverdi Boolsk algebra Huntington s postulater Diverse teorem Boolske funksjoner med sannhetstabell Forenkling av uttrykk (port implementasjon)

Detaljer

SOS1120 Kvantitativ metode. Regresjonsanalyse. Lineær sammenheng II. Lineær sammenheng I. Forelesningsnotater 11. forelesning høsten 2005

SOS1120 Kvantitativ metode. Regresjonsanalyse. Lineær sammenheng II. Lineær sammenheng I. Forelesningsnotater 11. forelesning høsten 2005 SOS1120 Kvantitativ metode Regresjonsanalyse Forelesningsnotater 11. forelesning høsten 2005 Per Arne Tufte Lineær sammenheng I Lineær sammenheng II Ukelønn i kroner 4000 3500 3000 2500 2000 1500 1000

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 3 8.2.1 Anta at dy = y2 y) dx a) Finn likevektspunktene til

Detaljer

EKSAMEN I EMNET MAT160 Beregningsalgoritmer 1 Mandag 12 februar 2007 LØSNINGSFORSLAG

EKSAMEN I EMNET MAT160 Beregningsalgoritmer 1 Mandag 12 februar 2007 LØSNINGSFORSLAG Universitetet i Bergen Det matematisk naturvitenskapelige fakultet Matematisk institutt Side 1 av 5 BOKMÅL EKSAMEN I EMNET MAT160 Beregningsalgoritmer 1 Mandag 12 februar 2007 LØSNINGSFORSLAG Tillatte

Detaljer

KAPITTEL 2 Tall og datamaskiner

KAPITTEL 2 Tall og datamaskiner KAPITTEL 2 Tall og datamaskiner I dette kapitlet skal vi se på heltall og reelle tall og hvordan disse representeres på datamaskin. Heltall skaper ingen store problemer for datamaskiner annet enn at vi

Detaljer

I dag. Rep: Oppsummering - variabler. Rep: Datatyper. INF1000 (Uke 3) Mer om uttrykk, terminal I/O, forgreninger

I dag. Rep: Oppsummering - variabler. Rep: Datatyper. INF1000 (Uke 3) Mer om uttrykk, terminal I/O, forgreninger I dag INF1000 (Uke 3) Mer om uttrykk, terminal I/O, forgreninger Grunnkurs i programmering Institutt for Informatikk Universitet i Oslo Litt repetisjon Mer om uttrykk Lesing og skriving til terminal Forgreninger

Detaljer

Forelesning 15.11. Datatyper Kap 5.2 Instruksjonsformat Kap 5.3 Flyttall App B

Forelesning 15.11. Datatyper Kap 5.2 Instruksjonsformat Kap 5.3 Flyttall App B TDT4160 Datamaskiner Grunnkurs Forelesning 15.11 Datatyper Kap 5.2 Instruksjonsformat Kap 5.3 Flyttall App B Dagens tema Datatyper (5.2) Heltall Ikke-numeriske datatyper Instruksjonsformat (5.3) Antall

Detaljer

Inferens i regresjon

Inferens i regresjon Strategi som er fulgt hittil: Inferens i regresjon Deskriptiv analyse og dataanalyse først. Analyse av en variabel før studie av samvariasjon. Emne for dette kapittel er inferens når det er en respons

Detaljer

Tiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver.

Tiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver. Kapittel 4 Anvendelser av lineære likningssystemer Tiden går og alt forandres, selv om vi stopper klokka Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver 4 Populasjonsdynamikk

Detaljer

RF3100 Matematikk og fysikk Leksjon 6

RF3100 Matematikk og fysikk Leksjon 6 RF3100 Matematikk og fysikk Leksjon 6 Lars Sydnes, NITH 4.oktober 2013 I. FUNKSJONER TILFELDIGE EKSEMPLER x-koordinaten er en funksjon av t når startposisjon x 0 og startfart v x er gitt: x = x 0 + v x

Detaljer

tilfeller tatt for gitt ved universiteter og høyskoler. Her er framstillingen kortfattet, meningen er at dette kan brukes som referanse.

tilfeller tatt for gitt ved universiteter og høyskoler. Her er framstillingen kortfattet, meningen er at dette kan brukes som referanse. Forord Denne læreboken gir en innføring i lineær algebra, rettet mot begynnerkurs på Universitets- og Høyskolenivå. Arbeidet med dette stoffet tok til som en del av et større prosjekt, som omfattet datastøttet

Detaljer

Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab

Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab For grunnleggende introduksjon til Matlab, se kursets hjemmeside https://wiki.math.ntnu.no/tma4240/2015h/matlab. I denne øvingen skal vi analysere to

Detaljer

Java. INF1000 : Forelesning 2. Ulike varianter for ulike behov. Java Standard Edition (Java SE) Java:

Java. INF1000 : Forelesning 2. Ulike varianter for ulike behov. Java Standard Edition (Java SE) Java: Variable og tilordninger Heltall, desimaltall og sannhetsverdier Kompilering og kjøring Utskrift på skjerm Ole Christian Lingjærde Gruppen for bioinformatikk Institutt for informatikk Universitetet i Oslo

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs. Introduksjon til programmering i Matlab. Rune Sætre / Anders Christensen {satre, anders}@idi.ntnu.

TDT4105 Informasjonsteknologi, grunnkurs. Introduksjon til programmering i Matlab. Rune Sætre / Anders Christensen {satre, anders}@idi.ntnu. 1 TDT4105 Informasjonsteknologi, grunnkurs Introduksjon til programmering i Matlab Rune Sætre / Anders Christensen {satre, anders}@idi.ntnu.no 2 Frist for øving 1: Fredag 11. Sept. Noen oppstartsproblemer

Detaljer

Ikke lineære likninger

Ikke lineære likninger Ikke lineære likninger Opp til nå har vi studert lineære likninger og lineære likningsystemer. 1/19 Ax = b Ax b = 0. I en dimensjon, lineære likninger kan alltid løses ved hjelp av formler: ax + b = 0

Detaljer