RF5100 Lineær algebra Leksjon 2

Størrelse: px
Begynne med side:

Download "RF5100 Lineær algebra Leksjon 2"

Transkript

1 RF5100 Lineær algebra Leksjon 2 Lars Sydnes, NITH 27.august 2013

2 I. LINEÆRE SYSTEM

3 SKJÆRINGSPUNKTET FOR TO LINJER l 1 : x + y = 1 P l 2 : x + y = 3 Geometri: (i) P ligger på linjen l 1 (ii) P ligger på linjen l 2 Algebra: (i) eq 1 : x + y = 1 (ii) eq 2 : x + y = 3

4 LØSNING eq 1 + eq 2 : 2y = 4 eq 2 : x + y = 3 eq 1 2 : y = 2 eq 2 : x + y = 3 eq 1 : y = 2 eq 2 eq 1 : x = 1 Resultat: Vi har omformet de opplysningene vi hadde om P til x = 1, y = 2. Metode: Vi dannet lineærkombinasjoner av ligningene.

5 NAIV GAUSS-JORDAN-ELIMINASJON n ligninger eq 1, eq 2,..., eq n. n variabler x 1, x 2,..., x n. Bruk eq 1 til å eliminere x 1 fra de andre ligningene. Bruk den oppdaterte versjonen av eq k til å eliminere x k fra de andre ligningene. Resultat: Siste versjon av eq k inneholder kun variabelen x k : eq 1 : a 1 x 1 = b 1 eq 2 : a 2 x 2 = b 2. eq n : a n x n = b n Altså: x i = b i /a i.

6 PIVOTERING OG AVRUNDINGSFEIL x y = x y = 1 GIVEN MATRIX: { 1.234e e e+19 } { 1.000e e e+00 } Straightforward Gauss Elimination: { 1.000e e e+11 } { 0.000e e e+01 } Error indicator: e+11 Scaled pivoting: { 1.000e e e+01 } { 0.000e e e+01 } Error indicator: e+00 METODEVALG PÅVIRKER NUMERISK STABILITET

7 PIVOTERING n ligninger eq 1, eq 2,..., eq n. n variabler x 1, x 2,..., x n. Finn fram til den ligningen eq i1 som egner seg best for eliminasjon av variabelen x 1. Utfør eliminasjonen og merk ligningen eq i1 som brukt. Steg k: Finn fram til ligningen eq ik som egner seg best for eliminasjon av variabelen x k. Let blant de oppdaterte versjonene av de ubrukte ligningene. Utfør eliminasjonen og merk eq ik som brukt. Resultat: Siste versjon av eq ik inneholder kun variabelen x k : eq ik : a k x k = b k

8 HVILKEN LIGNING EGNER SEG BEST? Svaret er ikke opplagt Tradeoff: Velegnethet vs. Ressursbruk. Absolutt verdi av koeffesienter: Velg den ligningen der x k sin koeffesient har størst absoluttverdi. (Delvis pivotering / Partial pivoting) Relativ verdi av koeffesienter: Velg den ligningen der koeffesienten til variabelen x k har størst absoluttverdi relativt til de andre variablene. (Skalert pivotering / Scaled pivoting)

9 II. LINEÆRE SYSTEM PÅ MATRISEFORM

10 KOEFFESIENTMATRISEN Lineært system: x + y + z = 1 x + 2y + 2z = 3 x + 2y + 3z = 6 Koeffesientmatrisen: (Arbeidsdata) double[][] coefficients;

11 HVA MATRISER ER 1.0 Matriser holder orden på koeffesienter. Lineært system Koeffesientmatrisen

12 RADOPERASJONER

13 III. MATRISER

14 IV. LINEÆRE SYSTEM OG MATRISELIGNINGER

15 V. INVERSJON OG TRANSPONERING

16 VI. OPPSUMMERING

17 OPPSUMMERING I ETTERKANT Eksempel: Skjæringspunktet mellom to linjer bestemmes av 2 lineære ligninger i to variabler. Eksempel: Tre ligninger med tre ukjente x, y, z. Systematikk: Gausseliminasjon (Enkelt grunnprinsipp): Eliminer variabelen x ved å kombinere ligning 1 med de to andre ligningene. Eliminer variabelen y ved å kombinere ligning 2 med de to andre ligningene. Eliminer variabelen z ved å kombinere ligning 3 med de to andre ligningene.

18 EKSEMPEL x + y + z = 1 x + 2y + 2z = 3 x + 2y + 3z = 6 Trekker ligning 1 fra de to andre, og variabelen x står igjen alene i første kolonne: x + y + z = y + z = y + 2z = 5 Trekker ligning 2 fra de to andre, og variabelen y står igjen alene i andre kolonne: x = y + z = z = 3

19 EKSEMPEL Trekker ligning 3 fra ligning 2, og variabelen z står igjen alene i tredje kolonne: x = 1 Altså må: 0 + y + 0 = z = 3 x = 1, y = 1 og z = 3 De opprinnelige ligningene bestemmer x, y, z-verdiene, vi former ligningene om og gjør dem gjennomsiktige. Vi hverken legger til eller trekker fra informasjon.

20 GAUSS-JORDAN-ELIMINASJON n ligninger e 1, e 2,..., e n. (Altså n opplysninger) n variabler x 1, x 2,..., x n. (Altså n ukjente) Bruk ligning e k til å frigjøre x k fra de andre ligninge- Steg 1: ne. Steg k: ne. Bruk ligning e 1 til å frigjøre x 1 fra de andre ligninge- Aber: Vi forutsetter her at x k forekommer i ligning k etter steg k 1. Dette kan vi ikke garantere!!

21 PROBLEMEKSEMPEL Systemet x + y + z = 1 2x + 2y + 3z = 3 3x + 3y z = 4 omformes til følgende system etter ett steg: x + y + z = z = z = 1 Vi får ikke til å eliminere y. Vi har to forslag til z-verdier: z = 1, z = 1 4. Systemet er altså selvmotsigende. Vi har utledet en absurditet av det.

22 MILDERE PROBLEMEKSEMPEL Systemet x + y + z = 1 2x + 2y + 3z = 3 2x + 3y z = 4 omformes til følgende system etter ett steg: x + y + z = z = y + 3z = 2 Her kan vi gå videre, men vi må bruke ligning 3 for å eliminere y-variabelen i de andre ligningene. Vi er tjent med svakere kobling mellom ligningene og variablene

23 VII. OPPGAVER

24 REGNEOPPGAVER Noen ligningsystem å bryne seg på: x + 2y 3z = 6 2x y + 4z = 1 x y + z = 3 x + 2y + z = 4 3x + 8y + 7z = 20 2x + 7y + 9z = 23 Den neste har en twist in the tail: 3x 8y + 10z = 22 x 3y + 2z = 5 2x 9y 8z = 11 Og: Hvorfor ikke bruke rad 2 til å eliminere x? Da blir aritmetikken enklere. Løs disse systemene med å arbeide med ligningene og/eller matriseformen til systemet.

25 LAB: MATRISER Skriv en matriseklasse i Java. Ta gjerne utgangspunkt i RF5100/kode/matLib/Matrix.java eller Denne må man vel også ha for å få koden til å kompilere: ~sydlar/rf5100/kode/matlib/dimensionerror.java Her er de lineære matriseoperasjonene allerede implementert. Studer dem og kritiser dem. Arbeid med følgende: public Matrix multiply(matrix other);

26 LAB: GAUSSELIMINASJON Arbeid med: util/solvers.java.

27 REFERANSER -Lineære system : A & R : Kap. 1 D & P: Matriser: D & P:

Gauss-eliminasjon og matrisemultiplikasjon

Gauss-eliminasjon og matrisemultiplikasjon DUMMY Gauss-eliminasjon og matrisemultiplikasjon Lars Sydnes 9 september 2015 Sammendrag Dette notatet handler om hvordan man løser lineære ligningssystemer, altså systemer av flere ligninger i flere ukjente,

Detaljer

Lineære ligningssystem og matriser

Lineære ligningssystem og matriser Lineære ligningssystem og matriser E.Malinnikova, NTNU, Institutt for matematiske fag September 15, 2009 Lineære ligningssystem Vi har et ligningssystem av m ligninger med n ukjente x 1,..., x n som kan

Detaljer

Lineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise

Lineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise Lineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise E.Malinnikova, NTNU, Institutt for matematiske fag 19. september 2011 Lineære ligningssystem Vi har et ligningssystem av m ligninger med

Detaljer

Ma Linær Algebra og Geometri Øving 1

Ma Linær Algebra og Geometri Øving 1 Ma0 - Linær Algebra og Geometri Øving Øistein Søvik 0. september 0 Excercise Set. = 4 x6 x x = x 6 4 x x = x 4 4 4 x x. In each part, determine whether the equation is linear in x, x and x Før vi begynner

Detaljer

Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 2006

Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 2006 Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 006 Oppgave I hele oppgaven bruker vi I = 0 0 0 0. 0 0 a) Matrisen A har størrelse og B har størrelse slik at matriseproduktet A B er en

Detaljer

Lineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler

Lineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler Lineære ligningssystemer Generell form; m ligninger i n ukjente, m n-system: Forelesning, TMA4110 Torsdag 17/9 Martin Wanvik, IMF MartinWanvik@mathntnuno a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1

Detaljer

Forelesning 14 Systemer av dierensiallikninger

Forelesning 14 Systemer av dierensiallikninger Forelesning 14 Systemer av dierensiallikninger Eivind Eriksen 9. april 010 Dierensiallikninger En dierensiallikning inneholder en avhengig variabel (typisk y ) og en uavhengig variabel (typisk x), som

Detaljer

LP. Leksjon 6: Kap. 6: simpleksmetoden i matriseform, og Seksjon 7.1: følsomhetsanalyse

LP. Leksjon 6: Kap. 6: simpleksmetoden i matriseform, og Seksjon 7.1: følsomhetsanalyse LP. Leksjon 6: Kap. 6: simpleksmetoden i matriseform, og Seksjon 7.1: følsomhetsanalyse matrisenotasjon simpleksalgoritmen i matrisenotasjon eksempel negativ transponert egenskap: bevis følsomhetsanalyse

Detaljer

RF5100 Lineær algebra Leksjon 12

RF5100 Lineær algebra Leksjon 12 RF5100 Lineær algebra Leksjon 12 Lars Sydnes, NITH 26. november 2013 I. GAUSS-ELIMINASJON 2x + 3y + z = 1 2x + 5y z = 1 4x + 7y + 4z = 3 x + 3/2 y + 1/2 z = 1/2 x + 2z = 2 y z = 1 3z = 2 x + 2z = 2 y z

Detaljer

RF3100 Matematikk og fysikk Leksjon 1

RF3100 Matematikk og fysikk Leksjon 1 RF3100 Matematikk og fysikk Leksjon 1 Lars Sydnes, NITH 30. august 2013 I. INFORMASJON FAGLÆRER Kontakt: Lars Sydnes lars.sydnes@nith.no 93035685 Ved NTNU: Doktorgrad i Matematikk 2012, Siv.ing. Industriell

Detaljer

Oppgave 1 (25 %) - Flervalgsoppgaver

Oppgave 1 (25 %) - Flervalgsoppgaver Oppgaver og løsningsforslag for 4t eksamen 10.mai 006 i LO510D Lineær algebra med grafiske anvendelser. Fra og med oppgave skal alle svar begrunnes. Oppgave 1 (5 %) - Flervalgsoppgaver Denne oppgaven består

Detaljer

Elementære eliminasjonsmatriser

Elementære eliminasjonsmatriser Elementære eliminasjonsmatriser Gitt en vektor a = [a 1,..., a n ] T, en matrise 1 0 0 0.......... M k = 0 1 0 0 0 a k+1 a k 1 0, a k 0,.......... 0 an a k 0 1 kalles elementære eliminasjonsmatriser eller

Detaljer

RF5100 Lineær algebra Leksjon 9

RF5100 Lineær algebra Leksjon 9 RF5100 Lineær algebra Leksjon 9 Lars Sydnes, NITH 11. november 2013 I. DATASKJERMEN DATASKJERMEN (0, 0) x (wp os x, wp os y ) y winres x (wcenter x, wcenter y ) winres x (devres x, devres y ) Merk: Det

Detaljer

Numerisk lineær algebra

Numerisk lineær algebra Numerisk lineær algebra Arne Morten Kvarving Department of Mathematical Sciences Norwegian University of Science and Technology 29. Oktober 2007 Problem og framgangsmåte Vi vil løse A x = b, b, x R N,

Detaljer

Projeksjoner av vektorer Analyse av værdata

Projeksjoner av vektorer Analyse av værdata Projeksjoner av vektorer Analyse av værdata Lars Sydnes 11. september 2013 1 Osloserien Ved værstasjoner rundt omkring i verden måler man temperaturen hver eneste dag. Vi har tilgang til målinger gjort

Detaljer

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts.

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts. Gauss-Jordan eliminasjon; redusert echelonform Forelesning, TMA4110 Fredag 18/9 Martin Wanvik, IMF MartinWanvik@mathntnuno En matrise vil normalt være radekvivalent med flere echelonmatriser; med andre

Detaljer

Hvorfor er lineær algebra viktig? Linear

Hvorfor er lineær algebra viktig? Linear Lineær Algebra Hvorfor er lineær algebra viktig? Linear y = ax + b linje y = f(x) funksjon Taylor utvikling f(x) =f(x 0 )+f 0 (x 0 )(x x 0 )+ 1 2 f 00 (x 0 )(x x 0 ) 2 + f(x) f(x 0 )+f 0 (x 0 )(x x 0 )

Detaljer

RF3100 Matematikk og fysikk Leksjon 1

RF3100 Matematikk og fysikk Leksjon 1 RF3100 Matematikk og fysikk Leksjon 1 Lars Sydnes, NITH 30. august 2013 I. INFORMASJON FAGLÆRER Kontakt: Lars Sydnes lars.sydnes@nith.no 93035685 Ved NTNU: Doktorgrad i Matematikk 2012, Siv.ing. Industriell

Detaljer

MA2501 Numeriske metoder

MA2501 Numeriske metoder MA2501 Numeriske metoder Løsningsforslag, øving 7 Oppgave 1 a) Vi vet at r = Ae e = A 1 r. La være en vektornorm på R n med en tilhørende avledet (subordinat) matrisenorm på R n n. Siden blir Ax A = sup

Detaljer

MA2501 Numeriske metoder

MA2501 Numeriske metoder MA250 Numeriske metoder Oppgave Løsningsforslag, øving 7 a) Vi vet at r = Ae e = A r. La være en vektornorm på R n med en tilhørende avledet (subordinat) matrisenorm på R n n. Siden blir Ax A = sup Ax

Detaljer

(3/2)R 2+R 3 R 1 +R 2,( 2)R 1 +R 3 ( 2)R 1 +R 4 6/5R 3 +R 4 1/5R 3

(3/2)R 2+R 3 R 1 +R 2,( 2)R 1 +R 3 ( 2)R 1 +R 4 6/5R 3 +R 4 1/5R 3 NTNU Institutt for matematiske fag TMA4115 Matematikk 3 våren 2009 Løsningsforslag - Øving 10 Fra Edwards & Penney, avsnitt 4.4 5 Vi bruker Algoritme 1 og 2 i EP på sidene 190 og 193 for å finne en basis

Detaljer

MAT1120 Repetisjon Kap. 1

MAT1120 Repetisjon Kap. 1 MAT1120 Repetisjon Kap. 1 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Idag skal vi repetere fra kap. 1 i Lays bok. Det handler bl.a. om : Matriser Vektorer

Detaljer

Lineære likningssett.

Lineære likningssett. Lineære likningssett. Forelesningsnotater i matematikk. Lineære likningssystemer. Side 1. 1. Innledning. La x 1, x, x n være n ukjente størrelser. La disse størrelsene være forbundet med m lineære likninger,

Detaljer

Lineære likningssystemer og matriser

Lineære likningssystemer og matriser Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 5 Implementasjon av lister

PG4200 Algoritmer og datastrukturer Forelesning 5 Implementasjon av lister PG4200 Algoritmer og datastrukturer Forelesning 5 Implementasjon av lister Lars Sydnes, NITH 5. februar 2014 I. Implementasjoner Tabell-implementasjon av Stakk Tabellen er den lettest tilgjengelige datastrukturen

Detaljer

RF5100 Lineær algebra Leksjon 1

RF5100 Lineær algebra Leksjon 1 RF5100 Lineær algebra Leksjon 1 Lars Sydnes, NITH 20.august 2013 I. INFORMASJON FAGLÆRER Kontakt: Lars Sydnes lars.sydnes@nith.no 93035685 Bakgrunn: Doktorgrad i Matematikk fra NTNU (2012), Siv.ing. Industriell

Detaljer

Obligatorisk innlevering 3 - MA 109, Fasit

Obligatorisk innlevering 3 - MA 109, Fasit Obligatorisk innlevering - MA 9, Fasit Vektorer Oppgave: Avgjør om, og er lineært uavhengige Dette er spørsmålet om det finnes vekter x, x, x - ikke alle lik - slik at x + x + x = Vi skriver det på augmentert

Detaljer

Repetisjon: Om avsn og kap. 3 i Lay

Repetisjon: Om avsn og kap. 3 i Lay Repetisjon: Om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon. La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p. Produktet AB er m p matrisen definert

Detaljer

LP. Leksjon 5. Kapittel 5: dualitetsteori. motivasjon det duale problemet svak og sterk dualitet det duale til LP problemer på andre former

LP. Leksjon 5. Kapittel 5: dualitetsteori. motivasjon det duale problemet svak og sterk dualitet det duale til LP problemer på andre former LP. Leksjon 5 Kapittel 5: dualitetsteori motivasjon det duale problemet svak og sterk dualitet det duale til LP problemer på andre former 1 / 26 Motivasjon Til ethvert LP problem (P) er det knyttet et

Detaljer

1. Finn egenverdiene og egenvektorene til matrisen A = 2 1 A =

1. Finn egenverdiene og egenvektorene til matrisen A = 2 1 A = Fasit MAT102 juni 2017 Oppgave 1 1. Finn egenverdiene og egenvektorene til matrisen ( ) 1 2 A = 2 1 Løsning: Egenverdiene er røttene til det karakteristiske polynom gitt ved determinanten av matrisen (

Detaljer

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.

Detaljer

LP. Leksjon 1. Kapittel 1 og 2: eksempel og simpleksmetoden

LP. Leksjon 1. Kapittel 1 og 2: eksempel og simpleksmetoden LP. Leksjon 1. Kapittel 1 og 2: eksempel og simpleksmetoden Dette emnet gir en innføring i lineær optimering og tilgrensende felt. hva er LP (lin.opt.=lin.programmering) mer generelt: matematisk optimering

Detaljer

RF5100 Lineær algebra Leksjon 1

RF5100 Lineær algebra Leksjon 1 RF5100 Lineær algebra Leksjon 1 Lars Sydnes, NITH 20.august 2013 I. INFORMASJON FAGLÆRER Kontakt: Lars Sydnes lars.sydnes@nith.no 93035685 Bakgrunn: Doktorgrad i Matematikk fra NTNU (2012), Siv.ing. Industriell

Detaljer

Minste kvadraters løsning, Symmetriske matriser

Minste kvadraters løsning, Symmetriske matriser Minste kvadraters løsning, Symmetriske matriser NTNU, Institutt for matematiske fag 19. november 2013 Inkonsistent ligningsystem Anta at Ax = b er et inkonsistent ligningsystem, da er b ikke i Col(A).

Detaljer

1 Gauss-Jordan metode

1 Gauss-Jordan metode Merknad I dette Kompendiet er det gitt referanser både til læreboka og til selve Kompendiet Hvordan å gjenkjenne dem? Referansene til boka er 3- tallede, som Eks 3 Vi kan også referere til 22, kap 22 eller

Detaljer

Vektorer og matriser

Vektorer og matriser DUMMY Vektorer og matriser Lars Sydnes 1.september 2014 OBS: UNDER UTVIKLING Oppgaver Det finnes passende oppgaver og løsningsforslag til dette notatet. 1 Innledning La oss se på et system av tre lineære

Detaljer

Projeksjoner av vektorer Analyse av værdata

Projeksjoner av vektorer Analyse av værdata Projeksjoner av vektorer Analyse av værdata Lars Sydnes NITH 12. september 2013 1 Osloserien Ved værstasjoner rundt omkring i verden måler man temperaturen hver eneste dag. Vi har tilgang til målinger

Detaljer

RF5100 Lineær algebra Løsningsforslag til prøveeksamen

RF5100 Lineær algebra Løsningsforslag til prøveeksamen RF5 Lineær algebra Løsningsforslag til prøveeksamen NITH 6. desember Oppgave (a) Jeg skal løse et system av tre ligninger med tre ukjente. Dette gjør jeg ved å utføre radoperasjoner på matrisen tilhørende

Detaljer

Homogene lineære ligningssystem, Matriseoperasjoner

Homogene lineære ligningssystem, Matriseoperasjoner Homogene lineære ligningssystem, Matriseoperasjoner E.Malinnikova, NTNU, Institutt for matematiske fag September 22, 2010 Antall løsninger til et lineær ligningssystem Teorem Et lineært ligningssytem har

Detaljer

Lineær algebra-oppsummering

Lineær algebra-oppsummering Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:

Detaljer

10 Radrommet, kolonnerommet og nullrommet

10 Radrommet, kolonnerommet og nullrommet Radrommet kolonnerommet og nullrommet La A være en m n matrise Vi kan beskrive matrisen ved hjelp av dens rader r A r r i R n r m eller dens kolonner A [ c c c n ci R m Definisjon (se Def 7 i boka) For

Detaljer

Øving 3 Determinanter

Øving 3 Determinanter Øving Determinanter Determinanten til en x matrise er definert som Clear@a, b, c, dd K a b OF c d ad -bc Determinanten til en matrise er derfor et tall. Du skal se at det viktige for oss er om tallet er

Detaljer

Rang og Vektorrom. Magnus B. Botnan NTNU. 4. august, 2015

Rang og Vektorrom. Magnus B. Botnan NTNU. 4. august, 2015 Rang og Vektorrom Magnus B. Botnan NTNU 4. august, 2015 Lineær Uavhengighet La v (1),..., v (m) være vektorer av samme størrelse. Vi sier at vektorene er lineært avhengige hvis det finnes konstanter c

Detaljer

Avdeling for lærerutdanning. Lineær algebra. for allmennlærerutdanningen. Inger Christin Borge

Avdeling for lærerutdanning. Lineær algebra. for allmennlærerutdanningen. Inger Christin Borge Avdeling for lærerutdanning Lineær algebra for allmennlærerutdanningen Inger Christin Borge 2006 Innhold Notasjon iii 1 Lineære ligningssystemer 1 1.1 Lineære ligninger......................... 1 1.2 Løsningsmengde

Detaljer

LP. Leksjon 2. Kapittel 2: simpleksmetoden, forts. initialisering to faser ubegrenset løsning geometri

LP. Leksjon 2. Kapittel 2: simpleksmetoden, forts. initialisering to faser ubegrenset løsning geometri LP. Leksjon 2. Kapittel 2: simpleksmetoden, forts. initialisering to faser ubegrenset løsning geometri 1 / 16 Repetisjon LP problem tillatt løsning, optimal løsning basisliste basis, basisvariable og ikkebasisvariable

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 2

PG4200 Algoritmer og datastrukturer Forelesning 2 PG4200 Algoritmer og datastrukturer Forelesning 2 Lars Sydnes, NITH 15. januar 2014 I. Forrige gang Praktisk eksempel: Live-koding II. Innlevering Innlevering 1 2.februar Offentliggjøring: 22.januar Innhold:

Detaljer

Elementær Matriseteori

Elementær Matriseteori Elementær Matriseteori Magnus B. Botnan NTNU 3. august, 2015 Kursinfo - Foreleser: Magnus B. Botnan http://www.math.ntnu.no/~botnan/ - Hjemmeside: https: //wiki.math.ntnu.no/tma4110/2015h/forkurs/start

Detaljer

Forelesning 22 MA0003, Mandag 5/11-2012 Invertible matriser Lay: 2.2

Forelesning 22 MA0003, Mandag 5/11-2012 Invertible matriser Lay: 2.2 Forelesning 22 M0003, Mandag 5/-202 Invertible matriser Lay: 2.2 Invertible matriser og ligningssystemet x b Ligninger på formen ax b, a 0 kan løses ved å dividere med a på begge sider av ligninger, noe

Detaljer

LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1

LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1 LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1 Vi fortsetter studiet av (MKS): minimum kost nettverk strøm problemet. Har nå en algoritme for beregning av x for gitt spenntre T Skal forklare

Detaljer

MAKE MAKE Arkitekter AS Maridalsveien Oslo Tlf Org.nr

MAKE MAKE Arkitekter AS Maridalsveien Oslo Tlf Org.nr en omfatter 1 Perspektiv I en omfatter 2 Perspektiv II en omfatter 3 Perspektiv III en omfatter 4 Perspektiv IV en omfatter 5 Perspektiv V en omfatter 6 Perspektiv VI en omfatter 7 Perspektiv VII en omfatter

Detaljer

MA2501 Numerical methods

MA2501 Numerical methods MA250 Numerical methods Solutions to problem set Problem a) The function f (x) = x 3 3x + satisfies the following relations f (0) = > 0, f () = < 0 and there must consequently be at least one zero for

Detaljer

Hovedfagspresentasjon. Preprosessing Large Scale Linear Systems

Hovedfagspresentasjon. Preprosessing Large Scale Linear Systems Hovedfagspresentasjon Preprosessing Large Scale Linear Systems Bernt Asbjørn Omland Institutt for Informatikk ved Universitet i Bergen 18 Desember 2003 1 Oversikt Preprosessering Yinue Ye og M.C. Cheng

Detaljer

MAT 1110: Bruk av redusert trappeform

MAT 1110: Bruk av redusert trappeform Tom Lindstrøm 10/5, 2006: MAT 1110: Bruk av redusert trappeform I Lays bok brukes den reduserte trappeformen til matriser til å løse en rekke problemer knyttet til ligningssystemer, lineærkombinasjoner,

Detaljer

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA101 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3 desember 007 Oppgave 1 a) Vi ser på ligningssystemet x +

Detaljer

Oppgaver som illustrerer alle teknikkene i 1.4 og 1.5

Oppgaver som illustrerer alle teknikkene i 1.4 og 1.5 Oppgaver som illustrerer alle teknikkene i 1.4 og 1.5 Gitt 3 punkter A 1,1,1,B 2,1,3,C 3,4,5 I Finne ligning for plan gjennom 3 punkt Lager to vektorer i planet: AB 1, 0,2 og AC 2,3, 4 Lager normalvektor

Detaljer

MA1201, , Kandidatnummer:... Side 1 av 5. x =.

MA1201, , Kandidatnummer:... Side 1 av 5. x =. MA1201, 05.10.2016, Kandidatnummer:... Side 1 av 5 Oppgave 1 Løs ligningssystemet S T S T 1 1 0 1 W X W X U2 1 1 V x = U5V. 1 0 2 1 x =. Oppgave 2 Regn ut: S T S T 1 2 1 1 1 W X W X U 3 0 1 V U0 1 V =

Detaljer

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning Lineær Algebra og Vektorrom Eivind Eriksen Høgskolen i Oslo, Avdeling for Ingeniørutdanning c Eivind Eriksen 2005. Innhold Kapittel 1. Lineære likningssystemer 1 1.1. Lineære likningssystemer i to variable

Detaljer

EGENDEFINERTE FUNKSJONER I SAS OG LITT OM OPEN SOURCE INTEGRASJON SAS FANS I STAVANGER 21.10.2015, MARIT FISKAAEN (SAS INSTITUTE)

EGENDEFINERTE FUNKSJONER I SAS OG LITT OM OPEN SOURCE INTEGRASJON SAS FANS I STAVANGER 21.10.2015, MARIT FISKAAEN (SAS INSTITUTE) EGENDEFINERTE FUNKSJONER I SAS OG LITT OM OPEN SOURCE INTEGRASJON SAS FANS I STAVANGER 21.10.2015, MARIT FISKAAEN (SAS INSTITUTE) EGENDEFINERTE FUNKSJONER INNLEDNING 2 På FANS 4. mars 2015 ble det vist

Detaljer

4.2 Nullrom, kolonnerom og lineære transformasjoner

4.2 Nullrom, kolonnerom og lineære transformasjoner 4.2 Nullrom, kolonnerom og lineære transformasjoner Utover Span {v 1, v 2,..., v p } er det en annen måte vi får lineære underrom på! Ser nå på V = R n. Skal se at det er visse underrom knyttet til en

Detaljer

LP. Leksjon 7. Kapittel 13: Nettverk strøm problemer

LP. Leksjon 7. Kapittel 13: Nettverk strøm problemer LP. Leksjon 7. Kapittel 13: Nettverk strøm problemer Skal studere matematiske modeller for strøm i nettverk. Dette har anvendelser av typen fysiske nettverk: internet, vei, jernbane, fly, telekommunikasjon,

Detaljer

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over. Lineær algebra H. Fausk 09.03.2015 Andre utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er det enkelt, men det blir fort veldig mange regneoperasjoner som

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 10

PG4200 Algoritmer og datastrukturer Forelesning 10 PG4200 Algoritmer og datastrukturer Forelesning 10 Lars Sydnes, NITH 9. april 2014 NOE Å STUSSE PÅ? Quadratic probing i Hash-tabell: ( ) 2 i + 1 p = p + ( 1) i+1 2 Underforstått forutsetning: Heltallsaritmetikk

Detaljer

Numerisk lineær algebra for Poissons ligning

Numerisk lineær algebra for Poissons ligning Numerisk lineær algebra for Poissons ligning NTNU Brynjulf Owren Institutt for matematiske fag November 24, 2008 1 / 30 Innhold 1 Motivasjon, generelt om ligningsløsning 2 Poisson s ligning i 2 dimensjoner

Detaljer

Kapittel 2: simpleksmetoden, forts.

Kapittel 2: simpleksmetoden, forts. LP. Leksjon 2 Kapittel 2: simpleksmetoden, forts. initialisering to faser ubegrenset løsning geometri LP. Leksjon 2: #1 of 14 Repetisjon LP problem tillatt løsning, optimal løsning basisliste basis, basisvariable

Detaljer

Forelesning 10 Cramers regel med anvendelser

Forelesning 10 Cramers regel med anvendelser Forelesning 10 Cramers regel med anvendelser Eivind Eriksen 25. mars 2010 Lineære likningssystemer Vi minner om at ethvert lineært likningssystem Ax = b kan løses ved hjelp av Gauss eliminasjon, som er

Detaljer

John Haugan. Matematikk for ingeniørstudenter: Lineær algebra

John Haugan. Matematikk for ingeniørstudenter: Lineær algebra John Haugan Matematikk for ingeniørstudenter: Lineær algebra Studieprogram Energi og miljø i bygg, 25-26 2 John Haugan Matematikk for ingeniørstudenter: Lineær algebra Studieprogram Energi og miljø i bygg,

Detaljer

Repetisjon: om avsn og kap. 3 i Lay

Repetisjon: om avsn og kap. 3 i Lay Repetisjon: om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p der b j -ene er i R n for hver j. Produktet

Detaljer

Lineære likningssystemer, vektorer og matriser

Lineære likningssystemer, vektorer og matriser Lineære likningssystemer, vektorer og matriser Kompendium 1 i MAT1001 Matematikk 1 Høsten 2008 Inger Christin Borge Matematisk institutt, UiO Forord Velkommen til Universitetet i Oslo, og til MAT1001!

Detaljer

Ridge regresjon og lasso notat til STK2120

Ridge regresjon og lasso notat til STK2120 Ridge regresjon og lasso notat til STK2120 Ørulf Borgan februar 2016 I dette notatet vil vi se litt nærmere på noen alternativer til minste kvadraters metode ved lineær regresjon. Metodene er særlig aktuelle

Detaljer

Determinanter til 2 2 og 3 3 matriser

Determinanter til 2 2 og 3 3 matriser Determinanter til 2 2 og 3 3 matriser [ ] a b Determinanten til en 2 2-matrise A = er c d det(a) = a b c d = ad bc. 1 Determinanter til 2 2 og 3 3 matriser [ ] a b Determinanten til en 2 2-matrise A =

Detaljer

Lineær algebra. Kurskompendium, Utøya, MAT1000. Inger Christin Borge

Lineær algebra. Kurskompendium, Utøya, MAT1000. Inger Christin Borge Lineær algebra Kurskompendium, Utøya, MAT1000 Inger Christin Borge 2006 Forord Dette er et kompendium skrevet til bruk i MAT1000-varianten av Utøyaseminarene, arrangert av Matematisk fagutvalg ved Matematisk

Detaljer

Allotment. Innhold. Allotment

Allotment. Innhold. Allotment Allotment Copyright 2008 VisBook AS all rights reserved Dato: 28. mai 2008 - Revisjon: 8 Innhold Allotment...1 Definisjoner...2 Bruksområde...3 Hvordan komme igang med allotment...4 Tillatelser til allotmentbrukeren:...4

Detaljer

Leksjon 3. Kontrollstrukturer

Leksjon 3. Kontrollstrukturer 6108 Programmering i Java Leksjon 3 Kontrollstrukturer Del 2 Løkker Roy M. Istad 2015 Utførelse av et program Programflyt så langt start setning setning setning setning Sekvensielt Alle setninger utføres,

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 2 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 2 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 2 Løsningsforslag Oppgave 1 Vektorer a) Variablene i MATLAB kan være tall, vektorer eller matriser. Vi kan for eksempel gi vektoren x = [1, 0, 3] på denne

Detaljer

Bruk av egendefinert kode i SAS Data Integration Studio

Bruk av egendefinert kode i SAS Data Integration Studio Bruk av egendefinert kode i SAS Data Integration Studio D a g H å k o n S o l b e r g C e n t r i c i n n o v a t i o n S A S F A N S 2 6. 1 1. 1 5 Etablert i 2011, men med røtter tilbake til slutten av

Detaljer

Pensum i lineæralgebra inneholder disse punktene.

Pensum i lineæralgebra inneholder disse punktene. Pensum i lineæralgebra inneholder disse punktene. 1) Løsning av lineære ligningssystem. Finne løsning hvis den fins og også avgjøre om løsning ikke fins. Entydig, flertydig løsning. 2) Overføre en matrise

Detaljer

UNIVERSITET I BERGEN

UNIVERSITET I BERGEN UNIVERSITET I BERGEN Det matematisk-naturvitenskapelige fakultet BOKMÅL Løsningsforslag eksamen MAT - Lineær algebra H Med forbehold om skrivefeil. Oppgave. Betrakt A = 6 5, b = 6 b (a) (b) Finn den reduserte

Detaljer

LP. Leksjon 3. Kapittel 3: degenerasjon.

LP. Leksjon 3. Kapittel 3: degenerasjon. LP. Leksjon 3. Kapittel 3: degenerasjon. degenerasjon eksempel på sirkling den leksikografiske metoden andre pivoteringsregler fundamentaleoremet i LP 1 / 23 Repetisjon simpleksalgoritmen: sekvens av pivoteringer

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 7

PG4200 Algoritmer og datastrukturer Forelesning 7 PG4200 Algoritmer og datastrukturer Forelesning 7 Lars Sydnes, NITH 19. mars 2014 I. TERMINOLOGI FOR TRÆR TRÆR Lister: Lineære Trær: Hierarkiske Modell / Språk: Bestanddeler: Noder, forbindelser. Forbindelse

Detaljer

Diskretisering av 1D - varmelikningen

Diskretisering av 1D - varmelikningen Diskretisering av D - varmelikningen Vi vil løse numerisk den tidsuavhengige en-dimensjonale varmeledningslikningen uten kilde/sluk ledd. Differensiallikningen forenkles da til d T d x d dt Vi representerer

Detaljer

Basis, koordinatsystem og dimensjon

Basis, koordinatsystem og dimensjon Basis, koordinatsystem og dimensjon NTNU, Institutt for matematiske fag 22.-24. oktober 2013 Basis Basis for vektorrom: En endelig mengde B = {b 1, b 2,..., b n } av vektorer i et vektorrom V er en basis

Detaljer

Kapittel 1 og 2: eksempel og simpleksmetoden

Kapittel 1 og 2: eksempel og simpleksmetoden LP. Leksjon 1 Kapittel 1 og 2: eksempel og simpleksmetoden et eksempel fra produksjonsplanlegging simpleksalgoritmen, noen begreper algoritmen LP. Leksjon 1: #1 of 14 Eksempel: produksjonsplanlegging Produkter:

Detaljer

Numerisk løsning av PDL

Numerisk løsning av PDL Numerisk løsning av PDL Arne Morten Kvarving Department of Mathematical Sciences Norwegian University of Science and Technology 6. November 2007 Problem og framgangsmåte Fram til nå har vi sett på ordinære

Detaljer

Opp til nå har problemstilling vart: Gitt en funksjon f, finn for hvilket verdier av de variabler f tar en bestemt verdi. Ax = b, f(x) = 0.

Opp til nå har problemstilling vart: Gitt en funksjon f, finn for hvilket verdier av de variabler f tar en bestemt verdi. Ax = b, f(x) = 0. Interpolasjon Opp til nå har problemstilling vart: Gitt en funksjon f, finn for hvilket verdier av de variabler f tar en bestemt verdi. 1/9 Ax = b, f(x) = 0. Ved interpolasjon, er problemet det motsatte:

Detaljer

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår 2003. Erling Berge Institutt for sosiologi og statsvitenskap NTNU

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår 2003. Erling Berge Institutt for sosiologi og statsvitenskap NTNU SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår 2003 Erling Berge Institutt for sosiologi og statsvitenskap NTNU Vår 2004 Erling Berge 2004 1 Forelesing IV Multivariat

Detaljer

Kp. 12 Multippel regresjon

Kp. 12 Multippel regresjon Kp 12 Multippel Bruk av Kp 12 Multippel ; oversikt Kp 12 Multippel Bjørn H Auestad Kp 11: Regresjonsanalyse 1 / 46 Kp 12 Multippel ; oversikt Kp 12 Multippel Bruk av Kp 12 Multippel ; oversikt 121 Introduction

Detaljer

3.9 Teori og praksis for Minste kvadraters metode.

3.9 Teori og praksis for Minste kvadraters metode. 3.9 Teori og praksis for Minste kvadraters metode. Vi fortsetter med minste kvadraters problem. Nå skal vi se nærmere på noen teoretiske spørsmål, bl.a. hvordan normallikningene utledes. Minner om MK problemstillingen:

Detaljer

EKSAMEN RF5100, Lineær algebra

EKSAMEN RF5100, Lineær algebra Side av 5 Oppgavesettet består av 5 (fem) sider. EKSAMEN RF500, Lineær algebra Tillatte hjelpemidler: Godkjent kalkulator og utdelt formelark Varighet: 3 timer Dato: 4. oktober 04 Emneansvarlig: Lars Sydnes

Detaljer

Obligatorisk oppgave nr1 MAT Lars Kristian Henriksen UiO

Obligatorisk oppgave nr1 MAT Lars Kristian Henriksen UiO Obligatorisk oppgave nr1 MAT-1120 Lars Kristian Henriksen UiO 21. oktober 2014 Oppgave 1 i) Minste k slik at P k kun har positive elementer er 6. Finner x* ved å laste oslo.m, for så å skrive følgende

Detaljer

100 ENKLERE OPPGAVER MED HINT OG LØSNINGSFORSLAG I LINEÆR ALGEBRA (OG NOEN I DISKRET MATEMATIKK)

100 ENKLERE OPPGAVER MED HINT OG LØSNINGSFORSLAG I LINEÆR ALGEBRA (OG NOEN I DISKRET MATEMATIKK) ENKLERE OPPGAVER MED HINT OG LØSNINGSFORSLAG I LINEÆR ALGEBRA (OG NOEN I DISKRET MATEMATIKK) EIVIND ERIKSEN, TROND STØLEN GUSTAVSEN, AND HELGE HÜLSEN Introduksjon Dette kompendiet inneholder oppgaver med

Detaljer

MAT1120 Notat 1 Tillegg til avsnitt 4.4

MAT1120 Notat 1 Tillegg til avsnitt 4.4 MAT1120 Notat 1 Tillegg til avsnitt 4.4 Vi tar utgangspunkt i Teorem 8 fra avsn. 4.4 i boka. For ordens skyld gjentar vi teoremet her: Teorem 8 [Avsn. 4.4]: Anta at B = {b 1,..., b n } er en (ordnet) basis

Detaljer

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Mandag 6. juni 2011 løsningsforslag

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Mandag 6. juni 2011 løsningsforslag Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 EKSAMEN I TMA4 MATEMATIKK 3 Bokmål Mandag 6. juni løsningsforslag Hjelpemidler (kode C): Enkel kalkulator (HP3S eller

Detaljer

Er det enklere å anslå timelønna hvis vi vet utdanningslengden? Forelesning 14 Regresjonsanalyse

Er det enklere å anslå timelønna hvis vi vet utdanningslengden? Forelesning 14 Regresjonsanalyse Forelesning 4 Regresjonsanalyse To typer bivariat analyse: Bivariat tabellanalyse: Har enhetenes verdi på den uavhengige variabelen en tendens til å gå sammen med bestemte verdier på den avhengige variabelen?

Detaljer

Generell informasjon om faget er tilgjengelig fra It s learning. 1 En kort oppsummering Adaptiv filtrering 2. 3 Prediksjon 4

Generell informasjon om faget er tilgjengelig fra It s learning. 1 En kort oppsummering Adaptiv filtrering 2. 3 Prediksjon 4 Stavanger, 13. august 2013 Det teknisknaturvitenskapelige fakultet ELE500 Signalbehandling, 2013. Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 1 En kort oppsummering. 1 2 Adaptiv

Detaljer

Eksamensoppgave MAT juni 2010 (med løsningsforslag)

Eksamensoppgave MAT juni 2010 (med løsningsforslag) Eksamensoppgave MAT-4 juni (med løsningsforslag) Contents OPPGAVE OPPGAVE 4 OPPGAVE 5 4 OPPGAVE 6 5 Fasit 7 5 Oppgave 7 5 Oppgave 7 5 Oppgave 8 54 Oppgave 8 6 Løsningsforslag 9 6 Oppgave 9 6 Oppgave 6

Detaljer

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. 4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet

Detaljer

MAT-INF 1100: Obligatorisk oppgave 1

MAT-INF 1100: Obligatorisk oppgave 1 3. september, 2004 MAT-INF 1100: Obligatorisk oppgave 1 Innleveringsfrist: 17/9-2004, kl. 14:30 Informasjon Den skriftlige besvarelsen skal leveres på ekspedisjonskontoret i 7. etg. i Niels Henrik Abels

Detaljer

Kapittel 5: dualitetsteori

Kapittel 5: dualitetsteori LP Leksjon 5 Kapittel 5: dualitetsteori motivasjon det duale problemet svak og sterk dualitet det duale til LP problemer på andre former LP Leksjon 5: #1 of 17 Motivasjon Til ethvert LP problem (P) er

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Mandag 5. desember 2011. Tid for eksamen: 9:00 13:00. Oppgavesettet er på

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 2 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 2 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon Løsningsforslag Oppgave 1 Vektorer a) Variablene i MATLAB kan være tall, vektorer eller matriser. Vi kan for eksempel gi vektoren x = [1, 0, 3] på denne

Detaljer