Oppgave 1. (a) Vi utvikler determinanten langs første kolonne og dette gir. (b) Med utgangspunkt i de tre datapunktene denerer vi X og y ved

Størrelse: px
Begynne med side:

Download "Oppgave 1. (a) Vi utvikler determinanten langs første kolonne og dette gir. (b) Med utgangspunkt i de tre datapunktene denerer vi X og y ved"

Transkript

1 Sensorveiledning: ELE Maemaikk valgfag Eksamensdao: :00 1:00 Toal anall sider: 5 Anall vedlegg: 0 Tillae hjelpemidler: BI-dener eksamenskalkulaor TEXAS INSTRUMENTS BA II Plus Innføringsark: Ruer Teller 100% av ELE 3719 Deloppgavene er veke lik Ordinær eksamen Ansvarlig insiu: Samfunnsøkonomi Oppgave 1. (a) Vi uvikler deerminanen langs førse kolonne og dee gir de(a) = 1(9a 3a 2 ) 1(9 3) + 1(a 2 a) = 2a 2 + 8a 6 Vi ve a A er invererbar når de(a) 0. Siden de(a) = 0 for a = 1 og a = 3, er A invererbar for a 1, 3. (b) Med ugangspunk i de re daapunkene denerer vi X og y ved X =, y = Vi regner u X T X og X T y, og nner a X T X = 2 2 1, XT y = Vi ser a de(x T X) = 0, så bese ilpasning er gi ved β 0 β 1 = (XT X) (X T y) = = β 2 Alså er den bese ilpasningen y = 3 x 1 + x 2.

2 Oppgave 2. (a) Vi velger marisen A symmerisk, og får dermed a f(x) = x T Ax + Bx + c der 0 1 ( ) A = 0 0, B = 2 0 3, c = De sasjonære punkene er gi ved f/ x = 2Ax + B T = 0, og dee gir Ax = B T x = Siden de(a) = (3 1) = 2 0, så er A invererbar og de er e enese sasjonær punk. Vi nner dee ved å løse de lineære likningssyseme, for eksempel ved hjelp av Gauss-eliminasjon, og nner x 1 3/ x = x 2 = 0 / (b) Vi regner u egenverdiene il A for å klassisere den kvadraiske formen, og får λ λ 0 = ( λ)(λ 2 + λ + 2) = λ x 3 Dee gir egenverdier λ = og λ = ( ± 16 8)/2 = 2 ± 2. Siden alle egenverdier er negaive, er A negaiv deni, og de sasjonære punke er dermed e (global) maksimumspunk. Oppgave 3. (a) Dierensiallikningen y = 3 y er både separabel og lineær, og vi velger og løse den som en lineær dierensiallikning på sandard form y + y = 3 med inegrerende fakor e, slik a (ye ) = 3e ye = 3e + C y = 3 + Ce Iniialbeingelsen y(0) = 2 gir 2 = 3 + C eller C =, og løsningen blir derfor y = 3 e. (b) Dierensiallikningen y + (1 )y = e for > 0 er lineær, og kan skrives på sandard form som y + 1 y = e med a() = (1 )/ = 1/ 1. Siden vi har a a() d = ln + C så kan vi bruke inegrerende fakor u = e ln = e, og dee gir (ye ) = 1 ye = + C y = e + C e = e ( 1 + C ) Iniialbeingelsen y(1) = 3 gir 3 = e(1 + C), som gir C = 3/e 1. Dermed er løsningen ( y = e 1 + 3/e 1 ) = e 1 + 3/e = ( 1)e + 3e 2

3 (c) Dierensiallikningen y 3y + 2y = 2 er andre ordens lineær, og har løsning y = y h + y p. Den karakerisisk likingen er r 2 3r + 2 = 0, og har løsning r = 1 og r = 2, så den homogene løsningen er y h = C 1 e + C 2 e 2. Den inhomogene likningen har den konsane løsningen y = 1, så den generelle løsningen er y = C 1 e + C 2 e Iniialbeingelsene y(0) = 0, y (0) = 1 gir C 1 + C = 0 og C 1 + 2C 2 = 1, som har løsning C 1 = 3 og C 2 = 2. Dermed er løsningen y = 3e + 2e Oppgave. (a) La oss førs regne u f X (x) for x 1, som er gi ved f X (x) = k(x 2 + y 2 ) dy = k [ x 2 y + y 3 /3 ] 1 = k(x2 + 1/3 + x 2 + 1/3) = k(2x 2 + 2/3) Konsanen k må oppfylle likningen f X (x) dx = k [ 2x 3 /3 + 2x/3 ] 1 = k(2/3 + 2/3 + 2/3 + 2/3) = k 8/3 = 1 Dee gir a k = 3/8. Dermed er f X (x) = 3/8(2x 2 + 2/3) = (3x 2 + 1)/. (b) Vi regner u E(X) og E(X 2 ) ved å bruke f X (x): og E(X 2 ) = E(X) = x 2 f X (x) dx = xf X (x) dx = (3x 3 + x)/ dx = 0 (3x + x 2 )/ dx = 1/ [ 3x 5 /5 + x 3 /3 ] 1 Dee gir E(X 2 ) = 1/(3/5 + 1/3 + 3/5 + 1/3) = 7/15 og dermed Var(X) = 7/ = 7/15. (c) Vi regner u E(XY ) ved å bruke f(x, y): E(XY ) = Vi har indre inegral xyf(x, y) dydx = 3/8 x 3 y + xy 3 dydx x 3 y + xy 3 dy = [ x 3 y 2 /2 + xy / ] 1 = 0 Dee gir E(XY ) = 3/8 0 = 0 Dermed er Cov(X, Y ) = E(XY ) E(X)E(Y ) = 0 siden E(X) = 0. (d) Hvis X og Y er uavhengige sokasiske variable, så er f(x, y) = f X (x)f Y (y). Ved symmeri ser vi a f Y (y) = (3y 2 + 1)/ siden f X (x) = (3x 2 + 1)/, og vi får f X (x)f Y (y) = 1 16 (x2 + 1)(y 2 + 1) f(x, y) for x, y 1. Dermed er X og Y ikke uavhengige. 3

4 Oppgave 5. (a) Sannsynlighe for x inerne og y inerne samaler i løpe av en ime er gi ved f(x, y) = e 3 3 x /x! e 1 y /y! = e 3 x x! y! Sannsynlighe for 2 inerne og 1 inerne samaler i løpe av en ime blir dermed f(2, 1) = e 32 2 = 9 2 e = siden X og Y er uavhengige og Poisson-fordele. Sannsynligheen for a de kommer inn mins en samale er 1 f(0, 0) = 1 e = (b) Sannsynligheen for a de kommer inn re samaler i løpe av en ime er gi ved f(0, 3) + f(1, 2) + f(2, 1) + f(3, 0) = e ( ) = e 32 3 = (c) Vi har a p(x + Y = n) kan urykkes som f(0, n) + f(1, n 1) + + f(n, 0) = f(i, n i) = e 3 i Vi seer Z = X + Y. Dee beyr a sannsynligheen p(z = n) = e 3 i Vi vil forsøke å vise a Z er Poisson-fordel med parameer λ Z =. Vi bruker Poisson fordelingen, og ser a vi må vise a p(z = n) = e n n! = 3 i e Med andre ord, vi må vise a n n! = 3 i Men binomial-formelen sier a n = (3 + 1) n = n = ( ) n 3 i 1 n i = i n! 3i n! i! (n i)! 3i og dermed har vi vis a Z = X + Y er Poisson-fordel med λ Z =. Oppgave 6. (a) Vi har F = ln(y ẏ) og dee gir pariell-derivere F y = y ẏ, F ẏ = y ẏ Dermed er Euler-likningen for probleme gi ved y ẏ ẏ ÿ = 0 (y ẏ) (ẏ ÿ) = 0 (y ẏ) 2 Eer a vi forenkler likningen, får vi ÿ 8ẏ + 16y = 0. Den karakerisiske likningen er r 2 8r + 16 = 0 med dobbelro r =, og dermed er den generelle løsningen av Euler-likningen gi ved y = (C 1 + C 2 )e. Iniialbeingelsene y(0) = 3 og y(3) = 9e 12 gir a C 1 = 3 og (3 + 3C 2 )e 12 = 9e 12, eller C 2 =. Dee beyr a løsningen y = (3 )e ilfredssiller Euler-likningen og iniialbeingelsene.

5 (b) Vi har andre orden pariellderivere gi ved F yy = 6 (y ẏ) 2, F yẏ = Vi har dermed F yy, F ẏẏ < 0 for all (y, ẏ), and (y ẏ) 2, F ẏẏ = F yy F ẏẏ (F yẏ) 2 = 0 (y ẏ) 2 og F er derfor konkav i (y, ẏ). Dee beyr a y gir e maksimum i variasjonsprobleme. 5

Oppgave 1. = 2(1 4) = 6. Vi regner også ut de andre indreproduktene:

Oppgave 1. = 2(1 4) = 6. Vi regner også ut de andre indreproduktene: Løsning Eksamen i ELE 379 Maemaikk Valgfag Dao 7. juni 26 kl 9-4 Dee e e foreløpig løsningsforslag som ikke er komple. De skal ikke publiseres i denne form. Oppgave. (a) Vi ve a kolonnevekorene il A er

Detaljer

Institutt for Samfunnsøkonomi

Institutt for Samfunnsøkonomi Institutt for Samfunnsøkonomi Løsninger i: ELE 379 Matematikk valgfag Dato: 6.6., 9: 4: Tillatte hjelpemidler: Alle hjelpemidler + Eksamenskalkulator: TEXAS INSTRUMENTS BA II Plus TM Innføringsark: Ruter

Detaljer

MAT 1001, Høsten 2009 Oblig 2, Løsningsforslag

MAT 1001, Høsten 2009 Oblig 2, Løsningsforslag MAT 1001, Høsten 009 Oblig, sforslag a) En harmonisk svingning er gitt som en sum av tre delsvingninger H(x) = cos ( π x) + cos (π (x 1)) + cos (π (x )) Skriv H(x) på formen A cos (ω(x x 0 )). siden H(x)

Detaljer

Eksamen i ELE Matematikk valgfag Torsdag 18. mai Oppgave 1

Eksamen i ELE Matematikk valgfag Torsdag 18. mai Oppgave 1 Eksamen i ELE79 - Matematikk valgfag Torsdag 8. mai 07 LØSNINGFORSLAG Oppgave (a) Den utvidede matrisen til likningssystemet er 6 Gausseliminasjon: ganger rad I legges til rad II: 0 0 Rad I trekkes fra

Detaljer

ELE Matematikk valgfag

ELE Matematikk valgfag SENSORVEILEDNING - Skriftlig eksamen ELE 3711 Matematikk valgfag Institutt for Samfunnsøkonomi Utlevering: 11.06.018 Kl. 0:00 Innlevering: 11.06.018 Kl. 14:00 For mer informasjon om formalia, se eksamensoppgaven.

Detaljer

Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 2003

Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 2003 Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 003 Denne prøveeksamenen har samme format som den virkelige eksamenen, og inneholder oppgaver av samme type og vanskelighetsgrad. Første del av eksamen

Detaljer

Institutt for Samfunnsøkonomi. Utlevering: 29.04.2015 Kl. 09:00 Innlevering: 29.04.2015 Kl. 14:00

Institutt for Samfunnsøkonomi. Utlevering: 29.04.2015 Kl. 09:00 Innlevering: 29.04.2015 Kl. 14:00 SENSORVEILEDNING MET 803 Matematikk Institutt for Samfunnsøkonomi Utlevering: 9.04.05 Kl. 09:00 Innlevering: 9.04.05 Kl. 4:00 For mer informasjon om formalia, se eksamensoppgaven. Oppgave Beregn følgende

Detaljer

Løsningsskisser til oppgaver i Kapittel Integrerende faktor

Løsningsskisser til oppgaver i Kapittel Integrerende faktor Løsningsskisser til oppgaver i Kapittel 6.4 - Integrerende faktor Teori: Differensialligninger på formen y fx y gx (lineære i y av første orden) er ikke separable hvis ikke fx og gx er tallkonstanter.

Detaljer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer Eksamen 8. desember 16 Eksamenstid 4 timer IR151 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del uten bruk av hjelpemidler. Du kan bare bruke

Detaljer

ELE Matematikk valgfag

ELE Matematikk valgfag EKSAMENSOPPGAVE - Skriftlig eksamen ELE 79 Matematikk valgfag Institutt for Samfunnsøkonomi Utlevering:.06.08 Kl. 09.00 Innlevering:.06.08 Kl. 4.00 Vekt: 00% av ELE 79 Antall sider i oppgaven: Innføringsark:

Detaljer

Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. ECON 1310 Obligatorisk øvelsesoppgave våren 2012

Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. ECON 1310 Obligatorisk øvelsesoppgave våren 2012 Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT ECON 3 Obligaorisk øvelsesoppgave våren 22 Ved sensuren illegges alle oppgavene lik vek For å få godkjen besvarelsen må den i hver fall: gi mins

Detaljer

Oppgave 1. e rt = 120e. = 240 e

Oppgave 1. e rt = 120e. = 240 e Løsning MET 803 Matematikk Dato 5. desember 05 kl 0900-00 Oppgave. (a) Dersom vi selger eiendommen etter t år, med t > 0, så er nåverdien av salgssummen med r = 0,0. Da får vi N(t) = V (t)e rt = 0 e e

Detaljer

Løsningsforslag AA6516 Matematikk 2MX Privatister 10. desember 2003. eksamensoppgaver.org

Løsningsforslag AA6516 Matematikk 2MX Privatister 10. desember 2003. eksamensoppgaver.org Løsningsforslag AA6516 Matematikk MX Privatister 10. desember 003 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i MX er gratis, og det er lastet

Detaljer

Løsningsskisser - Kapittel 6 - Differensialligninger

Løsningsskisser - Kapittel 6 - Differensialligninger Løsningsskisser - Kapittel 6 - Differensialligninger Vi bruker det vi har lært i 6.3 om løsning av separable differensialligninger også i noen av oppgavene fra 6.1 og 6.2 for å knytte denne løsningsteknikken

Detaljer

Løsning Eksamensrelevante oppgaver i ELE 3719 Matematikk Vektorer, matriser og lineær algebra Dato Februar Oppgave 1. (A) Vi leser av at

Løsning Eksamensrelevante oppgaver i ELE 3719 Matematikk Vektorer, matriser og lineær algebra Dato Februar Oppgave 1. (A) Vi leser av at Løsning Eksamensrelevante oppgaver i ELE 379 Matematikk Vektorer, matriser og lineær algebra Dato Februar 05 Oppgave. (A) Vi leser av at A = 3 5, B = ( 0 5 ), C = 0 5 9 og har dermed at π x = Ax + BT =

Detaljer

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler UNIVERSITETET I BERGEN De maemaisk-naurvienskapelige fakule Eksamen i emne MT11 Brukerkurs i maemaikk Mandag 15. desember 8, kl. 9-14 BOKMÅL Tillae hjelpemidler: Lærebok og kalkulaor i samsvar med fakulee

Detaljer

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 5

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 5 Løsning av utvalgte øvingsoppgaver til Sigma R kapittel 5 5.5 Ce kx y = kce kx Vi setter inn i y + ky og ser om vi får 0: 5.5 ax + a y = ax Vi setter inn i y 5.54 kce kx + k Ce kx = 0 x x + y: ax x(ax

Detaljer

dx k dt н x 1,..., x n f 1,...,f n н- н f k (x 1,..., x n ), k =1,2,...,n, нн d X = f( X). X = (t),.. x 1 = 1 (t), x 2 = 2 (t),...

dx k dt н x 1,..., x n f 1,...,f n н- н f k (x 1,..., x n ), k =1,2,...,n, нн d X = f( X). X = (t),.. x 1 = 1 (t), x 2 = 2 (t),... - ( ) - 3 579 : - - : - / : : 3 4 579-4 5 9 3 9 4 3 5 5 6 3 33 34 3 35 4 36 39 c - ( ) 3 c 3 - - ( ) - ( - ) - - - ( ) - - ( - ) ( t) - dx k = f k (x x n ) k = n () dt x x n f f n - d X = f( X) dt f k

Detaljer

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler. 2 2x

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler. 2 2x UNIVERSITETET I BERGEN De maemaisk-naurvienskapelige fakule Eksamen i emne MT11 Brukerkurs i maemaikk Mandag 15. desember 8, kl. 9-14 BOKMÅL Tillae hjelpemidler: Lærebok og kalkulaor i samsvar med fakulee

Detaljer

Eksamen i emnet MAT111/M100 - Grunnkurs i matematikk I Mandag 15. desember 2003, kl. 09-13(15) LØYSINGSFORSLAG OPPGÅVE 2:

Eksamen i emnet MAT111/M100 - Grunnkurs i matematikk I Mandag 15. desember 2003, kl. 09-13(15) LØYSINGSFORSLAG OPPGÅVE 2: Eksamen i emnet MAT/M00 - Grunnkurs i matematikk I Mandag 5. desember 2003, kl. 09-3(5) LØYSINGSFORSLAG Finn dei deriverte til i) f(x) = x 2 ln x OPPGÅVE : exp(u 2 )du, x, ii) f(x) = x cos(x). i) d x 2

Detaljer

EKSAMEN I MA0002 Brukerkurs B i matematikk

EKSAMEN I MA0002 Brukerkurs B i matematikk Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Faglig kontakt under eksamen: Achenef Tesfahun (9 84 97 5) EKSAMEN I MA2 Brukerkurs B i matematikk Lørdag 322 Tid:

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Kalkulus

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Kalkulus QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 1 Kalkulus Kapittel 1 Oppgave 1. a) en funksjon b) en funksjon c) ikke en funksjon d) ikke en funksjon Oppgave 2. a) 12,1 b) 4 c)

Detaljer

Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1

Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1 Eksamen i BYPE2000 - Matematikk 2000 Dato: 6. juni 2014 Målform: Bokmål Antall oppgaver: 7 (20 deloppgaver) Antall sider: 4 Vedlegg: Noen formler Hjelpemiddel: Ingen Alle svarene skal grunngis. Alle deloppgavene

Detaljer

To-dimensjonale kontinuerlige fordelinger

To-dimensjonale kontinuerlige fordelinger To-dimensjonale kontinuerlige fordelinger Noen resultater for diskrete fordelinger Vi har tidligere definert punktsannsynligheten p(x, y) for en todimensjonal variabel (X, Y ) som p(x, y) = P ({X = x}

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Ny/Utsatt eksamen i: MAT1001 Matematikk 1 Eksamensdag: Torsdag 15 januar 2015 Tid for eksamen: 14:30 18:30 Oppgavesettet er på 5 sider Vedlegg:

Detaljer

. 2+cos(x) 0 og alle biter som inngår i uttrykket er kontinuerlige. Da blir g kontinuerlig i hele planet.

. 2+cos(x) 0 og alle biter som inngår i uttrykket er kontinuerlige. Da blir g kontinuerlig i hele planet. MA 1410: Analyse Uke 47, 001 http://home.hia.no/ aasvaldl/ma1410 H01 Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave 11.1: 7. f(x, y) = 1 16 x y. a) Definisjonsområde D: f

Detaljer

Eksamen R2, Hausten 2009

Eksamen R2, Hausten 2009 Eksamen R, Hausen 009 Del Tid: imar Hjelpemiddel: Vanlege skrivesaker, passar, linjal med cenimeermål og vinkelmålar er illane. Oppgåve a) Deriver funksjonen f x x sinx Vi bruker produkregelen for derivasjon

Detaljer

MET Matematikk for siviløkonomer

MET Matematikk for siviløkonomer SENSORVEILEDNING - Fagoppgave MET 1186 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 18.1.19 Kl. 9: Innlevering: 5.1.19 Kl. 1: For mer informasjon om formalia, se eksamensoppgaven.

Detaljer

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8 Innlevering BYFE DAFE Matematikk HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 5. april 6 kl Antall oppgaver: 8 Funksjonen ft) er vist i guren over. Funksjonen F x) er denert som for x. F x)

Detaljer

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE AVDELING FO INGENIØUTDANNING EKSAENSOPPGAVE Emne: INSTUENTELL ANALYSE Emnekode: SO 458 K Faglig veileder: Per Ola ønning Gruppe(r): 3KA, 3KB Dao: 16.0.04 Eksamensid: 09.00-14.00 Eksamensoppgaven Anall

Detaljer

TMA4100 Matematikk 1, 4. august 2014 Side 1 av 12. x 2 3x +2. x 2

TMA4100 Matematikk 1, 4. august 2014 Side 1 av 12. x 2 3x +2. x 2 TMA4 Matematikk, 4. august 24 Side av 2 Oppgave Den rasjonale funksjonen p er definert som p(x) x2 3x +2 3x 2 5x +2. Finn de tre grenseverdiene lim xæ p(x), lim xæ p(x) og lim xæœ p(x). Løsning: x 2 3x

Detaljer

1 OPPGAVE 2 OPPGAVE. a) Hva blir kontobeløpet den 2. januar 2040? b) Hvor mye penger blir det i pengeskapet den 2. januar 2040?

1 OPPGAVE 2 OPPGAVE. a) Hva blir kontobeløpet den 2. januar 2040? b) Hvor mye penger blir det i pengeskapet den 2. januar 2040? OPPGAVE Den. januar 0 satte Ola Normann 00 tusen kroner på en bankkonto med faste renter 3% per år. Han planlegger å ta ut halvparten av rentebeløpet den. januar hvert år, og å legge kontantene til et

Detaljer

Løs likningssystemet ved å få totalmatrisen på redusert trappeform

Løs likningssystemet ved å få totalmatrisen på redusert trappeform Emne: IRF 10014 Matematikk 1. Lærer: Øystein Holje og Kent Ryne Grupper: Diverse. Dato: 04.1.015 Tid: 9.00 13.00. Antall oppgavesider:. Antall vedleggsider: 3, formelark. Sensurfrist: Hjelpemidler: Godkjent

Detaljer

Styring av romfartøy STE6122

Styring av romfartøy STE6122 Syring av romfarøy STE6122 3HU -. 1LFNODVVRQ Høgskolen i Narvik Høs 2000 Forelesningsnoa 8 1 6W\ULQJ RJ UHJXOHULQJ DY RULHQWHULQJ,, Nødvendig med nøyakig syring og/eller regulering av orienering i en rekke

Detaljer

Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at

Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at Kapittel 4 Forventningsverdi, varians, kovarians for én stokastisk variabel og funksjoner av stokastiske variabler TMA4245 V2007: Eirik Mo 2 4.1 Forventing til en stokastisk variabel DEF 4.1: La X være

Detaljer

Løsningsforslag. Prøve i Matematikk 1000 BYFE DAFE 1000 Dato: 29. mai 2017 Hjelpemiddel: Kalkulator og formelark. Oppgave 1 Gitt matrisene.

Løsningsforslag. Prøve i Matematikk 1000 BYFE DAFE 1000 Dato: 29. mai 2017 Hjelpemiddel: Kalkulator og formelark. Oppgave 1 Gitt matrisene. Prøve i Matematikk BYFE DAFE Dato: 29. mai 27 Hjelpemiddel: Kalkulator og formelark Løsningsforslag Oppgave Gitt matrisene A = 2 2 B = [ 2 3 4 ] og C = Regn ut, om mulig, summene A + B, A + B T og A +

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO929A Matematikk Prøve-eksamen Dato 13. desember 2007 Tidspunkt 09.00-1.00 Antall oppgaver Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 a) Likningen

Detaljer

EKSAMENSOPPGAVE - Skoleeksamen. Institutt for Samfunnsøkonomi. Utlevering: 17.12.2014 Kl. 09.00 Innlevering: 17.12.2014 Kl. 14.00

EKSAMENSOPPGAVE - Skoleeksamen. Institutt for Samfunnsøkonomi. Utlevering: 17.12.2014 Kl. 09.00 Innlevering: 17.12.2014 Kl. 14.00 EKSAMENSOPPGAVE - Skoleeksamen MET 11803 Matematikk Institutt fo Samfunnsøkonomi Utleveing: 17122014 Kl 0900 Innleveing: 17122014 Kl 1400 Vekt: 70% av MET 1180 Antall side i oppgaven: Antall vedleggsfile:

Detaljer

Løsningsforslag AA6516 Matematikk 2MX - 07. desember 2005. eksamensoppgaver.org

Løsningsforslag AA6516 Matematikk 2MX - 07. desember 2005. eksamensoppgaver.org Løsningsforslag AA6516 Matematikk 2MX - 07. desember 2005 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned

Detaljer

Løsningsforslag til eksamen i MA0002, Brukerkurs i matematikk B

Løsningsforslag til eksamen i MA0002, Brukerkurs i matematikk B Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Løsningsforslag til eksamen i MA000, Brukerkurs i matematikk B 9. mai 01 Oppgave 1 a) Et plan i rommet har ligning

Detaljer

Oppgave 1. Oppgave 2

Oppgave 1. Oppgave 2 Midtveiseksamen i MET1180 1 - Matematikk for siviløkonomer 12. desember 2018 Oppgavesettet har 15 flervalgsoppgaver. Rett svar gir poeng, galt svar gir svaralternativ (E) gir 0 poeng. Bare ett svar er

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning)

EKSAMEN. TILLATTE HJELPEMIDLER: John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning) KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk FAGNUMMER: REA4 EKSAMENSDATO: 6. desember 24 SENSURFRIST: 6. januar 25 KLASSE:. klassene, ingenørutdanning. TID: kl. 9. 3.. FAGLÆRER: Hans Petter Hornæs ANTALL

Detaljer

Løsningsforslag Eksamen M001 Våren 2002

Løsningsforslag Eksamen M001 Våren 2002 Løsningsforslag Eksamen M Våren Oppgave f(x) = (x )e x Bruker produktregelen i derivasjonen f (x) = e x + (x ) (e x ) For å derivere e x velges kjernen u = x, og vi får (e x ) = e u. f (x) = e x + (x )

Detaljer

Institutt for Samfunnsøkonomi. Utlevering: Kl. 09:00 Innlevering: Kl. 14:00

Institutt for Samfunnsøkonomi. Utlevering: Kl. 09:00 Innlevering: Kl. 14:00 SENSORVEILEDNING MET 11803 Matematikk Institutt for Samfunnsøkonomi Utlevering: 17.12.2014 Kl. 09:00 Innlevering: 17.12.2014 Kl. 14:00 For mer informasjon om formalia, se eksamensoppgaven. Oppgave 1 Finn

Detaljer

MET Matematikk for siviløkonomer

MET Matematikk for siviløkonomer SENSORVEILEDNING - Skriftlig eksamen MET 11803 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 18.1.017 Kl. 14:00 Innlevering: 18.1.017 Kl. 19:00 For mer informasjon om formalia,

Detaljer

MET Matematikk for siviløkonomer

MET Matematikk for siviløkonomer SENSORVEILEDNING - Skriftlig eksamen MET 11803 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 29.05.2019 Kl. 09:00 Innlevering: 29.05.2019 Kl. 14:00 For mer informasjon om formalia,

Detaljer

Høgskolen i Oslo og Akershus. e 2x + x 2 ( e 2x) = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) 1 sin x (sin x) + 2x = cos x

Høgskolen i Oslo og Akershus. e 2x + x 2 ( e 2x) = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) 1 sin x (sin x) + 2x = cos x Oppgåve a) i) f(x) x e x f (x) ( x ) e x + x ( e x) xe x + x e x (x) xe x + x e x xe x ( + x) ii) g(x) ln(sin x) + x g (x) sin x (sin x) + x cos x sin x + x tan x + x b) i) Sidan både teljar og nemnar

Detaljer

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode

Detaljer

MA0003-8. forelesning

MA0003-8. forelesning Implisitt derivasjon og 31. august 2009 Outline Implisitt derivasjon 1 Implisitt derivasjon 2 Outline Implisitt derivasjon 1 Implisitt derivasjon 2 Outline Implisitt derivasjon 1 Implisitt derivasjon 2

Detaljer

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2 Prøve i FO929A - Matematikk Dato: 1. juni 2012 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 2 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

Optimal kontrollteori

Optimal kontrollteori Optimal kontrollteori 1. og 2. ordens differensialligninger Klassisk variasjonsregning Optimal kontrollteori er en utvidelse av klassisk variasjonsregning, som ble utviklet av Euler og Lagrange. Et vanlig

Detaljer

IR Matematikk 1. Utsatt Eksamen 8. juni 2012 Eksamenstid 4 timer

IR Matematikk 1. Utsatt Eksamen 8. juni 2012 Eksamenstid 4 timer Utsatt Eksamen 8. juni 212 Eksamenstid 4 timer IR1185 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del 2 uten bruk av hjelpemidler. Du kan bare

Detaljer

Eksamen REA3028 S2, Høsten 2012

Eksamen REA3028 S2, Høsten 2012 Eksamen REA308 S, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (6 poeng) Deriver funksjonene 3x x a) gx 3 3x x 3x

Detaljer

Harald Bjørnestad: Variasjonsregning en enkel innføring.

Harald Bjørnestad: Variasjonsregning en enkel innføring. Haral Bjørnesa: Variasjonsregning en enkel innføring. Tiligere har vi løs oppgaven me å finne eksremalveriene ( maks./min. veriene) av en gi funksjon f () når enne funksjonen oppfyller beseme krav. Vi

Detaljer

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Alle svar skal grunngis. Alle deloppgaver har lik vekt. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom

Detaljer

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3 Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2

Detaljer

Korreksjoner til fasit, 2. utgave

Korreksjoner til fasit, 2. utgave Korreksjoner til fasit,. utgave Kapittel. Oppgave.. a): / Oppgave.. e):.887, 0.58 Oppgave..9: sin00πt). + ) x Oppgave.7.5 c): ln for 0 < x. x Oppgave.8.0: Uttrykket for a + b) 7 skal være a + b) 7 = a

Detaljer

Matriser og Kvadratiske Former

Matriser og Kvadratiske Former Eivind Eriksen Matriser og Kvadratiske Former 15 mars 2012 Handelshøyskolen BI Innhold 1 Matriser og vektorer 1 11 Matriser 1 12 Matriseaddisjon 2 13 Matrisesubtraksjon 3 14 Skalarmultiplikasjon 3 15

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger del 1 Eksamensdag: Tirsdag 7. desember 2004 Tid for eksamen: 14:30 17:30 Oppgavesettet

Detaljer

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005. eksamensoppgaver.org

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005. eksamensoppgaver.org Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet

Detaljer

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Alle svar skal grunngis. Alle deloppgaver har lik vekt. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom

Detaljer

TMA4245 Statistikk Vår 2007

TMA4245 Statistikk Vår 2007 TMA4245 Statistikk Vår 2007 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har lært.

Detaljer

Emnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard

Emnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard EKSAMEN Emnekode: SFB10711 Dato: 2. mars 2018 Hjelpemidler: Godkjent kalkulator og utdelt formelsamling Emnenavn: Metodekurs 1, deleksamen i matematikk Eksamenstid: 4 timer Faglærer: Hans Kristian Bekkevard

Detaljer

EKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I - LØSNING Mandag 15. desember 2014 Tid: 09:00 14:00

EKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I - LØSNING Mandag 15. desember 2014 Tid: 09:00 14:00 Universitetet i Bergen Det matematisk naturvitenskapelige fakultet Matematisk institutt Side 1 av 11 BOKMÅL EKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I - LØSNING Mandag. desember 214 Tid: 9: 14:

Detaljer

Emnenavn: Eksamenstid: Faglærer: Hans Kristian Bekkevard. består av 8 sider inklusiv denne forsiden og vedlagt formelsamling.

Emnenavn: Eksamenstid: Faglærer: Hans Kristian Bekkevard. består av 8 sider inklusiv denne forsiden og vedlagt formelsamling. e. Høgskoleni Østfold ). EKSAMEN Emnekode: Emnenavn: SFB10711 Metode 1 matematikk deleksamen Dato: Eksamenstid: 3. juni 2016 4 timer Hjelpemidler: Kalkulator og vedlagt formelsamling Faglærer: Hans Kristian

Detaljer

Forventning og varians.

Forventning og varians. Forventning og varians. Dekkes av kapittel 4 i læreboka. Forventning (4.1) Forventningsverdi = gjennomsnitt i det lange løp. Defininsjon: Forventningsverdien til en stokastisk variabel X er: x xf(x),x

Detaljer

Repetisjon i Matematikk 1: Derivasjon 2,

Repetisjon i Matematikk 1: Derivasjon 2, Repetisjon i Matematikk 1: Derivasjon 2, 201. 1 Høgskolen i Gjøvik Avdeling TØL Repetisjonsoppgaver MATEMATIKK 1 REA1141 og REA1141F Derivasjon 2, 201. Oppgave 1 Denne oppgaven har forholdsvis enkle derivasjoner,

Detaljer

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1 EKSAMEN BOKMÅL DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember 15 9:-13: FAGKODE: FAGNAVN: IR151 Matematikk 1 HJELPEMIDLER: Del 1: kl 9.-11. Ingen Del : kl 11.-13. Lommeregner Lærebok etter fritt valg Matematisk

Detaljer

Emnenavn: Metode 1, statistikk deleksamen. Eksamenstid: 4 timer. Faglærer: Bjørnar Karlsen Kivedal

Emnenavn: Metode 1, statistikk deleksamen. Eksamenstid: 4 timer. Faglærer: Bjørnar Karlsen Kivedal EKSAMEN Emekode: SFB10711 Emeav: Metode 1, statistikk deleksame Dato: 10. oktober 2018 Hjelpemidler: Godkjet kalkulator og vedlagt formelsamlig m/tabeller Eksamestid: 4 timer Faglærer: Bjørar Karlse Kivedal

Detaljer

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m Formelsamling og tabeller FO020E Matte 2000 for elektroprogrammet 1 Matematikk 1.1 Denisjoner av ulike typer polynomer og rekker 1.1.1 Rekke med konstante ledd En rekke med konstante ledd er gitt som a

Detaljer

EKSAMEN. Emne: Metode 1: Grunnleggende matematikk og statistikk (Deleksamen i matematikk)

EKSAMEN. Emne: Metode 1: Grunnleggende matematikk og statistikk (Deleksamen i matematikk) EKSAMEN Emnekode: SFB10711 Dato: 2.6.2014 Hjelpemidler: Kalkulator Utlevert formelsamling Emne: Metode 1: Grunnleggende matematikk og statistikk (Deleksamen i matematikk) Eksamenstid: kl. 09.00 til kl.

Detaljer

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler Oppgave 1 En funksjon f er gitt ved f ( x) ( x 2) e x.

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler Oppgave 1 En funksjon f er gitt ved f ( x) ( x 2) e x. UNIVERSITETET I BERGEN De maemaisk-nauvienskapelige fakule Eksamen i emne MAT Bukekus i maemaikk Fedag 8 febua, kl 9-4 BOKMÅL Tillae hjelpemidle: Læebok og kalkulao i samsva med fakulee sine egle Oppgave

Detaljer

Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk og stil variere noe fra oppgave til oppgave.

Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk og stil variere noe fra oppgave til oppgave. NTNU Institutt for matematiske fag TMA4105 Matematikk, øving 7, vår 011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,

Detaljer

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430 MAT 00 Vår 00 Oblig Innleveringsfrist: Fredag 3.april kl. 430 Oppgaven leveres stiftet med forsideark på ekspedisjonskontoret til Matematisk institutt i 7. etg. i Niels Henrik Abels hus innen fristen.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 00 Kalkulus. Eksamensdag: Mandag,. desember 006. Tid for eksamen:.30 8.30. Oppgavesettet er på sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Usa eksamen i: ECON315/415 Inroducory Economerics Eksamensdag: Fredag 11. augus 26 Tid for eksamen: kl. 9: 12: Oppgavesee er på 5 sider Tillae hjelpemidler: Alle

Detaljer

Tallregning og algebra

Tallregning og algebra 30 Tallregning og algebra Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer

Detaljer

Forelesning 13. mars, 2017

Forelesning 13. mars, 2017 Forelesning 13. mars, 217 AVSNITT 5.2 Kovariansen mellom to variable Korrelasjon mellom to variable AVSNITT 5.3 Betingede fordelinger Kovariansen mellom to stokastiske variable Kovariansen mellom to stokastiske

Detaljer

Emnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard

Emnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard EKSAMEN Emekode: SFB107111 Emeav: Metode 1, statistikk deleksame Dato: 7. mai 2018 Hjelpemidler: Godkjet kalkulator og vedlagt formelsamlig m/tabeller Eksamestid: 4 timer Faglærer: Has Kristia Bekkevard

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. Oppgave 1 OpenGL (vekt 1 5 )

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. Oppgave 1 OpenGL (vekt 1 5 ) UNIVERSITETET I OSLO De maemaisk-naurvienskapelige fakule Eksamen i INF3320/INF4320 Meoder i grask daabehandling og diskre geomeri Eksamensdag: 7. desember 2007 Tid for eksamen: 14:30 17:30 Oppgavesee

Detaljer

og variasjon av parameterene Oppsummering.

og variasjon av parameterene Oppsummering. Inhomogene differensiallikninger av andre orden Ubestemte koeffisienters metode og variasjon av parameterene Oppsummering. MAT-INF1100 October 30, 2007 NYTT TEMA Innhomogene likninger: Oppdeling i partikulær

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Onsdag 9 mai 9 Tid for eksamen: 4:3 8:3 Oppgavesettet er på 7 sider Vedlegg: Tillatte

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 3 8.2.1 Anta at dy = y2 y) dx a) Finn likevektspunktene til

Detaljer

n=0 n=1 n + 1 Vi får derfor at summen er lik 1/2. c)

n=0 n=1 n + 1 Vi får derfor at summen er lik 1/2. c) Eksamen i BYPE2000 - Matematikk 2000 Dato: 204 Målform: Bokmål Antall oppgaver: 7 (20 deloppgaver) Antall sider: 4 Vedlegg: Noen formler Hjelpemiddel: Ingen Alle svarene skal grunngis. Alle deloppgavene

Detaljer

Løsningsforslag Eksamen S2, våren 2016 Laget av Tommy Odland Dato: 29. januar 2017

Løsningsforslag Eksamen S2, våren 2016 Laget av Tommy Odland Dato: 29. januar 2017 Løsningsforslag Eksamen S, våren 016 Laget av Tommy Odland Dato: 9. januar 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = e x. Den generelle regelen er at (e ax ) = ae ax, i vårt tilfelle

Detaljer

. Vi får dermed løsningene x = 0, x = 1 og x = 2.

. Vi får dermed løsningene x = 0, x = 1 og x = 2. Innlevering i FO99A - Matematikk Innlevering 1 Innleveringsfrist. oktober 010 Antall oppgaver 11 Løsningsforslag Oppgave 1 a) ( 3 + 1)( 7 + ) 1 + 3 = 3 7 + 7 + 3 + 3 + 3 = 1 + 7 + 5. b) 5/3 3 50 = 3 5

Detaljer

Eksamen R2 Høst Løsning

Eksamen R2 Høst Løsning Eksamen R Høst 017 - Løsning Dennis Christensen 7. november 017 Del 1 - Uten Hjelpemidler Oppgave 1 (a) (b) (c) g (x) = f (x) = cos x = 6 cos x, x cos x 1 sin x x = x cos x sin x x, h (x) = 1 cos x + x

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO99A Matematikk Ordinær Eksamen Dato 8. mai 8 Tidspunkt 9. - 14. Antall oppgaver 4 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 Deriver følgende

Detaljer

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår Løsningsforslag ECON 130 Obligatorisk semesteroppgave 017 vår Andreas Myhre Oppgave 1 1. (i) Siden X og Z er uavhengige, vil den simultane fordelingen mellom X og Z kunne skrives som: f(x, z) = P(X = x

Detaljer

Prøve i R2. Innhold. Differensiallikninger. 29. november Oppgave Løsning a) b) c)...

Prøve i R2. Innhold. Differensiallikninger. 29. november Oppgave Løsning a) b) c)... Prøve i R2 Differensiallikninger 29. november 2010 Innhold 1 Oppgave 3 1.1 Løsning..................................... 3 1.1.1 a).................................... 3 1.1.2 b)....................................

Detaljer

Difflikninger med løsningsforslag.

Difflikninger med løsningsforslag. Repetisjon i Matematikk : Difflikninger med løsningsforslag. Høgskolen i Gjøvik Avdeling TØL Eksamensrepetisjon REA4 Matematikk Difflikninger med løsningsforslag. Difflikninger med løsningsforslag. Dette

Detaljer

A) B) 400 C) 120 D) 60 E) 10. Rett svar: C. Fasit: ( 5 6 = 60. Hvis A, B, C er en partisjon av utfallsrommet S, så er P (A B) lik.

A) B) 400 C) 120 D) 60 E) 10. Rett svar: C. Fasit: ( 5 6 = 60. Hvis A, B, C er en partisjon av utfallsrommet S, så er P (A B) lik. Oppgave 1 Det skal velges en komité bestående av 2 menn og 1 kvinne. Komitéen skal velges fra totalt 5 menn og 6 kvinner. Hvor mange ulike komitéer kan dannes? A) 86400 B) 400 C) 120 D) 60 E) 10 Rett svar:

Detaljer

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x LØSNINGSFORSLAG EKSAMEN, MAT 00, HØSTEN 06 DEL.. Hvilken av funksjonene gir en anti-derivert for f(x) = (x + )? Løsning. Vi setter u = x +, som gir du = dx, (x + ) dx = u du = u = (x + ) = x + a) x+ b)

Detaljer

Eksamen R2, Våren 2009

Eksamen R2, Våren 2009 Eksamen R, Våren 009 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonen f xlnx 3 uln x u x 3 u 6u g u g u f x g

Detaljer

Løsningsforslag. Alle svar skal grunngis. Alle deloppgaver teller like mye.

Løsningsforslag. Alle svar skal grunngis. Alle deloppgaver teller like mye. Eksamen i FO929A - Matematikk Dato: 2013 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 3 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver teller

Detaljer

1. Vis hvordan vi finner likevektsløsningen for Y. Hint: Se forelesningsnotat 4 (Økonomisk aktivitet på kort sikt), side 23-24

1. Vis hvordan vi finner likevektsløsningen for Y. Hint: Se forelesningsnotat 4 (Økonomisk aktivitet på kort sikt), side 23-24 Oppgave. Vis hvordan vi finner likeveksløsningen for Y. Hin: Se forelesningsnoa 4 Økonomisk akivie på kor sik, side 23-24 2. Gi en begrunnelse for hvorfor de er rimelig å ana a eksporen er eksogen i denne

Detaljer

ØVINGER 2017 Løsninger til oppgaver. Lineærkombinasjonen Z = 5X + 8Y har forventningsverdi

ØVINGER 2017 Løsninger til oppgaver. Lineærkombinasjonen Z = 5X + 8Y har forventningsverdi ØVINGER 27 Løsninger til oppgaver Øving 6 4. (7). Fra oppgave 4.5 (øving 4) har vi forventningsverdien variansen til X, E[X] =.92, V ar[x] =.3. Lineærkombinasjonen Z = 5X + 8Y har forventningsverdi E[Z]

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag Anbefalte oppgaver - Løsningsforslag Uke 6 12.6.4: Vi finner først lineariseringen i punktet (2, 2). Vi har at Lineariseringen er derfor 2x + y f x (x, y) = 24 (x 2 + xy + y 2 ) 2 2y + x f y (x, y) = 24

Detaljer

Obligatorisk innlevering 2 - MA 109

Obligatorisk innlevering 2 - MA 109 Obligatorisk innlevering 2 - MA 9 Skriv fullt navn og studentnummer øverst på besvarelsen. Du skal bruke sifrene fra studentnummeret i besvarelsen. Studentnummeret ditt er E. Er studentnummeret ditt da

Detaljer