Go with the. Niende forelesning. Mye matematikk i boka her ikke så komplisert, men mye å holde styr på.

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Go with the. Niende forelesning. Mye matematikk i boka her ikke så komplisert, men mye å holde styr på."

Transkript

1 Go with the Niende forelesning Mye matematikk i boka her ikke så komplisert, men mye å holde styr på. Fokuserer på de viktigste ideene i dagens forelesning, så det forhåpentligvis blir lettere å skjønne bokas forklaring. 1

2 Mange effektive algoritmer er ganske spesialiserte 2

3 Av og til trenger vi kraftigere skyts 3

4 n doktorer m/tilgjengelighet Hver trår til c dager Maks 1 dag/ferie Finn en doktor per feriedag Mer problematisk: Kan vi finne en elegant, *generell* algoritmemetode som dekker dette problemet? Kombinatorisk optimalisering kan bli hårete 4

5 Vi ønsker en mellomting mellom overspesialisering og overkill Vi kan løse omtrent alt ganske direkte med f.eks. s.k. heltallsprogrammering, men vi har ingen god generell algoritme for det. 5

6 For spesielt interesserte: En auksjonsbasert algoritme for matching: auction-algorithm-for-bipartitematching/ (Evt. Intro til flyt: Et nyttig spesialtilfelle bipartitt matching. Funker også for vektet matching (viktig problem ) Dette er både en anvendelse og en enklere variant Matching 6

7 7 En bipartitt graf. Vi vil koble alle t.v. med én t.h. en sk. «perfekt bipartitt matching». Vi må da naturligvis ha like mange t.v. som t.h.

8 8 Vi bygger løsningen gradvis. Er det en ledig kant mellom to ledige noder: Kjør på.

9 9 Nodene er nå «opptatt» og kan ikke uten videre brukes i nye koblinger.

10 For å få med den neste noden t.v. må vi *oppheve* den første koblingen, og lage en *ny* for den første noden t.v. Stien vår en «augmenting path» må starte og slutte i en ledig node. (Ser du hvorfor?) Merk: Vi har her en sti som går frem og tilbake. Frem langs ledige kanter, tilbake langs kanter som kan oppheves. 10

11 Etter å ha oppdatert kantene langs den forøkende stien har løsningen (matchingen) økt med 1 kant. Vi fortsetter å lete etter slike stier til det ikke går lenger. Vi kan f.eks. bruke BFS eller DFS til å finne slike stier. Merk at vi må være nøye med hvilke kanter vi tillater i søket. 11

12 12 Nok en forøkende sti som består av bare én ledig kant

13 De to nodene er nå opptatt. For å få med den siste noden t.v. må vi igjen gå i sikk-sakk 13

14 Vi opphever her den forrige koblingen, og finner en ny kobling til den nest siste noden t.v. Vi starter (til venstre) og avslutter (til høyre) igjen stien vår i ledige noder (som alltid). M.a.o.: En node t.v. kan «få» en opptatt node t.h. (og dermed oppheve en kobling ved å gå «baklengs») så lenge noden t.v. som «hadde» noden får tildelt en annen en og så får vi en domino-effekt (sikk-sakk) langs en forøkende sti. 14

15 15 De siste to nodene er opptatt, og løsningen er klar. Hvis det ikke hadde vært mulig å finne en løsning, ville vi ikke ha funnet en forøkende sti.

16 Flyt 16

17 Et veldig enkelt eksempel på flyt. Hvor mange «uavhengige» stier har vi fra venstre til høyre? Eller: Hvor mange «enheter» kan vi pumpe igjennom, hvis hver kant takler én enhet? 17

18 18 Som for matching, prøver vi oss. Vi må begynne til venstre (i kildenoden) og ende til høyre (i sluknoden). Her har vi en «augmenting path» med bare ledige kanter.

19 19 Her fant vi jammen enda en forøkende sti med bare ledige kanter og nå er det fullt.

20 Matcheproblemet kan også løses så direkte hvis vi har flalks. Men Hva om vi har litt mindre flaks? Da må vi gå i en slags «sikk-sakk» her også. 20

21 Først en forøkende sti med bare ledige kanter. Men hva gjør vi nå? 21

22 Vi kan gå *baklengs* over opptatte kanter og oppheve dem akkurat som i matcheproblemet. En slik «bakover-oppheving» tilsvarer en slags krysskobling: Vi lager en ny start og en ny slutt, og spleiser dem sammen med en eksisterende sti (intuitivt). Logikken er egentlig akkurat som for matching. Vi kan fjerne (oppheve/gå baklengs gjennom) en innkommende «full» kant, men da må flyten til den kanten sendes et annet sted nemlig i fremover i en annen kant. Matematisk er det ekvivalent å *øke* flyten *fremover* eller å *redusere* flyten *bakover*. I en flytforøkende sti må hver kant gjøre én av delene. Merk at vi kan gå flere bakoverskritt eller fremoverskritt i rekkefølge (dvs. ikke strengt annenhver, som i «sikk-sakk». 22

23 23 Svaret blir det samme. Antallet enheter vi får igjennom tilsvarer antall opptatte kanter ut fra kilden (eller inn til sluket).

24 Dette er sånn det gjøres i den nye Cormen. I den gamle jobber de direkte med antiparallelle kanter. Ikke så stor forskjell, egentlig.

25 Flere kilder og sluk kan lett konverteres til én kilde og ett sluk, ved å legge på kanter fra kilden og til sluket med uendelig stor kapasitet. Flytproblemet Vi ser foreløpig bare på positiv flyt. Boka bruker også negativ flyt (i motsatt retning) vi kommer til det. Rettet graf med kilde s og sluk t og en flyt 0 f(i, j) c(i, j) Flyten inn i en node (unntatt s og t) = flyten ut Hver kant (i, j) har en kapasitet, c(i, j) Hvor stor total flyt kan vi få igjennom? 25 Hvis flyten involverer folk, kan ting bli litt merkelig: does-closing-roads-cut-delays/

26 Snitt 26

27 Snitt: Todeling av grafen. s i den ene delen, t i den andre. Kapasiteten til snittet = summen til kapasiteten til kantene som går «til høyre» over det. Et «minimalt snitt» er et snitt med minimal kapasitet. Det vil etter hvert bli fullt og «stenge for» flyten. All flyt må gjennom ethvert snitt. Man kan ikke få mer flyt gjennom et snitt enn kapasiteten til snittet. Ergo: Maksimal flyt er lik kapasiteten til et minimalt snitt. Man kan bruke maks-flytalgoritmer til å finne minimale snitt. Dette kalles «max-flow mincut»-teoremet. 27

28 Først, den abstrakte beskrivelsen av Ford-Fulkerson (og Edmonds-Karp) Level 1 28

29 Finnes det en sti med ledig kapasitet fra s til t? Hver kant: Enten og f < c eller og f > 0 Øk flyt langs denne stien Bruk f.eks. BFS til å finne stien (E K) Ford-Fulkerson: 29 Generell metode. Ikke nødvendigvis polynomisk. Velger vi BFS får vi Edmonds-Karp, som har kjøretid på O(VE^2). (Det går an å gjøre det bedre.)

30 Det er to mulige tolkninger av dette: Vi «opphever» 5 av de 7 som går mot venstre ved å sende 5 til mot høyre. De 7 mot venstre tilsvarer 7 mot høyre, som kan økes opp mot 0. 4/9 7/8 Vi kan øke med 5 fra venstre til høyre Hva foregår «egentlig»? Ved å øke flyten inn i midt-noden fra venstre og å redusere flyten inn i noden fra høyre med samme mengde har noden samme flyt-sum, så vi ødelegger ingenting. 30

31 Eksempel Bruker ikke BFS her w 0/2 x s 0/2 0/1 0/1 0/2 0/2 t y z 31

32 Eksempel w 0/2 x s 0/2 0/1 0/1 0/2 0/2 t y z Alle kanter i stien går fremover, og minimums-kapasiteten er 2. 32

33 Eksempel Her er flyten økt med den maksimale ledige kapasiteten. w 2/2 x s 2/2 0/1 2/3 0/1 2/2 2/2 t y z 33

34 Eksempel Ny sti denne gangen med noen baklengskanter. I disse ser vi ikke etter ledig kapasitet, men flyt som kan kanselleres. w 2/2 x s 2/2 0/1 2/3 0/1 2/2 2/2 t y z Blant forover-kantene er minste ledige kapasitet 3. Blant bakover-kantene er minste flyt 2. Minimum blir altså 2. 34

35 Eksempel w 2/2 x 2/3 2/3 s 2/2 0/1 0/1 0/2 2/2 t y 2/3 z Igjen er flyten langs stien økt med det maksimale mulige (2). Flyt i fremoverkanter økes flyt i bakover-kanter reduseres. Totalt økes flyten fra s til t uten at vi bryter noen regler. 35

36 Eksempel w 2/2 x 2/3 2/3 s 2/2 0/1 0/1 0/2 2/2 t y 2/3 z Ikke mulig å finne noen flere flytforøkende stier, så vi er ferdige. 36

37 Eksempel w 2/2 x 2/3 2/3 s 2/2 0/1 0/1 0/2 2/2 t y 2/3 z Her er et minimalt snitt, med kapasitet lik maksflyten (4). Det er ikke mulig å presse mer flyt igjennom dette snittet. 37

38 Bokas implementasjon (veldig utbredt): Residualnettverk. Level 2a 38

39 I stedet for å tenke forover og bakover hver for seg så setter vi bare negativt fortegn på bakoverflyt. I boka opererer de med et eksplisitt «residualnett verk». Hvis det går flyt f går det flyt f Vi har bare kanter der vi kan få mer flyt Enten ved å øke f til c for eller ved å øke f til 0 for 39

40 En annen konkret implementasjon (den originale, mer eller mindre): «Merkelappmetoden» Level 2b 40

41 Under én iterasjon (BFS) I hver node vil vi huske hvor mye flyt vi har klart å transportere så langt og hvor den kom fra (og evt. om det var en «oppheving» av flyt som gikk ut). Y Flyt inn eller ut? +/X/8 Hvor mye? Hvor fra? 41

42 Kjør BFS Langs kanter der f < c Mot kanter der f > 0 Forgjengertabell bruker vi jo allerede i BFS (π). I tillegg trenger vi altså bare lagre hvor mye flyt vi får ført til noden (inkludert fortegn/retning). For hver node, lagre Hvor kom vi fra? Går flyten inn eller ut? Hvor mye flyt kan vi få hit? Hvis vi kom til slutten Oppdater flyten og begynn på nytt 42

43 Maks flyt I graf m kapasiteter Forøkende stier Bruk BFS Heltallsvekter: Gir oss heltallsflyt. (Selv om heltallsprogrammering generelt er NP-komplett.) Hvis vi kan bruke vilkårlig søk (og ikke BFS) så kan vi få eksponentiell kjøretid. Den generelle metoden (uten at vi bestemmer traverserings-metoden) heter Ford-Fulkerson. Edmonds Karp 43 O(VE 2 ) Hver sti: O(E). Fyller minst én av E kanter. Hver kant kan fylles flere ganger (ulike retninger), men avstanden til starten langs stien må øke. Kan maks øke V ganger.

44 Og så var det legeproblemet vårt, da. Sett på passende kapasiteter. Fridager Vi får likevel ikke begrenset oss til én dag per lege per ferieperiode Leger Kilde Sluk 44

45 Fridager Gadgets Leger Kilde Sluk Vi lager os ekstra-noder for å begrense flyten fra hver lege til hver ferie-periode! 45 Denne typen konstruksjoner er med på å gjøre maks-flyt til et svært allsidig verktøy.

46 Maks-flyt: Akkurat passe komplisert 46

Go with the. Niende forelesning. Mye matematikk i boka her ikke så komplisert, men mye å holde styr på.

Go with the. Niende forelesning. Mye matematikk i boka her ikke så komplisert, men mye å holde styr på. Go with the Niende forelesning Mye matematikk i boka her ikke så komplisert, men mye å holde styr på. Fokuserer på de viktigste ideene i dagens forelesning, så det forhåpentligvis blir lettere å skjønne

Detaljer

Go with the. Niende forelesning. Mye matematikk i boka her ikke så komplisert, men mye å holde styr på.

Go with the. Niende forelesning. Mye matematikk i boka her ikke så komplisert, men mye å holde styr på. Go with the Niende forelesning Mye matematikk i boka her ikke så komplisert, men mye å holde styr på. Fokuserer på de viktigste ideene i dagens forelesning, så det forhåpentligvis blir lettere å skjønne

Detaljer

Avanserte flytalgoritmer

Avanserte flytalgoritmer Avanserte flytalgoritmer Magnus Lie Hetland, mars 2008 Stoff hentet fra: Network Flows av Ahua m.fl. (Prentice-Hall, 1993) Graphs, Networks and Algorithms, 2. utg., av Jungnickel (Springer, 2005) Repetisjon

Detaljer

Maks Flyt og NPkompletthet

Maks Flyt og NPkompletthet Maks Flyt og NPkompletthet Flyt - Intro Mange av oppgavene om flyt handler om å se at Dette kan vi løse som et flytproblem. Resten er som regel kortsvarsoppgaver, og går på grunnleggende forståelse av

Detaljer

Algdat - Øvingsforelesning. Maks flyt

Algdat - Øvingsforelesning. Maks flyt Algdat - Øvingsforelesning Maks flyt Dagens plan 1. LF teoriøving 7 2. Maks flyt 3. Ford-Fulkerson 4. Maksimal bipartitt matching 5. Presentasjon av øving 9 2 Øving 7 4b) I hvilken rekkefølge velges noder

Detaljer

Vann i rør Ford Fulkerson method

Vann i rør Ford Fulkerson method Vann i rør Ford Fulkerson method Problemet Forestill deg at du har et nettverk av rør som kan transportere vann, og hvor rørene møtes i sammensveisede knytepunkter. Vannet pumpes inn i nettverket ved hjelp

Detaljer

Diagnosekart for oblig 2, INF3/4130 h07

Diagnosekart for oblig 2, INF3/4130 h07 Diagnosekart for oblig 2, INF3/4130 h07 Dag Sverre Seljebotn 1. november 2007 Dette er et dokument jeg har skrivd for å gjøre det enklere å gi tilbakemelding på obligene, siden så mange ting går igjen

Detaljer

Løsningsforslag for utvalgte oppgaver fra kapittel 9

Løsningsforslag for utvalgte oppgaver fra kapittel 9 Løsningsforslag for utvalgte oppgaver fra kapittel 9 9.2 1 Grafer og minne.......................... 1 9.2 4 Omvendt graf, G T......................... 2 9.2 5 Kompleksitet............................

Detaljer

Korteste vei problemet (seksjon 15.3)

Korteste vei problemet (seksjon 15.3) Korteste vei problemet (seksjon 15.3) Skal studere et grunnleggende kombinatorisk problem, men først: En (rettet) vandring i en rettet graf D = (V, E) er en følge P = (v 0, e 1, v 1, e 2,..., e k, v k

Detaljer

MAT1140: Kort sammendrag av grafteorien

MAT1140: Kort sammendrag av grafteorien MAT1140: Kort sammendrag av grafteorien Dette notatet gir en kort oversikt over den delen av grafteorien som er gjennomgått i MAT1140 høsten 2013. Vekten er på den logiske oppbygningen, og jeg har utelatt

Detaljer

Løsningsforslag - Korteste vei

Løsningsforslag - Korteste vei Sist endret: 17.08.2010 Hovedside FAQ Beskjeder Timeplan Ukeplan Øvinger Gruppeøving Eksamensoppgaver Pensum Løsningsforslag - Korteste vei [Oppgave] [Levering] [Løsningsforslag] Innleveringsfrist: 21.10.2011

Detaljer

Algdat Redux. Fjortende forelesning. Repetisjon av utvalgte emner.

Algdat Redux. Fjortende forelesning. Repetisjon av utvalgte emner. Algdat Redux Fjortende forelesning Repetisjon av utvalgte emner. 1 Nå har vi en brukbar (om enn ikke helt intuitiv) definisjon av «alt» og nå ønsker vi å lage oss en liste med de problemene som er «verst

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf.!! 91851949 Eksamensdato! 15. august 2013 Eksamenstid (fra til)! 0900 1300 Hjelpemiddelkode D.

Detaljer

Korteste vei i en vektet graf uten negative kanter

Korteste vei i en vektet graf uten negative kanter Dagens plan: IN - Algoritmer og datastrukturer HØSTEN 7 Institutt for informatikk, Universitetet i Oslo IN, forelesning 7: Grafer II Korteste vei, en-til-alle, for: Vektet rettet graf uten negative kanter

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 14. desember 2011 Eksamenstid 1500 1900 Sensurdato 14. januar Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

Løsningsforslag for eksamen i fag TDT4120 Algoritmer og datastrukturer Tirsdag 9. desember 2003, kl

Løsningsforslag for eksamen i fag TDT4120 Algoritmer og datastrukturer Tirsdag 9. desember 2003, kl TDT4120 2003-12-09 Stud.-nr: Antall sider: 1/7 Løsningsforslag for eksamen i fag TDT4120 Algoritmer og datastrukturer Tirsdag 9. desember 2003, kl. 0900 1500 Faglig kontakt under eksamen: Arne Halaas,

Detaljer

Billige arboresenser og matchinger

Billige arboresenser og matchinger Billige aboesense og matchinge Magnus Lie Hetland 16. jan 009 Dette e foelesningsnotate til føste foelesning i faget Algoitmekonstuksjon, videegående kus, ved Institutt fo datateknikk og infomasjonsvitenskap,

Detaljer

INF 4130. 8. oktober 2009. Dagens tema: Uavgjørbarhet. Neste uke: NP-kompletthet

INF 4130. 8. oktober 2009. Dagens tema: Uavgjørbarhet. Neste uke: NP-kompletthet INF 4130 8. oktober 2009 Stein Krogdahl Dagens tema: Uavgjørbarhet Dette har blitt framstilt litt annerledes tidligere år Se Dinos forelesninger fra i fjor. I år: Vi tenker mer i programmer enn i Turing-maskiner

Detaljer

: subs x = 2, f n x end do

: subs x = 2, f n x end do Oppgave 2..5 a) Vi starter med å finne de deriverte til funksjonen av orden opp til og med 5 i punktet x = 2. Det gjør vi ved å bruke kommandoen diff f x, x$n der f x er uttrykket som skal deriveres, x

Detaljer

Rundt og rundt og. Trettende forelesning

Rundt og rundt og. Trettende forelesning Nettverksalgoritmer. Anvendelser og generaliseringer. Sirkulasjonsproblemet/ lineær programmering. (Kap. 29.1-29.2) Rundt og rundt og Trettende forelesning 1 Merk: Ikke sikkert alt dette blir gjennomgått

Detaljer

LP. Leksjon 9: Kapittel 13: Nettverk strøm problemer, forts.2

LP. Leksjon 9: Kapittel 13: Nettverk strøm problemer, forts.2 LP. Leksjon 9: Kapittel 13: Nettverk strøm problemer, forts.2 Vi tar siste runde om (MKS): minimum kost nettverk strøm problemet. Skal oppsummere algoritmen. Se på noen detaljer. Noen kombinatorisk anvendelser

Detaljer

ADDISJON FRA A TIL Å

ADDISJON FRA A TIL Å ADDISJON FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til addisjon 2 2 Grunnleggende om addisjon 3 3 Ulike tenkemåter 4 4 Hjelpemidler i addisjoner 9 4.1 Bruk av tegninger

Detaljer

LØSNINGSFORSLAG SIF5015 DISKRET MATEMATIKK Onsdag 18. desember 2002

LØSNINGSFORSLAG SIF5015 DISKRET MATEMATIKK Onsdag 18. desember 2002 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 LØSNINGSFORSLAG SIF55 DISKRET MATEMATIKK Onsdag 8. desember 22 Oppgave a) Vi vil ha 77x (mod 3), så vi trenger en

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 16. april 2008 Oppsummering En graf består av noder og kanter Kanter ligger inntil noder, og

Detaljer

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Forelesning 23: Grafteori

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Forelesning 23: Grafteori Oppsummering MAT1030 Diskret matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 16. april 2008 En graf består av noder og kanter Kanter ligger inntil noder, og

Detaljer

Forelesning 23. Grafteori. Dag Normann april Oppsummering. Oppsummering. Oppsummering. Digresjon: Firefarveproblemet

Forelesning 23. Grafteori. Dag Normann april Oppsummering. Oppsummering. Oppsummering. Digresjon: Firefarveproblemet Forelesning 23 Grafteori Dag Normann - 16. april 2008 Oppsummering En graf består av noder og kanter Kanter ligger inntil noder, og noder kan være naboer. Vi bør kjenne til begrepene om sammenhengende

Detaljer

MAT1030 Forelesning 30

MAT1030 Forelesning 30 MAT1030 Forelesning 30 Kompleksitetsteori Roger Antonsen - 19. mai 2009 (Sist oppdatert: 2009-05-19 15:04) Forelesning 30: Kompleksitetsteori Oppsummering I dag er siste forelesning med nytt stoff! I morgen

Detaljer

TDT4102 Prosedyre og Objektorientert programmering Vår 2014

TDT4102 Prosedyre og Objektorientert programmering Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap TDT4102 Prosedyre og Objektorientert programmering Vår 2014 Øving 10 Frist: 2014-04-11 Mål for denne øvinga:

Detaljer

Heuristiske søkemetoder III

Heuristiske søkemetoder III Heuristiske søkemetoder III Lars Aurdal Intervensjonssenteret Lars.Aurdal@labmed.uio.no 14. september 2003 Plan Eksempel: Bildebehandling, segmentering: Hva er segmentering? Klassisk metode, terskling.

Detaljer

Svarforslag til ukeoppgaver til INF 4130

Svarforslag til ukeoppgaver til INF 4130 Svarforslag til ukeoppgaver til INF 4130 15. november 2011 Oppgave 1: Løs 14.4 (hvori innbakt svaret på oppgave 14.5) Vi skal altså vise at Hungarian-algoritmen kan implementeres i tid O(n 3 ), der n er

Detaljer

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon Repetisjon og mer motivasjon MAT030 Diskret matematikk Forelesning 22: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 4. april 2008 Først litt repetisjon En graf består av noder og

Detaljer

Kanter, kanter, mange mangekanter

Kanter, kanter, mange mangekanter Kanter, kanter, mange mangekanter Nybegynner Processing PDF Introduksjon: Her skal vi se på litt mer avansert opptegning og bevegelse. Vi skal ta utgangspunkt i oppgaven om den sprettende ballen, men bytte

Detaljer

Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010

Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010 Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010 1. a) Ingen andre tall enn en deler en, og en deler fire, så (1, 4) = 1 b) 1 c) 7 er et primtall og 7 er ikke en faktor i 41, så største felles

Detaljer

Anvendelser av grafer

Anvendelser av grafer Grafer Anvendelser av grafer Passer for modeller/datastrukturer med usystematiske forbindelser Ikke-lineære og ikke-hierarkiske koblinger mellom dataobjektene Modellering av nettverk: Veisystemer/rutekart

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 14. desember 2011 Eksamenstid 1500 1900 Sensurdato 14. januar Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

PG4200 Algoritmer og datastrukturer forelesning 10. Lars Sydnes 21. november 2014

PG4200 Algoritmer og datastrukturer forelesning 10. Lars Sydnes 21. november 2014 PG4200 Algoritmer og datastrukturer forelesning 10 Lars Sydnes 21. november 2014 I Grafer Grafisk fremstilling av en graf D A B C Ikke-rettet graf Grafisk fremstilling av en graf D A B C Rettet graf Grafisk

Detaljer

MAT1030 Forelesning 24

MAT1030 Forelesning 24 MAT1030 Forelesning 24 Grafteori og trær Roger Antonsen - 28. april 2009 (Sist oppdatert: 2009-04-28 22:32) Forelesning 24 Oppsummering En graf består av noder og kanter Kanter ligger inntil noder, og

Detaljer

Korteste Vei I. Lars Vidar Magnusson 9.4.2014. Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei

Korteste Vei I. Lars Vidar Magnusson 9.4.2014. Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei Korteste Vei I Lars Vidar Magnusson 9.4.2014 Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei Korteste Vei Problemet I denne forelesningen skal vi se på hvordan vi kan finne korteste

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 11. august 2014 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode D. Ingen

Detaljer

Online datingtjeneste The Hungarian Algorithm

Online datingtjeneste The Hungarian Algorithm Online datingtjeneste The Hungarian Algorithm Problemet Forestill deg at du har startet en online datingtjeneste hvor du lar brukerne sette opp en ønskeliste over hvilke andre brukere på siden de kunne

Detaljer

Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs

Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs TDT4125 2010-06-03 Kand-nr: 1/5 Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs Eksamensdato 3. juni 2010 Eksamenstid 0900 1300 Sensurdato 24. juni Språk/målform Bokmål Kontakt under

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

Løsningsforslag - Floyd-Warshall

Løsningsforslag - Floyd-Warshall Sist endret: 17.08.2010 Hovedside FAQ Beskjeder Timeplan Ukeplan Øvinger Gruppeøving Eksamensoppgaver Pensum Notater Kode/koding Ordliste Kontakt Eksterne ressurser IDI NTNU Utskriftsversjon martme logget

Detaljer

Alle mot alle. Åttende forelesning. (eller eller Bellman-Ford, eller BFS, alt ettersom) fra alle noder.

Alle mot alle. Åttende forelesning. (eller eller Bellman-Ford, eller BFS, alt ettersom) fra alle noder. Enkel alle-til-allealgoritme: Kjør Dijkstra (eller eller Bellman-Ford, eller BFS, alt ettersom) fra alle noder. Kan fungere for spinkle grafer blir dyrt ellers. Alle mot alle Åttende forelesning 1 Dijkstra

Detaljer

Algoritmer og datastrukturer Kapittel 11 - Delkapittel 11.2

Algoritmer og datastrukturer Kapittel 11 - Delkapittel 11.2 Algoritmer og datastrukturer Kapittel 11 - Delkapittel 11.2 11.2 Korteste vei i en graf 11.2.1 Dijkstras metode En graf er et system med noder og kanter mellom noder. Grafen kalles rettet Notasjon Verdien

Detaljer

Dijkstras algoritme. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert.

Dijkstras algoritme. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert. Tenk vann som sprer seg i rør: Vi behandler krysningspunktene i den rekkefølgen de fylles. Det må gi

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF 4130: lgoritmer: Design og effektivitet Eksamensdag: 12. desember 2008 Tid for eksamen: Kl. 09:00 12:00 (3 timer) Oppgavesettet

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 3. desember 2012 Eksamenstid 0900 1300 Sensurdato 3. januar 2013 Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

Et eksempel: Åtterspillet

Et eksempel: Åtterspillet Trær Et eksempel: Åtterspillet To spillere som «trekker» annenhver gang I hvert trekk velges et av tallene 1, 2, 3, men ikke tallet som motspiller valgte i forrige trekk Valgte tall summeres fortløpende

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 3. desember 2012 Eksamenstid 0900 1300 Sensurdato 3. januar 2013 Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs (løsningsforslag)

Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs (løsningsforslag) TDT4125 2011-06-04 Kand.-nr. 1/5 Avsluttende eksamen i TDT4125 Algoritmekonstruksjon, videregående kurs (løsningsforslag) Kontakt under eksamen Tillatte hjelpemidler Magnus Lie Hetland Alle trykte/håndskrevne;

Detaljer

Eksamen i tdt4120 Algoritmer og datastrukturer

Eksamen i tdt4120 Algoritmer og datastrukturer Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 5 Oppgavestillere: Magnus Lie Hetland Jon Marius Venstad Kvalitetskontroll: Magnar Nedland Faglig

Detaljer

Vektede grafer. MAT1030 Diskret matematikk. En kommunegraf. En kommunegraf. Oppgave

Vektede grafer. MAT1030 Diskret matematikk. En kommunegraf. En kommunegraf. Oppgave MAT1030 Diskret matematikk Forelesning 24: Grafer og trær Dag Normann Matematisk Institutt, Universitetet i Oslo 21. april 2008 Vi har snakket om grafer og trær. Av begreper vi så på var Eulerkretser og

Detaljer

MAT 100a - LAB 3. Vi skal først illustrerere hvordan Newtons metode kan brukes til å approksimere n-te roten av et positivt tall.

MAT 100a - LAB 3. Vi skal først illustrerere hvordan Newtons metode kan brukes til å approksimere n-te roten av et positivt tall. MAT 100a - LAB 3 I denne øvelsen skal vi bruke Maple til å illustrere noen anvendelser av derivasjon, først og fremst Newtons metode til å løse likninger og lokalisering av min. og max. punkter. Vi skal

Detaljer

Forelesning nr.4 INF 1410

Forelesning nr.4 INF 1410 Forelesning nr.4 INF 1410 Flere teknikker for kretsanalyse og -transformasjon 1 Oversikt dagens temaer inearitet Praktiske Ekvivalente Nortons Thévenins Norton- og superposisjonsprinsippet (virkelige)

Detaljer

Fra A til B. Syvende forelesning

Fra A til B. Syvende forelesning Fra A til B Syvende forelesning 1 Amøbeproblemet nok en gang. Hva er 1+2+4+ +n/2? 2 Skal la være å trekke frem binærtrefiguren igjen ;-) La oss se på det på en litt annen måte, som passer dagens tema (fra

Detaljer

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Dag Normann

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Dag Normann MAT1030 Diskret Matematikk Forelesning 25: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo Forelesning 25 27. april 2010 (Sist oppdatert: 2010-04-27 14:16) MAT1030 Diskret Matematikk 27. april

Detaljer

Kompleksitetsteori reduksjoner

Kompleksitetsteori reduksjoner Kompleksitetsteori reduksjoner En slags liten oversikt, eller huskeliste, for kompleksitetsteorien i INF 4130. Ikke ment å være verken fullstendig eller detaljert, men kanskje egnet til å gi noen knagger

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 25: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 27. april 2010 (Sist oppdatert: 2010-04-27 14:15) Forelesning 25 MAT1030 Diskret Matematikk 27. april

Detaljer

ALGORITMER OG DATASTRUKTURER

ALGORITMER OG DATASTRUKTURER Stud. nr: Side 1 av 7 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap AVSLUTTENDE

Detaljer

45011 Algoritmer og datastrukturer Løsningsforslag eksamen 13. januar 1992

45011 Algoritmer og datastrukturer Løsningsforslag eksamen 13. januar 1992 45011 Algoritmer og datastrukturer Løsningsforslag eksamen 13. januar 12 Oppgave 1 Idé til algoritme Benytter S n som betegn på en tallmengde med n elementer. For at et tall m skal være et majoritetstall

Detaljer

Dijkstras algoritme Spørsmål

Dijkstras algoritme Spørsmål :: Forside s algoritme Åsmund Eldhuset asmunde *at* stud.ntnu.no folk.ntnu.no/asmunde/algdat/dijkstra.pdf :: Vi er ofte interessert i å finne korteste, raskeste eller billigste vei mellom to punkter Gods-

Detaljer

Korteste Vei II. Lars Vidar Magnusson 11.4.2014. Kapittel 24 Bellman-Ford algoritmen Dijkstra algoritmen

Korteste Vei II. Lars Vidar Magnusson 11.4.2014. Kapittel 24 Bellman-Ford algoritmen Dijkstra algoritmen Korteste Vei II Lars Vidar Magnusson 11.4.2014 Kapittel 24 Bellman-Ford algoritmen Dijkstra algoritmen Bellman-Ford Algoritmen Bellman-Ford er en single-source korteste vei algoritme. Den tillater negative

Detaljer

Dijkstras algoritme. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert.

Dijkstras algoritme. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert. Tenk vann som sprer seg i rør: Vi behandler krysningspunktene i den rekkefølgen de fylles. Det må gi

Detaljer

Straffespark Introduksjon Scratch Lærerveiledning

Straffespark Introduksjon Scratch Lærerveiledning Straffespark Introduksjon Scratch Lærerveiledning Introduksjon Vi skal lage et enkelt fotballspill, hvor du skal prøve å score på så mange straffespark som mulig. Steg 1: Katten og fotballbanen Vi begynner

Detaljer

PEDAGOGISK TILBAKEBLIKK. Sverdet - August 2014

PEDAGOGISK TILBAKEBLIKK. Sverdet - August 2014 PEDAGOGISK TILBAKEBLIKK Sverdet - August 2014 Heisann! Da er nytt barnehageår i gang, og vi på Sverdet er klar for mange spennende måneder med mye god læring og mange kjekke opplevelser. Vi er i full gang

Detaljer

Tallinjen FRA A TIL Å

Tallinjen FRA A TIL Å Tallinjen FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til tallinjen T - 2 2 Grunnleggende om tallinjen T - 2 3 Hvordan vi kan bruke en tallinje T - 4 3.1 Tallinjen

Detaljer

Grafteori. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori.

Grafteori. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori. MAT030 Diskret Matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo Grafteori 20. april 200 (Sist oppdatert: 200-04-20 4:8) MAT030 Diskret Matematikk 20. april 200

Detaljer

Kompleksitetsanalyse Helge Hafting 25.1.2005 Opphavsrett: Forfatter og Stiftelsen TISIP Lærestoffet er utviklet for faget LO117D Algoritmiske metoder

Kompleksitetsanalyse Helge Hafting 25.1.2005 Opphavsrett: Forfatter og Stiftelsen TISIP Lærestoffet er utviklet for faget LO117D Algoritmiske metoder Helge Hafting 25.1.2005 Opphavsrett: Forfatter og Stiftelsen TISIP Lærestoffet er utviklet for faget LO117D Algoritmiske metoder Innhold 1 1 1.1 Hva er en algoritme?............................... 1 1.2

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 20. april 2010 (Sist oppdatert: 2010-04-20 14:17) Grafteori MAT1030 Diskret Matematikk 20. april

Detaljer

INF109 - Uke 1b 20.01.2016

INF109 - Uke 1b 20.01.2016 INF109 - Uke 1b 20.01.2016 1 Variabler Et program er ikke til stor hjelp hvis det er statisk. Statisk betyr at programmet bare bearbeider faste data som er lagt inn i programkoden. For å gjøre programmer

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 7. desember 2013 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode Målform/språk

Detaljer

Forelesning 23. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori.

Forelesning 23. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori. MAT030 Diskret Matematikk Forelesning 23: Grafteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 23 22. april 2009 (Sist oppdatert: 2009-04-22 2:37) MAT030 Diskret Matematikk

Detaljer

MAT1030 Forelesning 23

MAT1030 Forelesning 23 MAT030 Forelesning 23 Grafteori Roger Antonsen - 22. april 2009 (Sist oppdatert: 2009-04-22 2:36) Forelesning 23 Repetisjon og mer motivasjon Først litt repetisjon En graf består av noder og kanter Kanter

Detaljer

Legg merke til at summen av sannsynlighetene for den gunstige hendelsen og sannsynligheten for en ikke gunstig hendelse, er lik 1.

Legg merke til at summen av sannsynlighetene for den gunstige hendelsen og sannsynligheten for en ikke gunstig hendelse, er lik 1. Sannsynlighet Barn spiller spill, vedder og omgir seg med sannsynligheter på andre måter helt fra de er ganske små. Vi spiller Lotto og andre spill, og håper vi har flaks og vinner. Men hvor stor er sannsynligheten

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side Det matematisk-naturvitenskapelige fakultet Prøveekasmen 2007, med svarforslag Eksamen i: INF 330/430: Algoritmer: Design og effektivitet Eksamensdag: Fredag. desember 200 Tid

Detaljer

Studentnummer: Side 1 av 1. Løsningsforslag, Eksamen i TDT4120 Algoritmer og datastrukturer August 2005

Studentnummer: Side 1 av 1. Løsningsforslag, Eksamen i TDT4120 Algoritmer og datastrukturer August 2005 Studentnummer: Side 1 av 1 Løsningsforslag, Eksamen i TDT4120 Algoritmer og datastrukturer August 2005 Faglige kontakter under eksamen: Magnus Lie Hetland, Arne Halaas Tillatte hjelpemidler: Bestemt enkel

Detaljer

Posisjonsystemet FRA A TIL Å

Posisjonsystemet FRA A TIL Å Posisjonsystemet FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til posisjonsystemet P - 2 2 Grunnleggende om posisjonsystemet P - 2 3 Titallsystemet P - 3 4 Posisjonsystemet

Detaljer

Matchinger i ikke-bipartite grafer

Matchinger i ikke-bipartite grafer Matchinger i ikke-bipartite grafer Stein Krogdahl, Notat til INF 3/4130 Sist revidert september 2006 Vi skal i dette notatet se på det å finne matchinger i generelle grafer, uten noe krav om at grafen

Detaljer

Side om side. Trettende forelesning

Side om side. Trettende forelesning Side om side Trettende forelesning 1 Det finnes mange modeller for parallellitet. Her får dere en liten smak av én av dem som er ment å modellere trådbasert parallellitet/ multicoreprogrammering. Parallellitet

Detaljer

GODE ALGORITMER. Mekanisk regneferdighet. Forskningens konklusjon. Hva kreves i læreplanen? Var alt bedre før? 17.09.2012

GODE ALGORITMER. Mekanisk regneferdighet. Forskningens konklusjon. Hva kreves i læreplanen? Var alt bedre før? 17.09.2012 Mekanisk regneferdighet GODE ALGORITMER IKKE SØRGELIG SUBTRAKSJON OG DYSTER DIVISJON Bjørnar Alseth Multi i Vest 2012 Forskningens konklusjon Hva kreves i læreplanen? Forskerne er enige om 1. Vi må ikke

Detaljer

Kapittel 3: Litt om representasjon av tall

Kapittel 3: Litt om representasjon av tall MAT1030 Diskret Matematikk Forelesning 3: Litt om representasjon av tall, logikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 3: Litt om representasjon av tall 20. januar 2009

Detaljer

Hva er en algoritme? Har allerede sett på mange algoritmer til nå i IT1101. Forholdet mellom en algoritme og et program. Algoritme program prosess

Hva er en algoritme? Har allerede sett på mange algoritmer til nå i IT1101. Forholdet mellom en algoritme og et program. Algoritme program prosess IT1101 Informatikk basisfag, dobbeltime 2/10 Hva er en algoritme? Fremgangsmåte for noe Hittil: Datarepresentasjon Datamanipulasjon Datamaskinarkutektur hvordan maskinen jobber Operativsystem Program som

Detaljer

Kombinatorikk. MAT1030 Diskret Matematikk. Oppsummering av regneprinsipper

Kombinatorikk. MAT1030 Diskret Matematikk. Oppsummering av regneprinsipper MAT1030 Diskret Matematikk Forelesning 22: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo Kombinatorikk 14. april 2010 (Sist oppdatert: 2010-04-14 12:43) MAT1030 Diskret Matematikk 14.

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 22: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 14. april 2010 (Sist oppdatert: 2010-04-14 12:42) Kombinatorikk MAT1030 Diskret Matematikk 14.

Detaljer

Hemmelige koder. Kodeklubb-koden. Steg 1: Alfabetet. Sjekkliste. Introduksjon

Hemmelige koder. Kodeklubb-koden. Steg 1: Alfabetet. Sjekkliste. Introduksjon Hemmelige koder Nybegynner Python Introduksjon Legg bort skilpaddene dine, i dag skal vi lære hvordan vi kan sende hemmelige beskjeder! Kodeklubb-koden Et chiffer er et system for å gjøre om vanlig tekst

Detaljer

INFO122 Innføring i databaser. Oblig 2. av Frode H. Pedersen, Kjartan B. Michalsen og Kristin Breivik

INFO122 Innføring i databaser. Oblig 2. av Frode H. Pedersen, Kjartan B. Michalsen og Kristin Breivik INFO122 Innføring i databaser Oblig 2 av Frode H. Pedersen, Kjartan B. Michalsen og Kristin Breivik a) For at en relasjonsmodell skal være på en viss normalform, må alle relasjoner oppfylle minst denne

Detaljer

Bruk av oppgaver og grupper i

Bruk av oppgaver og grupper i Bruk av oppgaver og grupper i Versjon 02.07.2007 Ansvarlig for dokumentet Multimedisenteret/NTNU Innhold Innhold...1 Komme i gang med oppgaver...2 Legge til en oppgave...2 En oppgaves egenskaper...2 For

Detaljer

MAT1030 Forelesning 22

MAT1030 Forelesning 22 MAT1030 Forelesning 22 Grafteori Dag Normann - 14. april 2010 (Sist oppdatert: 2010-04-14 12:45) Kombinatorikk Oppsummering av regneprinsipper Ordnet utvalg med repetisjon: n r Ordnet utvalg uten repetisjon:

Detaljer

MAT1140: Kort sammendrag av grafteorien

MAT1140: Kort sammendrag av grafteorien MAT1140, H-15 MAT1140: Kort sammendrag av grafteorien Dette notatet gir en kort oppsummering av grafteorien i MAT1140. Vekten er på den logiske oppbygningen, og jeg har utelatt all motivasjon og (nesten)

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 33: Repetisjon Dag Normann Matematisk Institutt, Universitetet i Oslo 26. mai 2008 Innledning Onsdag 21/5 gjorde vi oss ferdige med det meste av den systematiske

Detaljer

Innledning. MAT1030 Diskret matematikk. Kapittel 11. Kapittel 11. Forelesning 33: Repetisjon

Innledning. MAT1030 Diskret matematikk. Kapittel 11. Kapittel 11. Forelesning 33: Repetisjon Innledning MAT1030 Diskret matematikk Forelesning 33: Repetisjon Dag Normann Matematisk Institutt, Universitetet i Oslo 26. mai 2008 Onsdag 21/5 gjorde vi oss ferdige med det meste av den systematiske

Detaljer

PCK Håndterminal. Brukerveiledning

PCK Håndterminal. Brukerveiledning PCK Håndterminal Brukerveiledning Velkommen som bruker av PCK Håndterminal. I denne manualen skal vi gå igjennom installasjon og bruk av håndterminal programvaren fra. For å benytte håndterminal sammen

Detaljer

Notat for oblig 2, INF3/4130 h07

Notat for oblig 2, INF3/4130 h07 Notat for oblig 2, INF3/4130 h07 Dag Sverre Seljebotn 15. oktober 2007 Jeg har skrivd et noe langt notat for oblig 2 som interesserte kan se på. Merk at dette er kun for å gi et par tips (for oppgave 3

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring - AITeL

HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring - AITeL HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring - AITeL Kandidatnr: Eksamensdato:. desember 00 Varighet: timer (9:00 1:00) Fagnummer: LO117D Fagnavn: Algoritmiske metoder Klasse(r): DA DB

Detaljer

Forelesning 24. Grafer og trær. Dag Normann april Vektede grafer. En kommunegraf

Forelesning 24. Grafer og trær. Dag Normann april Vektede grafer. En kommunegraf Forelesning 24 Grafer og trær Dag Normann - 21. april 2008 Vi har snakket om grafer og trær. Av begreper vi så på var Eulerkretser og Eulerstier Hamiltonkretser Minimale utspennende trær. Vi skal nå se

Detaljer

Mer om likninger og ulikheter

Mer om likninger og ulikheter Mer om likninger og ulikheter Studentene skal kunne utføre polynomdivisjon anvende nullpunktsetningen og polynomdivisjon til faktorisering av polynomer benytte polynomdivisjon til å løse likninger av høyere

Detaljer

Brukermanual for statistikk på Asset on web: Statistikk salg pr dag, uke eller måned fordelt på alle avdelinger:

Brukermanual for statistikk på Asset on web: Statistikk salg pr dag, uke eller måned fordelt på alle avdelinger: Brukermanual for statistikk på Asset on web: Statistikk salg pr dag, uke eller måned fordelt på alle avdelinger: 1. Velg først "Vis avanserte funksjoner" Evt. hvis du ønsker å se på salget i går eller

Detaljer

Spøkelsesjakten. Introduksjon

Spøkelsesjakten. Introduksjon 1 Spøkelsesjakten All Code Clubs must be registered. Registered clubs appear on the map at codeclubworld.org - if your club is not on the map then visit jumpto.cc/ccwreg to register your club. Introduksjon

Detaljer

Hva du skal kunne: «Prisoverveltning», «Skatteoverveltning» («tax incidence»)

Hva du skal kunne: «Prisoverveltning», «Skatteoverveltning» («tax incidence») «Prisoverveltning», «Skatteoverveltning» («ta incidence») Hvor mye øker risen å brus dersom myndighetene legger å en avgift å 5 kroner er liter? Svaret avhenger av risfølsomheten i tilbud og ettersørsel.

Detaljer