Python: Oppslagslister (dictionaries) og mengder 3. utgave: Kapittel 9
|
|
- Kathrine Kristiansen
- 2 år siden
- Visninger:
Transkript
1 Python: Oppslagslister (dictionaries) og mengder 3. utgave: Kapittel 9 TDT4110 IT Grunnkurs Professor Guttorm Sindre
2 Læringsmål og pensum Mål Forstå prinsippene for, og kunne bruke i praksis Mengder (sets) Oppslagslister (dictionary) Vite forskjell på disse og lister, tupler, strenger Vite forskjell på tekstfiler og binærfiler Forstå, og kunne bruke, serialisering av objekter Pensum Starting out with Python, Chapter 9: Dictionaries and Sets 2
3 Kapittel 9.2 Mengder (Sets)
4 Mengder (Eng.: sets) Datastruktur for matematiske mengder Hvert element i en mengde er unikt Umulig å legge inn dubletter Mengder er ikke ordnet kan ikke anta noen bestemt rekkefølge De fleste funksjoner for lister kan brukes for mengder Mengder har flere spesifikke operasjoner, bl.a.: intersection = no. snitt union Ulike typer mengdedifferanser 4
5 Opprette og endre på mengder En mengde opprettes ved å bruke funksjonen set( ) A = set([5,3,3,12]) B = set([true, ost, 23.2, 92, False]) C = set( aaabcd ) # gir { a, b, c, d } Eller ved direkte angivelse av innhold: D = {9,4,1,3} Legge til og fjerne elementer fra en mengde: A.add(9) # Legg til ett element A.update([3,4,2]) B.remove(92) # Legg til flere elementer 5
6 Iterasjon og medlemsskap For-løkke kan iterere over en mengde Som for lister, tupler, filer, strenger for x in mengde: print(x) # Skriver ut elementer under hverandre Undersøke om verdi tilhører mengde: in, not in Tilsvarer og i matematisk notasjon if x in A: print( Verdien, x, er i mengden A ) 6
7 Mengdeoperasjoner på A og B Union av to mengder: C = A.union(B) Snitt av to mengder: C = A.intersection(B) mengdedifferanse: C = A.difference(B) # C = A U B # C = A B # C = A \ B Symmetrisk mengdedifferanse: C = A.symmetric_difference(B) # C = (A U B) \ (A B) Sjekke delmengde eller supermengde: A.issubset(B) # True hvis A B, ellers False A.issuperset(B) # True hvis A B, ellers False 7
8 Oppgave: mengder Start med koden mengde-uferdig.py Hvis du ikke har den, holder det å gjenta input-setningene Lag et program som Bruker mengdeoperasjoner Finner mulige mistenkte for en tenkt forbrytelse Videre hint om hva som må gjøres står i koden Oppgave: mengde-uferdig.py Løsning: mengde-ferdig.py 8
9 Eksempel: Syv fjell e.l. I mange byer fins arrangementer hvor man skal besøke et visst antall fjelltopper eller andre punkter av interesse innen en viss tidsperiode Anta at vi har fått inn navnelister fra hvert av disse punktene. Vi ønsker nå å generere to ting: 1. En oversikt over alle deltagere, dvs. alle som fins på minst en av de innleverte listene 2. En oversikt over de ivrigste deltagerne, dvs. de som har klart å besøke alle punktene (og dermed fins på alle liste) Oppgave: fjell-uferdig.py Løsning: fjell-ferdig.py 9
10 Kapittel 9.1 Oppslagslister (Dictionary)
11 Oppslagsliste (Dictionary) Lagrer en samling av data. Minner litt om lister men har klare forskjeller: Defineres ved { } (ALT+SHIFT 8/9 på Mac) Indeks kan være hva som helst (ikke bare tall) F.eks strenger, heltall, flyttall, boolske verdier Indeks kalles nøkkel (key) Brukes når vi vil gjøre oppslag på en verdi for å finne andre assosierte verdier A = {} # Tom dictionary A[ Kari ] = # Oppretter et element tlf={ Jo : , Per : , 'Else : } print(tlf[ Per ]) # Skriver ut verdien
12 Bruk av in og not in Sjekke om elementer finnes som lister, mengder etc. tlf={'jo' : , 'Per' : , 'Else' : } navn = input( Hvem vil du vite nummeret til? ) if navn in tlf: print(tlf[navn]) else: print( Har ingen opplysninger om + navn) 12
13 Operasjoner for dictionaries Operasjon Forklaring Operasjon Forklaring len(d) d[k] d[k] = v del d[k] d.clear() Antall elementer i d Verdi til element i d med nøkkel k Sett element k til verdi v Slett element k i d Fjerne alle element i d d.items() d.keys() d.values() d.get(k) Returnerer liste av (nøkkel,verdi) par Returnerer liste av nøkler i d Returnerer liste av verdier i d Samme som d[k] d.copy() d.has_key(k) Lag kopi av d Fjernet i Python 3. Må bruke in i stedet. d.get(k,v) Returnerer d[k] hvis k er gyldig, ellers v
14 Ulike datatyper i dictionaries Verdier i dictionary kan også være lister Eks. lagre tlf, adresse og betalingsinfo i en dictionary: db = {} # Oppretter dictionary db[ Jo ]=[ , Logata 4, 7000 Trondheim, True] db[ Ann ]=[ , Strandg. 2, 5000 Bergen, False] print(db[ Jo ]) # skriver ut lista med data for Jo Fordel med dictionary vs. f.eks liste av lister: Kan slå opp direkte på meningsfylt indeks Mens indeks i liste ofte er intetsigende (kun rekkefølge) Dictionary: mindre strev med å lete etter riktig element så lenge nøkkelen er det vi leter etter 14
15 for-løkke og dictionary Bruker man for-løkke på en dictionary, løper man igjennom nøklene til dictionary: d = { navn : Per, alder : 28, IQ : 129} for x in d: print(x) # går igjennom nøkler i d # skriver ut nøklene navn, alder, IQ For å sikre gjennomgang av nøkler alfabetisk: for x in sorted(d.keys()): # sorterer nøkler print(x) 15
16 Eksempel på lur bruk av nøkkel Norges Scrabbleforbund (NSF) har ei tekstfil drøyt ord som er lovlig å skrive i Scrabble (på norsk) Alfabetisk sortert, greit for å sjekke om et ord er lovlig eller ikke Vi vil lage et program som finner anagrammer Bruker kan skrive inn en tekststreng Finne alle ord i NSF-lista som bruker de samme bokstavene Men i fri rekkefølge (ETTER, ERTET, RETTE ) Vil unngå å søke gjennom hele fila / lista for hver streng Mål: Kunne slå opp direkte om et ord har anagrammer eller ikke Da kan oppslagsliste (dictionary) være en lur datastruktur Men hva bør vi bruke som nøkkel? Nå er ord for ord, alfabetisk sortert, ikke lenger det gunstigste 16
17 Ide til løsning: Regne om hvert ord til et tall Identiske bokstaver samme tall Forskjell i antall eller type bokstav annet tall HVORDAN?? Kan omregne hvert ord til et produkt av primtall 2, 3, 5, 7, 11, 13, 17,., 109 (primtall nr 29) Hver bokstav assosieres med ett av disse tallene Det blir store tall for lange ord men enklere enn å søke gjennom hele lista hver gang For å redusere størrelsen på tallene noe bruk de laveste tallene for de vanligste bokstavene E=2, T=3, R=5, Både ET og TE vil få nøkkel 6 (2*3) Både ERT, TER og TRE vil få nøkkel 30 (2*3*5) 17
18 Ide til løsning (forts.) Bygger så en dictionary ved å Opprette tom dictionary Gjenta for hvert ord i ordlistefila: Les inn ordet Regne ut nøkkel for ordet (produkt av primtall) Putte ordet inn i dictionary på denne nøkkelen HVIS flere ord på samme nøkkel: append() i liste ELLERS (første ord på denne nøkkelen): lage liste med ordet Returnere full dictionary Når brukeren skriver inn en tekst og vil finne anagram: Regne ut nøkkelverdi for brukerens tekst HVIS denne nøkkelen fins i dictionary: Returnere lista av ord (anagrammer) som tilhører nøkkelen ELLERS: Returnere tom liste (ingen anagrammer funnet) anagram1.py 18
19 Kapittel 9.3 Serialisering av objekter
20 Serialisering av objekter Konverterer et objekt til en strøm av bytes Gir en persistent variabel Data lagres til fil, kan senere leses tilbake Verdiene overlever programslutt, at maskin slås av, etc. I Python: biblioteket pickle har funksjoner for dette Fordeler med binærfiler (vs. tekstfil) Får dataene direkte inn i ønsket datastruktur Slipper konvertering til / fra strenger Vanligvis mindre plasskrevende Ulemper vs. tekstfil Fila er ikke lesbar for mennesker Applikasjonsavhengig må ha spesifikk kjennskap til filformatet for å kunne bruke fila 20
21 Lagre dictionary til disk Bruk biblioteket pickle metoden pickle.dump( ) Må åpne fila som binærfil og ikke som tekst, det er mer enn tekst som lagres (struktur): db={ Jo : [10, Skogata 3 ], Per :[20, Heigata 2 ]} import pickle # Importerer modulen f = open( database.dat, wb ) # b=binary pickle.dump(db,f) # Dumper db til disk f.close() # Lukker fila 21
22 Laste inn dictionary fra disk Metoden pickle.load() Husk å åpne fila som binærfil og ikke tekst. import pickle f = open( datafil.dat, rb ) data = pickle.load(f) f.close() # r=read, b=binary # Laster inn dict fra disk 22
23 Anagram-finneren, V2 Serialisering kan redusere ventetid for brukeren Dele opp i tre filer: En modul for felles kode: Et backstage -program Leser ordlista fra Scrabbleforbundet Bygger opp dictionary og dumper den på fil Et program for brukeren: Leser inn dictionary fra fil Spør brukeren om tekster og finner anagrammer Brukeren trenger kun kjøre brukerprogrammet Backstage-programmet kjøres sjeldnere anagram2.py F.eks kun hver gang det kommer ny versjon av ordlista Brukeren slipper mye venting i starten anagram2-backstage.py anagram2-bruker.py 23
24 Kahoot 10 spørsmål om Mengder, oppslagslister og serialisering Basert på det som forelesningen har dekket 24
25 Oppsummering Mengder (sets) er nyttige for å gjøre operasjoner som Snitt, union og mengdedifferanse Mengder defineres ved å bruke funksjonen set(liste) Oppslagsliste (dictionary) ligner på lister, men Man kan bruke hva som helst som nøkkel (indeks). Kan opprettes tom: A = {} Eller ved nøkkel + data: A = { navn : Petter Ole } Trenger ikke indeks som er i rekkefølge Kan serialiseres / dumpes til binærfil 25
MENGDER (SETS) Læringsmål og pensum. Kapittel 9.2
1 TDT4110 Informasjonsteknologi grunnkurs: Tema: Dictionaries og mengder (sets) - Kapittel 9 Professor Alf Inge Wang 2 Læringsmål og pensum Mål Lære å forstå og kunne bruke sets Lære å forstå og kunne
TDT4110 Informasjonsteknologi grunnkurs: Tema: Dictionaries og mengder (sets) - Kapittel 9. Professor Alf Inge Wang
1 TDT4110 Informasjonsteknologi grunnkurs: Tema: Dictionaries og mengder (sets) - Kapittel 9 Professor Alf Inge Wang 2 Læringsmål og pensum Mål Lære å forstå og kunne bruke sets Lære å forstå og kunne
Python: Mengder og Dictionaries 3. utgave: Kapittel 9
Python: Mengder og Dictionaries 3. utgave: Kapittel 9 TDT4110 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål Forstå prinsippene for, og kunne bruke i praksis Mengder (sets) Ordbøker (dictionary)
Mål. Pensum. TDT4110 Informasjonsteknologi grunnkurs: Tema: Dictionaries og sets (mengder) Utgave 3: Kap. 9. Terje Rydland - IDI/NTNU
1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Tema: Dictionaries og sets (mengder) Utgave 3: Kap. 9 Terje Rydland - IDI/NTNU 2 Læringsmål og pensum Mål Lære å forstå og kunne
Python: Mengder og Dictionaries 3. utgave: Kapittel 9
Python: Mengder og Dictionaries 3. utgave: Kapittel 9 TDT4110 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål Forstå prinsippene for, og kunne bruke i praksis Mengder (sets) Ordbøker / oppslagslister
Mål. Pensum. TDT4110 Informasjonsteknologi grunnkurs: Tema: Dictionaries og sets (mengder) Utgave 3: Kap. 9. Terje Rydland - IDI/NTNU
1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Tema: Dictionaries og sets (mengder) Utgave 3: Kap. 9 Terje Rydland - IDI/NTNU 2 Læringsmål og pensum Mål Forstå prinsippene for,
Dictionary er et objekt som lagrer en samling av data. Minner litt om lister men har klare forskjeller:
1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Tema: Algoritmer i praksis Terje Rydland - IDI/NTNU 2 Datastruktur: Dictionaries Kap 9.1 Dictionary er et objekt som lagrer en samling
Dictionary er et objekt som lagrer en samling av data. Minner litt om lister men har klare forskjeller:
1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Tema: Algoritmer i praksis Terje Rydland - IDI/NTNU 2 Datastruktur: Dictionaries Kap 9.1 Dictionary er et objekt som lagrer en samling
Mål. Pensum. TDT4110 Informasjonsteknologi grunnkurs: Tema: Unntak (exceptions) (Kap 6) Dictionaries (Kap. 9) Terje Rydland - IDI/NTNU
1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Tema: Unntak (exceptions) (Kap 6) Dictionaries (Kap. 9) Terje Rydland - IDI/NTNU 2 Læringsmål og pensum Mål Lære å bruke unntak (Exceptions)
AlgDat - Øvingsforelesning 1 Introduksjon til Python, lenkede lister og øving 1
AlgDat - Øvingsforelesning 1 Introduksjon til Python, lenkede lister og øving 1 Ole Kristian Pedersen, Høst 2016 Agenda Introduksjon til Python for begynnere Intro til øving 1 Litt om lenkede lister Øvingssystemet
Øvingsforelesning 9 i Python (TDT4110)
Øvingsforelesning 9 i Python (TDT4110) Dictionaries, Exception, Filhåndtering Vegard Hellem Oversikt Praktisk Info Gjennomgang av Øving 7 Programmering til øving 9 2 Praktisk info Auditorieøving 2 Må ikke
Repetisjon, del 2. TDT 4110 IT Grunnkurs Professor Guttorm Sindre
Repetisjon, del 2 TDT 4110 IT Grunnkurs Professor Guttorm Sindre Premieutdeling Kahoot Vinnere av enkeltrunder: Datamaskinens historie: mr.oyster (7311) Variable, aritmetiske op., etc.: Sha-ra (6155) if-setn.,
TDT4110 Informasjonsteknologi grunnkurs: Tema: Lister og tupler. - 3rd edition: Kapittel 7. Professor Alf Inge Wang
1 TDT4110 Informasjonsteknologi grunnkurs: Tema: Lister og tupler - 3rd edition: Kapittel 7 Professor Alf Inge Wang 2 Læringsmål og pensum Mål Lære om Sekvenser Lister List Slicing Finne elementer i lister
Systemutvikling (Software Engineering) TDT 4110 IT Grunnkurs Professor Guttorm Sindre
Systemutvikling (Software Engineering) TDT 4110 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål Lære å lage større og sammensatte programmer Pensum Pythonboka kap. 1-9, 12 Teorikapitlet
TDT4110 Informasjonsteknologi grunnkurs: Kapittel 7 Filer og unntak ( exceptions ) Professor Alf Inge Wang Stipendiat Lars Bungum
1 TDT4110 Informasjonsteknologi grunnkurs: Kapittel 7 Filer og unntak ( exceptions ) Professor Alf Inge Wang Stipendiat Lars Bungum 2 Læringsmål Mål Introduksjon til filer (som inndata og utdata) Å bruke
Python: Løkker. TDT4110 IT Grunnkurs Professor Guttorm Sindre
Python: Løkker TDT4110 IT Grunnkurs Professor Guttorm Sindre Denne uka Vi trenger å Støttes av Hente data fra bruker Vise data til bruker Lagre data i minnet for bruk videre i programmet Fra tastatur:
TDT4110 Informasjonsteknologi grunnkurs: Tema: Filer og unntak ( exceptions ) - 3rd edition: Kapittel 6. Professor Alf Inge Wang
1 TDT4110 Informasjonsteknologi grunnkurs: Tema: Filer og unntak ( exceptions ) - 3rd edition: Kapittel 6 Professor Alf Inge Wang 2 Læringsmål og pensum Mål Lære bruk av inn- og utoperasjoner i Python
Læringsmål og pensum. Inn- og utoperasjoner 21/10/16
1 TDT4110 Informasjonsteknologi grunnkurs: Tema: Filer og unntak ( exceptions ) - 3rd edition: Kapittel 6 Professor Alf Inge Wang 2 Læringsmål og pensum Mål Lære bruk av inn- og utoperasjoner i Python
Python: Valg og betingelser. TDT4110 IT Grunnkurs Professor Guttorm Sindre
Python: Valg og betingelser TDT4110 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål Kunne forstå og bruke if-setninger sammenlikning av strenger nøstede beslutningsstrukturer betingelser
TDT4110 Informasjonsteknologi grunnkurs: Python: Repetisjon. Professor Alf Inge Wang
1 TDT4110 Informasjonsteknologi grunnkurs: Python: Repetisjon Professor Alf Inge Wang 2 Aktuelle tema i Python Todimensjonale lister og generering av lister Dictionaries Filbehanlding (tekstfiler og binærfiler)
TDT4110 Informasjonsteknologi, grunnkurs Uke 35 Introduksjon til programmering i Python
TDT4110 Informasjonsteknologi, grunnkurs Uke 35 Introduksjon til programmering i Python Professor Guttorm Sindre Institutt for datateknikk og informasjonsvitenskap Læringsmål og pensum Mål Vite hva et
Oppsummering fra sist
1 av 34 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Tema: Løkker/Sløyfer Utgave 3: Kap. 4 Terje Rydland - IDI/NTNU 2 av 34 Oppsummering fra sist Betingelser i Python: ,
Python: Intro til funksjoner. TDT4110 IT Grunnkurs Professor Guttorm Sindre
Python: Intro til funksjoner TDT4110 IT Grunnkurs Professor Guttorm Sindre Snart referansegruppemøte Viktig mulighet for å gi tilbakemelding på emnet Pensumbøker Forelesninger Øvingsforelesninger Veiledning
Python: Løkker. TDT4110 IT Grunnkurs Professor Guttorm Sindre
Python: Løkker TDT4110 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål Forstå hvorfor vi trenger løkker i programmering Ha kjennskap to ulike typer løkker (while-løkke, for-løkke) Og vite
TDT4110 Informasjonsteknologi grunnkurs: Tema: Mer om strenger. - 3rd edition: Kapittel 8. Professor Alf Inge Wang
1 TDT4110 Informasjonsteknologi grunnkurs: Tema: Mer om strenger - 3rd edition: Kapittel 8 Professor Alf Inge Wang 2 Læringsmål og pensum Mål Lære om Pensum Grunnleggende operasjoner på strenger Å skive/slice
Mål. Pensum. TDT4110 Informasjonsteknologi grunnkurs: Tema: Filer og unntak (exceptions) Utgave 3: Kap. 6. Terje Rydland - IDI/NTNU
1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Tema: Filer og unntak (exceptions) Utgave 3: Kap. 6 Terje Rydland - IDI/NTNU 2 Læringsmål og pensum Mål Lære bruk av inn- og ut-operasjoner
Python: Strenger 3. utgave: Kapittel 8
Python: Strenger 3. utgave: Kapittel 8 TDT4110 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål Forstå Hva strenger er Grunnleggende operasjoner på strenger Indeksering av tegn i strenger,
Med løkke: Læringsmål og pensum. TDT4110 Informasjonsteknologi grunnkurs: Tema: Løkker/Sløyfer Utgave 3: Kap. 4 Utgave 2: Kap. 5. Mål.
1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Tema: Løkker/Sløyfer Utgave 3: Kap. 4 Utgave 2: Kap. 5 Terje Rydland - IDI/NTNU 2 Læringsmål og pensum Mål Lære om begrepet løkker
Repetisjon, del 1. TDT 4110 IT Grunnkurs Professor Guttorm Sindre
Repetisjon, del 1 TDT 4110 IT Grunnkurs Professor Guttorm Sindre Resultat av Kahoot! Følgende temaer hadde størst behov på en skala fra 1 lite behov til 3 stort behov: Binærfiler 2,5 Rekursjon 2,3 2D-lister
Python: Filer og unntak Gaddis: Kapittel 6
Python: Filer og unntak Gaddis: Kapittel 6 TDT4110 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål Lære hva filer er Lære hva unntaksbehandling er Kunne bruke inn- og utoperasjoner i Python
Øvingsforelesning 3 Python (TDT4110)
Øvingsforelesning 3 Python (TDT4110) For og While-løkker Ole-Magnus Pedersen Oversikt Praktisk Info Gjennomgang av øving 1 Programmering for Øving 3 2 Studasser og Piazza Studasser er der for å hjelpe
TDT4110 Informasjonsteknologi grunnkurs: Tema: Løkker. - 3rd edition: Kapittel 4. Professor Alf Inge Wang
1 TDT4110 Informasjonsteknologi grunnkurs: Tema: Løkker - 3rd edition: Kapittel 4 Professor Alf Inge Wang 2 Læringsmål og pensum Mål Lære om begrepet løkker Lære om bruk av while-løkke Lære om bruk av
Øvingsforelesning 1 Python (TDT4110)
Øvingsforelesning 1 Python (TDT4110) Introduksjon, Kalkulasjoner Ole-Magnus Pedersen Oversikt Praktisk Info Repetisjon fra sist Oppgaver for øving 2 2 Praktisk Info Last opp øvinger på Blackboard før godkjenning
Python: Løkker. TDT4110 IT Grunnkurs Professor Guttorm Sindre
Python: Løkker TDT4110 IT Grunnkurs Professor Guttorm Sindre Referansegruppe MTTK: havardmellbye@gmail.com MTMT: Daniel.Vadseth@hotmail.com MTDESIGN 9valinn@gmail.com MTKOM: jonbs@stud.ntnu.no MLREAL:
Læringsmål og pensum. if (be): else (not_to_be):
1 TDT4110 Informasjonsteknologi grunnkurs: Tema: Betingelser og logiske uttrykk - 3rd edition: Kapittel 3 Professor Alf Inge Wang 2 if (be): else (not_to_be): 3 Læringsmål og pensum Mål Lære å bruke og
Øvingsforelesning i Python (TDT4110)
Øvingsforelesning i Python (TDT4110) Tema: Øving 1, PyCharm, Print, Input, (funksjoner og globale variabler) Gå til https://www.jetbrains.com/pycharm/ og sett PyCharm på nedlasting NÅ Kristoffer Hagen
TDT4110 Informasjonsteknologi grunnkurs: Tema: Betingelser og logiske uttrykk. - 3rd edition: Kapittel 3. Professor Alf Inge Wang
1 TDT4110 Informasjonsteknologi grunnkurs: Tema: Betingelser og logiske uttrykk - 3rd edition: Kapittel 3 Professor Alf Inge Wang 2 if (be): else (not_to_be): 3 Læringsmål og pensum Mål Lære å bruke og
TDT4105 Informasjonsteknologi, grunnkurs MatLab: Filbehandling - load, save, type - fopen, fgetl, feof, fprintf, fclose
1 TDT4105 Informasjonsteknologi, grunnkurs MatLab: Filbehandling - load, save, type - fopen, fgetl, feof, fprintf, fclose Anders Christensen (anders@ntnu.no) Rune Sætre (satre@ntnu.no) TDT4105 IT Grunnkurs
TDT4105 Informasjonsteknologi, grunnkurs
1 TDT4105 Informasjonsteknologi, grunnkurs MatLab: Filbehandling Anders Christensen (anders@idi.ntnu.no) Rune Sætre (satre@idi.ntnu.no) TDT4105 IT Grunnkurs 2 Læringsmål/pensum Filbehandling Mål: Forstå
Python: Variable og beregninger, input og utskrift. TDT4110 IT Grunnkurs Professor Guttorm Sindre
Python: Variable og beregninger, input og utskrift TDT4110 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål for denne uka: Vite litt om design av programmer (2.1, 2.2, 2.4) Kunne skrive ut
TDT4110 Informasjonsteknologi grunnkurs: Tema: Betingelser og logiske uttrykk Utgave 3: Kap. 3
1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Tema: Betingelser og logiske uttrykk Utgave 3: Kap. 3 Terje Rydland - IDI/NTNU 2 if (be): else (not_to_be): 3 Læringsmål og pensum
Python: Rekursjon (og programmering av algoritmer) Python-bok: Kapittel 12 + teoribok om Algoritmer
Python: Rekursjon (og programmering av algoritmer) Python-bok: Kapittel 12 + teoribok om Algoritmer TDT4110 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål Forstå, og kunne bruke, algoritmer
TDT4110 IT Grunnkurs Høst 2015
TDT4110 IT Grunnkurs Høst 2015 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Løsningsforlag Auditorieøving 1 1 Teori Løsning er skrevet med uthevet tekst
if (be): else (not_to_be): TDT4110 Informasjonsteknologi grunnkurs: Tema: Betingelser og logiske uttrykk Utgave 3: Kap.
1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Tema: Betingelser og logiske uttrykk Utgave 3: Kap. 3 Terje Rydland - IDI/NTNU 2 if (be): else (not_to_be): 3 Læringsmål og pensum
Lage større programmer (Python, relatert til teoridelen om Software Engineering ) TDT 4110 IT Grunnkurs Professor Guttorm Sindre
Lage større programmer (Python, relatert til teoridelen om Software Engineering ) TDT 4110 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål Lære å lage større og sammensatte programmer Kunne
TDT4110 Informasjonsteknologi grunnkurs: Programmering: En større case. Professor Alf Inge Wang
1 TDT4110 Informasjonsteknologi grunnkurs: Programmering: En større case Professor Alf Inge Wang 2 Læringsmål og pensum Mål Lære å lage større og sammensatte programmer Pensum Kapitlene 1-9 og 12. 3 Sette
Læringsmål og pensum. En større case. Mål Lære å lage større og sammensatte programmer Pensum Kapitlene 1-9 og 12.
1 TDT4110 Informasjonsteknologi grunnkurs: Programmering: En større case Professor Alf Inge Wang 2 Læringsmål og pensum Mål Lære å lage større og sammensatte programmer Pensum Kapitlene 1-9 og 12. 3 Sette
Tirsdag 21/11. Onsdag 24/11. Tirsdag 12/12. TDT4110 Informasjonsteknologi grunnkurs: Tema: Et større case
1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Tema: Et større case Terje Rydland - IDI/NTNU 2 Fram mot eksamen Tirsdag 21/11 Repetisjon. Send inn behov/ønsker til : terjery@idi.ntnu.no
Høst 2014. Øving 5. 1 Teori. 2 Månedskalender. Norges teknisknaturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap
TDT4105 IT Grunnkurs Høst 2014 Norges teknisknaturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Øving 5 1 Teori a) Hva er den binære ASCII-verdien av bokstaven E (stor e)?
Python: Lister og tupler Gaddis: Kapittel 7
Python: Lister og tupler Gaddis: Kapittel 7 TDT4110 IT Grunnkurs Professor Guttorm Sindre Denne uka Vi trenger å Støttes av Hente data fra bruker Vise data til bruker Lagre data i minnet for bruk videre
Øvingsforelesning i Python (TDT4110)
Øvingsforelesning i Python (TDT4110) Tema: Øving 2, Betingelser, if/elif/else Kristoffer Hagen Oversikt Praktisk informasjon Gjennomgang av Øving 1 Oppgaver for Øving 2 2 Praktisk Bruke andre studasser
TDT4110 Informasjonsteknologi grunnkurs: Eksempler. Mangekanter
1 TDT4110 Informasjonsteknologi grunnkurs: Eksempler Kunnskap for en bedre verden Amanuensis Terje Rydland Kontor: ITV-021 i IT-bygget vest (Gløshaugen) Epost: terjery@idi.ntnu.no Tlf: 735 91845 TDT4105
Læringsmål og pensum. https://www.youtube.com/watch? v=nkiu9yen5nc
1 TDT4110 Informasjonsteknologi grunnkurs: Kapittel 1 Introduksjon til Programmering og Python Professor Alf Inge Wang 2 https://www.youtube.com/watch? v=nkiu9yen5nc 3 Læringsmål og pensum Mål Lære om
Lese fra fil. INF1000 : Forelesning 5. Eksempel. De vanligste lesemetodene. Metoder:
Lese fra fil Filbehandling Tekster Ole Christian Lingjærde Gruppen for bioinformatikk Institutt for informatikk Universitetet i Oslo INF1000 : Forelesning 5 Vi må først importere pakken easyio Vi åpner
Obligatorisk oppgave 1 INF1020 h2005
Obligatorisk oppgave 1 INF1020 h2005 Frist: fredag 7. oktober Oppgaven skal løses individuelt, og må være godkjent for å kunne gå opp til eksamen. Før innlevering må retningslinjene Krav til innleverte
Mål. Pensum. TDT4110 Informasjonsteknologi grunnkurs: Tema: Et større case. Terje Rydland - IDI/NTNU. Lære å lage større og sammensatte programmer
1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Tema: Et større case Terje Rydland - IDI/NTNU 2 Læringsmål og pensum Mål Lære å lage større og sammensatte programmer Pensum Kapitlene
TDT4110 Informasjonsteknologi grunnkurs: Kapittel 1 Introduksjon til Programmering og Python. Professor Alf Inge Wang
2 TDT4110 Informasjonsteknologi grunnkurs: Kapittel 1 Introduksjon til Programmering og Python Professor Alf Inge Wang 3 https://www.youtube.com/watch? v=nkiu9yen5nc 4 Læringsmål og pensum Mål Lære om
Opphavsrett: Forfatter og Stiftelsen TISIP
Avdeling for informatikk og e-læring, Høgskolen i Sør-Trøndelag Innstallasjon og komme i gang med python Claus Schive Lærestoffet er utviklet for faget IFUD1050 Programmering med Python Hvilket programmeringsspråk
LO118D Forelesning 3 (DM)
LO118D Forelesning 3 (DM) Mengder og funksjoner 27.08.2007 1 Mengder 2 Funksjoner Symboler x y Logisk AND, både x og y må være sanne x y Logisk OR, x eller y må være sann x Negasjon, ikke x x For alle
Løse reelle problemer
Løse reelle problemer Litt mer om løkker, metoder med returverdier og innlesing fra fil INF1000, uke4 Geir Kjetil Sandve Repetisjon fra forrige uke: while Syntaks: while (condition) do1; do2;... Eksempel:
TDT4105 Informasjonsteknologi, grunnkurs. Introduksjon til programmering i Matlab. Rune Sætre / Anders Christensen {satre, anders}@idi.ntnu.
1 TDT4105 Informasjonsteknologi, grunnkurs Introduksjon til programmering i Matlab Rune Sætre / Anders Christensen {satre, anders}@idi.ntnu.no 2 Frist for øving 1: Fredag 11. Sept. Noen oppstartsproblemer
TDT4110 Informasjonsteknologi grunnkurs: Tema: Funksjoner med retur og moduler Utgave 3: Kap
1 av 44 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Tema: Funksjoner med retur og moduler Utgave 3: Kap. 5.7-5.10 Terje Rydland - IDI/NTNU 2 av 44 Læringsmål og pensum Mål Beherske
Løsningsforslag ukeoppg. 9: 19. - 25. okt (INF1000 - Høst 2011)
Løsningsforslag ukeoppg. 9: 19. - 25. okt (INF1000 - Høst 2011) HashMap, innstikksortering, javadoc (kap. 9.1-9.11, m.m. i "Rett på Java" 3. utg.) NB! Legg merke til at disse er løsningsforslag. Løsningene
Øvingsforelesning 5 Python (TDT4110)
Øvingsforelesning 5 Python (TDT4110) Repetisjon av løkker og funksjoner Ole-Magnus Pedersen Oversikt Praktisk Info Gjennomgang av Øving 3 Repetisjon 2 Praktisk info Prosjekter i PyCharm må startes med
Håndtere mange verdier
Håndtere mange verdier Lister, mengder og ordbøker. Samt et lite frempek om objekter og tjenester. IN1000, uke3 Geir Kjetil Sandve Hva vi har lært så langt Variabler Hvordan uttrykk evaluerer til verdier
TDT4110 IT Grunnkurs Høst 2016
TDT4110 IT Grunnkurs Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Auditorieøving 1 Vennligst fyll ut følgende informasjon i blokkbokstaver
Maps og Hashing. INF Algoritmer og datastrukturer. Map - ADT. Map vs Array
Maps og Hashing INF0 - Algoritmer og datastrukturer HØSTEN 00 Institutt for informatikk, Universitetet i Oslo INF0, forelesning : Maps og Hashing Map - Abstrakt Data Type (kapittel.) Hash-funksjoner (kapittel..)
Læringsmål og pensum. Intro til returverdifunksjoner: Generering av tilfeldige tall 27/09/16
1 TDT4110 Informasjonsteknologi grunnkurs: Tema: Funksjoner med retur og moduler - 3rd edition: Kapittel 5.7-5.10 Professor Alf Inge Wang 2 Læringsmål og pensum Mål Beherske returverdier og returverdifunksjoner
TDT4110 IT Grunnkurs Høst 2014
TDT4110 IT Grunnkurs Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Øving 9 Alle teorispørsmål skal besvares og begrunnes. Alle oppgavene skal
Læringsmål og pensum. Algoritmeeffektivitet
1 TDT4110 Informasjonsteknologi grunnkurs: Tema: Algoritmer i praksis Professor Alf Inge Wang 2 Læringsmål og pensum Mål Lære å forstå og kunne programmere algoritmer for søk og sortering. Lære å forstå
TDT4110 Informasjonsteknologi grunnkurs: Tema: Algoritmer i praksis. Professor Alf Inge Wang
1 TDT4110 Informasjonsteknologi grunnkurs: Tema: Algoritmer i praksis Professor Alf Inge Wang 2 Læringsmål og pensum Mål Lære å forstå og kunne programmere algoritmer for søk og sortering. Lære å forstå
Ta inn og ut av 2D-array. Java 6. Liste over ulike verdier i 2D-array. Det ferdige programmet. Vi skal lage et program som illustrerer hvordan man
Eksempel med to-dimensjonal array Filbehandling Tekster Ole Christian Lingjærde Gruppen for bioinformatikk Institutt for informatikk Universitetet i Oslo Java 6 Vi skal lage et program som illustrerer
Oblig 4 (av 4) INF1000, høsten 2012 Værdata, leveres innen 9. nov. kl. 23.59
Oblig 4 (av 4) INF1000, høsten 2012 Værdata, leveres innen 9. nov. kl. 23.59 Formål Formålet med denne oppgaven er å gi trening i hele pensum og i å lage et større program. Løsningen du lager skal være
Øvingsforelesning 5 Python (TDT4110)
Øvingsforelesning 5 Python (TDT4110) Repetisjon av løkker og funksjoner Ole-Magnus Pedersen Oversikt Praktisk Info Gjennomgang av Øving 3 Repetisjon 2 Praktisk info Prosjekter i PyCharm må startes med
INF2220: Forelesning 3. Map og hashing Abstrakte datatyper (kapittel 3.1) Map (kapittel 4.8) Hashing (kapittel 5)
INF2220: Forelesning 3 Map og hashing Abstrakte datatyper (kapittel 3.1) Map (kapittel 4.8) Hashing (kapittel 5) Map og hashing Ett minutt for deg selv: Hva vet du om maps/dictionarys og hashing fra tidligere?
TDT4110 Informasjonsteknologi grunnkurs: Tema: Mer om strenger Utgave 3: Kap. 8
1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Tema: Mer om strenger Utgave 3: Kap. 8 Terje Rydland - IDI/NTNU 2 Læringsmål og pensum Mål Lære om Slicing av lister 2-dimensjonale
Øvingsforelesning 6 i Python (TDT4110)
Øvingsforelesning 6 i Python (TDT4110) Lister Ole-Magnus Pedersen Oversikt Praktisk Info Gjennomgang av Øving 3 Programmering til Øving 6 2 Praktisk info Prosjekter i PyCharm må startes med Python 3.x
TDT4102 Prosedyreog objektorientert programmering Vår 2016
Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap TDT4102 Prosedyreog objektorientert programmering Vår 2016 Øving 4 Frist: 2016-02-12 Mål for denne øvingen:
Løsningsforslag Kontinuasjonseksamen i TDT4110 Informasjonsteknologi - grunnkurs
Side 1 av 7 Institutt for datateknikk og informasjonsvitenskap Løsningsforslag Kontinuasjonseksamen i TDT4110 Informasjonsteknologi - grunnkurs Eksamensdato: 2017-08-XX Oppgave 1: Flervalgsoppgave (25%)
TDT4102 Prosedyre og Objektorientert programmering Vår 2014
Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap TDT4102 Prosedyre og Objektorientert programmering Vår 2014 Øving 10 Frist: 2014-04-11 Mål for denne øvinga:
Hva er en algoritme? Har allerede sett på mange algoritmer til nå i IT1101. Forholdet mellom en algoritme og et program. Algoritme program prosess
IT1101 Informatikk basisfag, dobbeltime 2/10 Hva er en algoritme? Fremgangsmåte for noe Hittil: Datarepresentasjon Datamanipulasjon Datamaskinarkutektur hvordan maskinen jobber Operativsystem Program som
Ordliste. Obligatorisk oppgave 1 - Inf 1020
Ordliste. Obligatorisk oppgave 1 - Inf 1020 I denne oppgaven skal vi tenke oss at vi vil holde et register over alle norske ord (med alle bøyninger), og at vi skal lage operasjoner som kan brukes til f.
TDT4110 Informasjonsteknologi grunnkurs: Tema: Funksjoner med retur og moduler. - 3rd edition: Kapittel Professor Alf Inge Wang
1 TDT4110 Informasjonsteknologi grunnkurs: Tema: Funksjoner med retur og moduler - 3rd edition: Kapittel 5.7-5.10 Professor Alf Inge Wang 2 Læringsmål og pensum Mål Beherske returverdier og returverdifunksjoner
Forelesningsquiz. Forelesning inf1000 - Java 5. Sett dere to (eller tre) sammen og besvar de fire spørsmålene på utdelt ark. Tid: 15 min.
Forelesning inf1000 - Java 5 Forelesningsquiz Tema: En liten quiz (se utdelt ark) Filbehandling Tekster Ole Christian Lingjærde, 19. september 2012 Sett dere to (eller tre) sammen og besvar de fire spørsmålene
INF2220: Forelesning 3
INF2220: Forelesning 3 Map og hashing Abstrakte datatyper (kapittel 3.1) Map (kapittel 4.8) Hashing (kapittel 5) ABSTRAKTE DATATYPER 2 Abstrakte datatyper En ADT består av: Et sett med objekter. Spesifikasjon
Python: Variable og beregninger, innlesing fra tastatur utskrift til skjerm. TDT4110 IT Grunnkurs Professor Guttorm Sindre
Python: Variable og beregninger, innlesing fra tastatur utskrift til skjerm TDT4110 IT Grunnkurs Professor Guttorm Sindre Python, pensum og ikke Vi trenger å Støttes av Hente data fra bruker Vise data
Python: Funksjoner og moduler Kapittel
Python: Funksjoner og moduler Kapittel 5.7-5.10 TDT4110 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål Kunne lage og kalle funksjoner med returverdi Bruke bibliotek i Python, f.eks random
En oppsummering (og litt som står igjen)
En oppsummering (og litt som står igjen) Pensumoversikt Hovedtanker i kurset Selvmodifiserende kode Overflyt Eksamen En oppsummering Oppsummering Pensum læreboken til og med kapittel 7 forelesningene de
INF Algoritmer og datastrukturer
INF2220 - Algoritmer og datastrukturer HØSTEN 2009 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 3: Maps og Hashing Bjarne Holen (Ifi, UiO) INF2220 H2009, forelesning 3 1 / 25 Maps
Maps og Hashing. INF Algoritmer og datastrukturer. Map - ADT. Map vs Array
Maps og Hashing INF0 - Algoritmer og datastrukturer HØSTEN 00 Institutt for informatikk, Universitetet i Oslo INF0, forelesning : Maps og Hashing Map - Abstrakt Data Type Hash-funksjoner hashcode Kollisjonshåndtering
Innhold uke 9. Objektorientert programmering i Python. Om ukens pensum. Referanser og objekter Tema: Mer komplekse strukturer
Objektorientert programmering i Python IN1000 Høst 2017 uke 9 Siri Moe Jensen Innhold uke 9 Tema: Mer komplekse strukturer Referanser versus objekter Referanser mellom objekter Lister av objekter inkl
TDT4110 Informasjonsteknologi grunnkurs: Uke 48 Oppsummering/Spørretime. Professor Alf Inge Wang
1 TDT4110 Informasjonsteknologi grunnkurs: Uke 48 Oppsummering/Spørretime Professor Alf Inge Wang 2 Tar kun ca 5 minutter! HUSK EVALUERE FAGET PÅ IT S LEARNING INNEN 7.DES! 3 Oversikt Pensum Opplysninger
Shellscripting I. Innhold
Avdeling for informatikk og e-læring, Høgskolen i Sør-Trøndelag Shellscripting I Tor Halsan 19.08.2010 Lærestoffet er utviklet for faget LN199D Scripting av Servere Resymé: Leksjonen er første innføring
TDT4110 IT Grunnkurs Høst 2012
TDT4110 IT Grunnkurs Høst 2012 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Øving 9 Alle teorispørsmål skal besvares og begrunnes. Alle oppgavene skal
23.09.2015. Introduksjon til objektorientert. programmering. Hva skjedde ~1967? Lokale (og globale) helter. Grunnkurs i objektorientert.
Grunnkurs i objektorientert programmering Introduksjon til objektorientert programmering INF1000 Høst 2015 Siri Moe Jensen INF1000 - Høst 2015 uke 5 1 Siri Moe Jensen INF1000 - Høst 2015 uke 5 2 Kristen
Løse reelle problemer
Løse reelle problemer Litt mer om løkker, prosedyrer, funksjoner, tekst og innlesing fra fil INF1000, uke4 Geir Kjetil Sandve 1 Tilbakeblikk Dere bør nå beherske det sentrale fra uke 1 og 2: Uttrykk, typer,
TDT4110 IT Grunnkurs Høst 2014
TDT4110 IT Grunnkurs Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Auditorieøving 1 Navn: Linje: Brukernavn (blokkbokstaver): Oppgavesettet
TDT4110 IT Grunnkurs Høst 2016
TDT4110 IT Grunnkurs Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Løsningsforslag til Auditorieøving 1 1 Teori 1. Hvilket tall kan IKKE lagres
Kondisjonstest. Algoritmer og datastrukturer. Python-oppgaver. Onsdag 6. oktober Her er noen repetisjonsoppgaver i Python.
Algoritmer og datastrukturer Kondisjonstest Python-oppgaver Onsdag 6. oktober 2004 Her er noen repetisjonsoppgaver i Python. Som alltid er den beste måten å lære å programmere på å sette seg ned og programmere
INF1800 LOGIKK OG BEREGNBARHET
INF1800 LOGIKK OG BEREGNBARHET FORELESNING 2: MENGDELÆRE Roger Antonsen Institutt for informatikk Universitetet i Oslo 20. august 2008 (Sist oppdatert: 2008-09-03 12:36) Mengdelære Læreboken Det meste