To-utvalgstest (def 8.1) vs ettutvalgstest: Hypotesetesting, to utvalg (Kapitel 8) Longitudinell studie (oppfølgingsstudie) - eqn 8.1. Eksempel 8.

Størrelse: px
Begynne med side:

Download "To-utvalgstest (def 8.1) vs ettutvalgstest: Hypotesetesting, to utvalg (Kapitel 8) Longitudinell studie (oppfølgingsstudie) - eqn 8.1. Eksempel 8."

Transkript

1 Hypotesetestig, to utvalg (Kapitel 8) Medisisk statistikk 009 To-utvalgstest (def 8.) vs ettutvalgstest: To-utvalgstest: Sammelike de uderliggede parameter for to forskjellige grupper, hvor verdiee i begge gruppee er ukjet. Ett-utvalgstest: Sammelike de uderliggede parameter i e gruppe med e kjet verdi (f.eks 0 eller et kjet befolkigsgjeomsitt) Eksempel 8. Er det e sammeheg mellom bruk av p- pille og blodtrykk? Flere studiedesig er mulige 3 Logitudiell studie (oppfølgigsstudie) - eq 8. Idetifiser e gruppe ikke-gravide kvier i fruktbar alder, som ikke bruker p-pille. Mål blodtrykk (baselie) Etter år: Idetifiser e studiegruppe som ikke har vært gravide i periode, og som å bruker p-pille. Mål blodtrykk i studiegruppe. Sammelike verdiee ved år og baselie 4 Tverrsittsstudie (cross-sectioal study) - eq 8. Idetifiser e gruppe som bruker, og e gruppe som ikke bruker, p-pille blat ikkegravide kvier i fruktbar alder Sammelike blodtrykk mellom de to gruppee Matchede par (Eks 8.6) Er det forskjellig fertilitet for p-pille brukere og pessar-brukere? Gruppe består av 0 p-pille brukere. For hver kvie i gruppe idetifiseres e pessar-bruker med samme alder (ie 5 år), rase, paritet, sosio-økoomisk status. Registrere tid til graviditet. 5 6

2 Parede versus uavhegige utvalg - forskjellig metode To utvalg er paret hvis hver observasjo i første utvalg er relatert til e bestemt observasjo i adre utvalg (f.eks logitudiell studie eller matchede par) To utvalg er uavhegige hvis observasjoee i første utvalg ikke er relatert til observasjoee i adre utvalg (f.eks tverrsittsstudie) Matchede par. Eksempel fra Box, Huter & Huter: Statistics for Experimeters d ed. (005) 7 8 Paret t-test eller kofidesitervall: For hvert par av observasjoer, reg ut differase d = x -x Forvetet differase er Δ =E(D) H 0 : Δ =0 mot H : Δ 0 (evt >0 eller <0) Gjeomfør e ett-utvalgs t-test eller bereg kofidesitervall for Δ basert på differasee d, d,, d Repetisjo: Hvis X, X,..., X er uavhegige N( μσ, ): X μ Da er Z = ~ N(0,). σ / Hvis σ er ukjet brukes S = ( Xi X) = Xi X i= i= X μ Da er T = ~ t S/ Z eller T brukes til å sette opp e hypotesetest eller kofidesitervall for μ. Hvis er stor så er T tilærmet N( μσ, ) 9 0 Eksempel 8.5 (Tabell 8.) =0, d = 4.80, s =0.85=4.566 Tosidig test, t=3.3 Fier 0.00 < p < 0.0 vha Tabell 5 i Appedix EXCEL: =TDIST(3,3;9;) gir verdie p=

3 95% kofidesitervall for Δ: d t s, α / / / 0 = t-test og kofidesitervall for to uavhegige utvalg observasjoer, atas uavh. N(μ, σ ) observasjoer, atas uavh. N(μ, σ ) H 0 : μ = μ mot H : μ μ Ekvivalet: H 0 : μ -μ =0 mot H : μ - μ 0 Atar foreløpig lik varias, σ = σ = σ dvs.53 til 8.07 (mmhg) 3 4 Estimator for μ μ: X X ( μ μ ) ~ 0, σ σ Altså: N ( ) Hvis σ σ σ σ σ X X ~ N μ μ, X X ( μ μ ) ~ 0, σ = = så er N ( ) Me σ er ukjet og estimeres ved pooled estimate of the variace : S = ( Xi X) ( Xi X ) i= i= = S S Vi bruker at X X ( μ μ) ~ t S 5 6 Eks 8.9 Cardiovascular Disease, Hypertesio Suppose a sample of eight 35- to 39-year-old opregat, premeopausal OC users who work i a compay are idetified who have mea systolic blood pressure of 3.86 mm Hg ad sample stadard deviatio of 5.34 mm Hg. A sample of twety-oe 35- to 39 year-old opregat, premeopausal o-oc users are similarly idetified who have mea systolic blood pressure of 7.44 mm Hg ad sample stadard deviatio of 8.3 mm Hg. What ca be said about the uderlyig mea differece i blood pressure betwee the two groups? Eks 8.0 lik varias =8, x =3.86, s =5.34 =, x =7.44, s =8.3 H 0: μ -μ =0 7 0 x x = 5.4, s = = = ( 0) t = = Frihetsgrader: 8-=7, forhast H 0 på 5% ivå hvis 0.74 >.05 P-verdi f.eks EXCEL TFORDELING(0,74;7;)=

4 Eks 8. Lik varias 95% kofidesitervall Pr( t T t) = α, hvor t = t =.05 X X ( μ μ) t t S, α / to uavhegige utvalg, ulik varias observasjoer, atas uavh. N(μ, σ ) observasjoer, atas uavh. N(μ, σ ) H 0 : μ = μ mot H : μ μ Ulik varias, σ σ løser mhp μ μ : 9.5 μ μ To utvalg, σ σ : Vi bruker Satterthwaite s metode : Eks 8. (utvidet) Ulik varias X X ( μ μ) ~ t d ' S S tilærmet, t = x x = 0.8 s s hvor atall frihetsgrader d bereges ut fra,s,,s. ( S / S / ) d ' = ( S / ) /( ) ( S / ) /( ) d' = 5.04 ( d'' = 5) p verdi = 0.43 to uavhegige utvalg, test for ulik varias observasjoer, atas uavh. N(μ, σ ) observasjoer, atas uavh. N(μ, σ ) H 0 : σ = σ mot H : σ σ Ekvivalet: H 0 : σ /σ = mot H : σ /σ Forkast H 0 hvis S /S avviker mye fra Uder H 0 : S /S F -, - (Fisherfordelt med - og - frihetsgrader) SPSS bruker Levee s test i stede for Fisher s test 3 Eksempel 8.6 F = S /S = 8.3 /5.34 =.4 Forkast H 0 : σ /σ = på ivå α=0.05 hvis F > F 0,7,0.975 = 4.47 (FINV(0,05;0;7) i EXCEL) eller F< F 0,7, = 0.33 (FINV(0,975;0;7) i EXCEL) Alterativt: p-verdi = * = 0.67 (FDIST(,4;0;7)) Koklusjo: Vi forkaster ikke H 0 4 4

5 Equatio 8.4 Nedre p-persetil i e F-fordelig med d og d frihetsgrader er de iverse av de øvre p-persetile i e F-fordelig med d og d frihetsgrader: F = / F d, d, p d, d, p Roser, Figure 8.0 Strategy for testig the equality of meas i two idepedet, ormally distributed samples Sigificat Perform F test for the equality of two variaces i Equatio 8.5 Not sigificat (Nyttig hvis tabelle bare iholder øvre persetiler) Perform t test assumig uequal variaces i Equatio 8. Perform t test assumig equal variaces i Equatio MEN: Navidi: Statistics for Egieers ad Scietists, 006, page : Do t Assume the Populatio Variaces are Equal Just Because the Sample Variaces are Close 7 the expressio assumig equal variaces requires that the populatio variaces be equal, or early so. I situatios where the sample variaces are early equal, it is temptig to assume that the populatio variaces are early equal as well. However, whe the sample sizes are small, the sample variaces are ot ecessarily good approximatios to the populatio variaces. Thus it is possible that the sample variaces be close eve whe the populatio variaces are fairly far apart. I geeral, populatio variaces should be assumed equal oly whe there is kowledge about the processes that produced the data that justifies this assumptio. 8 the expressio ot assumig equal variaces produces good results i almost all cases, whether the populatio variaces are equal or ot. (Exceptios ca occur whe the sample sizes are very differet.) Therefore, whe i doubt, use the expressio ot assumig equal variaces. Altså: t-test eller kofidesitervall for differase mellom forvetigsverdee i to uavhegige, ormalfordelte utvalg Du atar lik varias (eq 8.) ulik varias (eq 8.) Virkelig lik varias ulik varias korrekt gir feil svar tilærmet samme svar som ovefor korrekt 9 Altså: Velg t-test for ulik varias, eller e ikke-parametrisk metode, hvis du er i tvil! 30 5

6 Percet Percet Hvis data ikke er ormalfordelt: 30% Ma Kvie t-tester fugerer brukbart ved begreset variasjo i data t-tester er ubrukelige hvis mage sterkt avvikede verdier ( outliers ). Ikke-parametriske metoder er brukbare uasett. F-teste for sammelikig av varias er lite robust mot avvik fra ormalfordelige. 0% 0% 0% 5,00 0,00 5,00 30,00 35,00 5,00 0,00 5,00 30,00 35,00 bmi bmi Nær ormalfordelig - t-test er bra Kvier 0-5 år Kvier år 5% 40 0% 30 5% 0 0% 0 geder 5% Percet 0 - ot at all - a little 3 - partly 4 - very much female male -0,00-5,00 0,00 5,00 gsfer -0,00-5,00 0,00 5,00 gsfer do you feel depressed? Begreset variasjo i data. T-test er brukbar - eller bruk ikke-parametriske metoder 33 T-test er ubrukelig - beytt ikke-parametriske metoder

7 Kosetrasjo av serum IgM (g/l) hos 98 friske bar, 6 md - 6 år gamle (Altma, 99)

Deskriptiv statistikk for sentrum og spredning i fordelingen. Gjennomsnitt og standardavvik. eller

Deskriptiv statistikk for sentrum og spredning i fordelingen. Gjennomsnitt og standardavvik. eller Eksempel : tall dager i sykehus. Ikke-parametriske tester versus parametriske tester Stia Lyderse Presetert på Regioal forskigskoferase for psykiatri og rusfeltet Ålesud 4 jui 03 Behadlig : 6, 5, 37,,

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Oppgave Midtveiseksame a) X er e stokastisk variabel

Detaljer

Estimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting

Estimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting 3 Estimerig og hypotesetestig Kapittel 10 Ett- og toutvalgs hypotesetestig TMA445 V007: Eirik Mo Feome Bilkjørig Høyde til studeter Estimator ˆp = X, X atall ˆµ = X gjeomsittlig høyde. som syes de er flikere

Detaljer

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering Eco 130 uke 15 (HG) Poissofordelige og iførig i estimerig 1 Poissofordelige (i) Tilærmig til biomialfordelige. Regel. ( Poissotilærmelse ) Ata Y ~ bi(, p) E( Y ) = p og var( Y ) = p(1 p). Hvis er stor

Detaljer

Innhold. Eksempel: Fig. 5.16a. Kovarians. Medisinsk statistikk Del II Forelesning 25 februar 2009 Korrelasjon. Korrelasjon

Innhold. Eksempel: Fig. 5.16a. Kovarians. Medisinsk statistikk Del II Forelesning 25 februar 2009 Korrelasjon. Korrelasjon Medisisk statistikk Del II Forelesig 25 februar 2009 Korrelasjo av Stia Lyderse og Eirik Skogvoll Ihold Kovarias og korrelasjo (5.6.) Pearso s r (.7) T-test og z-test for korrelasjoskoeffisiet (.8) Kofidesitervall

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5 ÅMA110 Sasylighetsregig med statistikk, våre 2010 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 12. april Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 59

Detaljer

Hypotesetesting, del 4

Hypotesetesting, del 4 Oversikt, del 4 t-fordelig t-test t-itervall Del 5 Kofidesitervall vs. test p-verdi t-fordelig Rett på defiisjo: Utgagspuktet er målemodelle med ormalatakelse: X 1,...,X,u.i.f.tilf.var.derX i Nμ, σ 2 ).La

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 4. Hypotesetesting, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 4. Hypotesetesting, del 4 ÅMA11 Sasylighetsregig med statistikk, våre 27 Kp. 6, del 4 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 19. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 27 Bjør

Detaljer

Estimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting

Estimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting 3 Estimerig og hypotesetestig Kapittel 10 Ett- og toutvalgs hypotesetestig TMA4240 H2006: Eirik Mo Feome Bilkjørig Høyde til studeter Estimator ˆp = X, X atall ˆµ = X gjeomsittlig høyde. som syes de er

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 ÅMA110 Sasylighetsregig med statistikk, våre 2006 Kp. 6, del 2 Bjør H. Auestad Kp. 6: Hypotesetesig del 2 1/ 38 Bjør H. Auestad Kp. 6: Hypotesetesig del 2 2/ 38 Oversikt 1. Hva er hypotesetestig? 2. Hypotesetestig

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 5. Hypotesetesting, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 5. Hypotesetesting, del 5 ÅMA11 Sasylighetsregig med statistikk, våre 7 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 26. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 59 Bjør

Detaljer

KLMED8004 Medisinsk statistikk. Del I, høst Estimering. Tidligere sett på. Eksempel hypertensjon

KLMED8004 Medisinsk statistikk. Del I, høst Estimering. Tidligere sett på. Eksempel hypertensjon Tidligere sett på KLMED8004 Medisisk statistikk Del I, høst 008 Estimerig Hvorda kjete sasylighetsfordeliger (biomialfordelig, ormalfordelig) med kjete populasjosparametrer (forvetig, varias osv.) ka gi

Detaljer

MOT310 Statistiske metoder 1, høsten 2012

MOT310 Statistiske metoder 1, høsten 2012 MOT310 Statistiske metoder 1, høste 2012 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 20. august, 2012 Bjør H. Auestad Itroduksjo og repetisjo 1 / 57 Iformasjo Litt om

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 ÅMA Sasylighetsregig med statistikk, våre 27 Kp. 6 (kp. 6) Tre deler av faget/kurset:. Beskrivede statistikk 2. Sasylighetsteori, sasylighetsregig 3. Statistisk iferes estimerig kofidesitervall hypotesetestig

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Høst 205 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer, blokk II Løsigsskisse Oppgave a) X bi(, p) fordi: Udersøker uavhegige delar av DNA-strukture. Fi for kvar del

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA440 Statistikk H00 9.8: To uvalg (siste del) 9.9: Parvise observasjoer 9.0-9.: Adelser 9.: Varias Mette Lagaas Foreleses oag 0.oktober, 00 Norske hoppdommere og Jae Ahoe Jae Ahoe er e fisk skihopper,

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL. desember 8 EKSAMEN I MATEMATIKK, Utsatt røve Modul 5 studieoeg Tid: 5 timer Ogavesettet er å sider (ikludert formelsamlig).

Detaljer

Løsningsforslag andre obligatoriske oppgave i STK 1110 høsten 2014

Løsningsforslag andre obligatoriske oppgave i STK 1110 høsten 2014 Løsigsforslag adre obligatoriske oppgave i STK 1110 høste 2014 Oppgave 1 Vi har 10 måliger av kroppstemperatur for friske kvier x 1,x 2,...,x 10 og 10 måliger for friske me y 1,y 2,...,y 10 a) Vi lager

Detaljer

LØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005

LØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 8 LØSNINGSFORSLAG TILEKSAMEN I FAG TMA440/TMA445 STATISTIKK 0. august 005 Oppgave Smeltepuktsbestemmelse a) Vi jobber i dette

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 20. mai 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 20. mai 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL. mai 8 EKSAMEN I MATEMATIKK Modul 5 studieoeg Tid: 5 timer Ogavesettet er å sider (ikludert formelsamlig). Hjelemidler:

Detaljer

Eksempler fra slutten av forrige uke. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke

Eksempler fra slutten av forrige uke. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke Oversikt, del 5 Hypotesetestig, del 4 (oppsummerig fra Hypotesetestig, del 5 Kofidesitervall dimesjoerig Eksempler fra slutte av forrige uke Kofidesitervall p-verdi Eksempler Eksempler (styrke, dimesjoerig,...

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 5 Estimering. Målemodellen.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 5 Estimering. Målemodellen. ÅMA0 Sasylighetsregig med statistikk, våre 0 Kp. 5 Estimerig. Målemodelle. Estimerig. Målemodelle. Ihold:. (Pukt)Estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.). (Pukt)Estimerig i målemodelle

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 asylighetsregig med statistikk våre 011 Kp. 5 Estimerig 1 Estimerig. Målemodelle. Ihold: 1. (ukt)estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (ukt)estimerig i målemodelle (kp.

Detaljer

Konfidensintervall. Notat til STK1110. Ørnulf Borgan, Ingrid K. Glad og Anders Rygh Swensen Matematisk institutt, Universitetet i Oslo.

Konfidensintervall. Notat til STK1110. Ørnulf Borgan, Ingrid K. Glad og Anders Rygh Swensen Matematisk institutt, Universitetet i Oslo. Kofidesitervall Notat til STK1110 Ørulf Borga, Igrid K. Glad og Aders Rygh Swese Matematisk istitutt, Uiversitetet i Oslo August 2007 Formål E valig metode for å agi usikkerhete til et estimat er å berege

Detaljer

Gir vi de resterende 2 oppgavene til én prosess vil alle sitte å vente på de to potensielt tidskrevende prosessene.

Gir vi de resterende 2 oppgavene til én prosess vil alle sitte å vente på de to potensielt tidskrevende prosessene. Figure over viser 5 arbeidsoppgaver som hver tar 0 miutter å utføre av e arbeider. (E oppgave ka ku utføres av é arbeider.) Hver pil i figure betyr at oppgave som blir pekt på ikke ka starte før oppgave

Detaljer

Innhold: 4.1 Sannsynlighetsfordeling (for tellevariabler) Læringsmål statistikk (3 og 7 januar 2013) Eksempel - postoperativ kvalme

Innhold: 4.1 Sannsynlighetsfordeling (for tellevariabler) Læringsmål statistikk (3 og 7 januar 2013) Eksempel - postoperativ kvalme Medisisk statistikk, termi IC av Stia Lyderse, professor i medisisk statistikk Regioalt kuskapsseter for bar og uge - Psykisk helse og barever (RKBU Midt-Norge Forelesig 7 jauar 03 Oppdatert 7 jauar 03

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksame i: ECON30 Statistikk Exam: ECON30 Statistics UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamesdag: Tirsdag. jui 00 Sesur kugjøres: Tirsdag 5. jui, ca. 6.00 Date of exam: Tuesday, Jue, 00 Grades will

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 2 Løsigsskisse Oppgave a Miste kvadraters metode tilpasser e lije til puktee ved å velge de lija som miimerer kvadratsumme

Detaljer

8 (inkludert forsiden og formelsamling) Tegne- og skrivesaker, kalkulator, formelsamling (se vedlagt).

8 (inkludert forsiden og formelsamling) Tegne- og skrivesaker, kalkulator, formelsamling (se vedlagt). Eksamesoppgave våre 011 Ordiær eksame Bokmål Fag: Matematikk Eksamesdato: 10.06.011 Studium/klasse: GLU 5-10 Emekode: MGK00 Eksamesform: Skriftlig Atall sider: 8 (ikludert forside og formelsamlig) Eksamestid:

Detaljer

Kap. 9: Inferens om én populasjon

Kap. 9: Inferens om én populasjon 2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)

Detaljer

Oppgaver fra boka: X 2 X n 1

Oppgaver fra boka: X 2 X n 1 MOT30 Statistiske metoder, høste 00 Løsiger til regeøvig r 3 (s ) Oppgaver fra boka: 94 (99:7) X,, X uif N(µ, σ ) og X,, X uif N(µ, σ ) og alle variable er uavhegige Atar videre at σ = σ = σ og ukjet Kodesitervall

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004 Oppgave Foruresig X er e stokastisk variabel som agir

Detaljer

LØSNING, EKSAMEN I STATISTIKK, TMA4240, DESEMBER Anta at sann porøsitet er r. Måling med utstyret gir da X n(x; r, 0,03).

LØSNING, EKSAMEN I STATISTIKK, TMA4240, DESEMBER Anta at sann porøsitet er r. Måling med utstyret gir da X n(x; r, 0,03). LØSNING, EKSAMEN I STATISTIKK, TMA440, DESEMBER 006 OPPGAVE 1 Ata at sa porøsitet er r. Målig med utstyret gir da X (x; r, 0,03). a) ( ) X r P(X > r) P 0,03 > 0 P(Z > 0) 0,5. ( X r P(X r > 0,05) P 0,03

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 2

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 2 ÅMA11 Sasylighetsregig med statistikk, våre 27 Kp. 6, del 2 Bjør H. Auestad Istitutt for matematikk og aturviteskap 5. mars 21 Bjør H. Auestad Kp. 6: del 1/2 1/ 42 Bjør H. Auestad Kp. 6: del 1/2 2/ 42

Detaljer

Løsningsforslag til eksamen i STK desember 2010

Løsningsforslag til eksamen i STK desember 2010 Løsigsforslag til eksame i STK0 0. desember 200 Løsigsforslaget har med flere detaljer e det vil bli krevd til eksame. Oppgave a Det er tilpasset e multippel lieær regresjosmodell av forme β 0 + β x i

Detaljer

Kap. 9: Inferens om én populasjon

Kap. 9: Inferens om én populasjon 2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)

Detaljer

2. Hypotesetesting i ulike sitausjoner: i. for forventingen, μ, i målemodellen med normalantakelse og kjent varians, σ 2.

2. Hypotesetesting i ulike sitausjoner: i. for forventingen, μ, i målemodellen med normalantakelse og kjent varians, σ 2. Oversikt 1. Hva er hypotesetestig? 2. i ulike sitausjoer: i. for forvetige, μ, med ormalatakelse og kjet varias, σ 2. ii. for forvetige, μ, med stor og ormaltilærmig (variase, σ 2, ukjet). iii. for suksessasylighete,

Detaljer

Løsningsforslag ST2301 øving 3

Løsningsforslag ST2301 øving 3 Løsigsforslag ST2301 øvig 3 Kapittel 1 Exercise 11 Et utvalg på 100 idivider trekkes fra e populasjo med tilfeldig parrig. Det ble observert AA 63 idivider av geotype AA, Aa 27, og aa 10. Lag et 95 % kofidesitervall

Detaljer

Hypotesetesting, del 5

Hypotesetesting, del 5 Oversikt, del 5 Kofidesitervall p-verdi Kofidesitervall E (tosidig test ka gjeomføres vha. av et kofidesitervall. For eksempel, dersom vi i målemodell 1 vil teste: H 0 : μ = μ 0 mot H 1 : μ μ 0, ka vi

Detaljer

3MX 2007/8 - Kapittel 5: 8. januar 5. februar 2008

3MX 2007/8 - Kapittel 5: 8. januar 5. februar 2008 3MX 00/8 - Kapittel : 8. jauar. februar 008 Pla for skoleåret 00/008: Kapittel 6: 6/ /. Kapittel : / /3. Prøver på eller skoletime etter hvert kapittel. É heildagsprøve i hver termi. Repetisjo, prøver,

Detaljer

Econ 2130 Forelesning uke 11 (HG)

Econ 2130 Forelesning uke 11 (HG) Eco 130 Forelesig uke 11 (HG) Mer om ormalfordelige og setralgreseteoremet Uke 1 1 Fra forrige gag ~ betyr er fordelt som. ~ N( µσ, ) E( ) = µ, og var( ) = σ Normalfordelige er symmetrisk om μ og kotiuerlig

Detaljer

Oversikt, del 5. Vi har sett på styrkefunksjon for ensidige tester. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke

Oversikt, del 5. Vi har sett på styrkefunksjon for ensidige tester. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke Hypotesetestig, del 4 oppsummerig fra Hypotesetestig, del 5 Kofidesitervall dimesjoerig Oversikt, del 5 Eksempler fra slutte av forrige uke Kofidesitervall p-verdi Eksempler Eksempler styrke, dimesjoerig,...

Detaljer

Modeller og parametre. STK Punktestimering - Kap 7. Eksempel støtfangere. Statistisk inferens. Binomisk fordeling. p X (x) = p x (1 p) n x

Modeller og parametre. STK Punktestimering - Kap 7. Eksempel støtfangere. Statistisk inferens. Binomisk fordeling. p X (x) = p x (1 p) n x STK1100 - Puktestimerig - Kap 7 Geir Storvik Modeller og parametre Biomisk fordelig ( ) p X (x) = p x (1 p) x x Parameter: p Normalfordelig f X (x) = 1 2πσ e 1 2σ 2 (x µ) 2 11. april 2016 Parametre: µ,

Detaljer

Estimering 2. -Konfidensintervall

Estimering 2. -Konfidensintervall Estimerig 2 -Kofidesitervall Dekkes av kap. 9.4-9.5, 9.10, 9.12 og forelesigsotatee. Dersom forsøket gjetas mage gager vil (1 α)100% av itervallee [ ˆΘ L, ˆΘ U ] ieholde de ukjete parametere θ (som er

Detaljer

Populasjon, utvalg og estimering

Populasjon, utvalg og estimering Populasjo, utvalg og estimerig (Notat til forelesig i estimerig, Kap. 6.) Populasjo og utvalg Med basalkuskap i sasylighetsregig og sasylighetsfordeliger er vi å i stad til å gå videre med statistisk iferes

Detaljer

Estimering 1 -Punktestimering

Estimering 1 -Punktestimering Estimerig 1 -Puktestimerig Dekkes av kap. 8, 9.1-9.3 og 9.15/9.14. Vi har til å settpå e rekke forskjellige sasylighetsfordeliger og sett hvorda disse ka brukes til å modellere mage forskjellige typer

Detaljer

TMA4245 Statistikk Vår 2015

TMA4245 Statistikk Vår 2015 TMA4245 Statistikk Vår 2015 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 12, blokk II Oppgave 1 Kari har ylig kjøpt seg e y bil. Nå øsker hu å udersøke biles besiforbruk

Detaljer

Estimering 1 -Punktestimering

Estimering 1 -Punktestimering Estimerig 1 -Puktestimerig Dekkes av kap. 8, 9.1-9.3 og 9.15/9.14. Vi har til å settpå e rekke forskjellige sasylighetsfordeliger og sett hvorda disse ka brukes til å modellere mage forskjellige typer

Detaljer

n 2 +1) hvis n er et partall.

n 2 +1) hvis n er et partall. TMA445 Statistikk Vår 04 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer, blokk II Oppgave Mediae til et datasett, X, er de midterste verdie. Hvis vi har stokastiske

Detaljer

Mer om utvalgsundersøkelser

Mer om utvalgsundersøkelser Mer om utvalgsudersøkelser I uderkapittel 3.6 i læreboka gir vi e kort iførig i takegage ved utvalgsudersøkelser. Vi gir her e grudigere framstillig av temaet. Populasjo og utvalg Ved e utvalgsudersøkelse

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable ÅMA Saslighetsregig med statistikk, våre K. 3 Diskrete tilfeldige variable Noe viktige saslighetsmodeller Noe viktige saslighetsmodeller ( Sas.modell : å betr det klasse/te sas.fordelig.) Biomisk modell

Detaljer

Oversikt over konfidensintervall i Econ 2130

Oversikt over konfidensintervall i Econ 2130 1 HG Revidert april 011 Oversikt over kofidesitervall i Eco 130 Merk at dee oversikte ikke er met å leses istedefor framstillige i Løvås, me som et supplemet. Løvås ieholder mage verdifulle kommetarer

Detaljer

Formler og regler i statistikk ifølge lærebok Gunnar Løvås: Statistikk for universiteter og høgskoler

Formler og regler i statistikk ifølge lærebok Gunnar Løvås: Statistikk for universiteter og høgskoler Formler og regler statstkk følge lærebok Guar Løvås: tatstkk for uversteter og høgskoler Kap. Hva er fakta om utvalget etralmål Meda: mdterste verd etter sorterg Modus: hyppgst forekommede verd Gjeomstt:

Detaljer

TMA4245 Statistikk Eksamen 9. desember 2013

TMA4245 Statistikk Eksamen 9. desember 2013 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA4245 Statistikk Eksame 9. desember 2013 Oppgave 1 I kortspillet Blackjack får ma de høyeste geviste hvis de to første kortee ma

Detaljer

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 29. mai 2007

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 29. mai 2007 Høgskole Telemark Avdelg for estetske fag, folkekultur og lærerutdag BOKMÅL 9. ma 7 EKSAMEN I MATEMATIKK, Modul 5 studepoeg Td: 5 tmer Hjelpemdler: Kalkulator og vedlagt formelsamlg (bakerst oppgavesettet).

Detaljer

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger Intro til hypotesetesting Analyse av kontinuerlige data 21. april 2005 Tron Anders Moger Seksjon for medisinsk statistikk, UIO 1 Repetisjon fra i går: Normalfordelingen Variasjon i målinger kan ofte beskrives

Detaljer

TMA4245 Statistikk. Øving nummer b5. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

TMA4245 Statistikk. Øving nummer b5. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b5 Oppgave 1 Eksame mai 2001, oppgave 1 av 4 Vi ser på kosetrasjoe av et giftstoff i havbue like utefor

Detaljer

Sammendrag i statistikk

Sammendrag i statistikk Sammedrag i statistikk Sammedrag Dette dokumetet er et sammedrag av pesum i faget ST0103 ved NTNU høste 2014. Notatet er derfor ikke tekt å være komplett eller spesielt grudig gjeomlest for feil, me det

Detaljer

Metoder for politiske meningsmålinger

Metoder for politiske meningsmålinger Metoder for politiske meigsmåliger AV FORSKER IB THOMSE STATISTISK SETRALBYRÅ Beregigsmetodee som brukes i de forskjellige politiske meigsmåliger har vært gjestad for mye diskusjo i dagspresse det siste

Detaljer

Hvorfor statistikk? Innhold (9 og 12 desember 2013): Litteratur. Læringsmål statistikk (9 og 12 desember 2013)

Hvorfor statistikk? Innhold (9 og 12 desember 2013): Litteratur. Læringsmål statistikk (9 og 12 desember 2013) Lærigsmål statistikk (9 og desember 3 Medisisk statistikk, termi IC av Stia Lyderse, professor i medisisk statistikk Regioalt kuskapsseter for bar og uge - Psykisk helse og barever (RKBU Midt-Norge Forelesig

Detaljer

11,7 12,4 12,8 12,9 13,3.

11,7 12,4 12,8 12,9 13,3. TMA4240 Statistikk Vår 2008 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b6 Oppgave 1 Eksame mai 2001, oppgave 1 av 4 Vi ser på kosetrasjoe av et giftstoff i havbue

Detaljer

H14 - Hjemmeeksamen i statistikk/ped sensurveiledning

H14 - Hjemmeeksamen i statistikk/ped sensurveiledning H14 - Hjemmeeksame i statistikk/ped3008 - sesurveiledig (teller 1/3 av edelig karakter) Dee oppgave bestr av tre deler: i del 1 skal du svare p 5 teorispørsml, i del 2 skal du gjeomføre oe sigifikastester

Detaljer

H T. Amundsen INNHOLD

H T. Amundsen INNHOLD Itere otater STATISTISK SENTRALBYRÅ. oktober 1980 KORRELASJONSKOEFFISIENTEN - ENDA ENGANG Av H T. Amudse INNHOLD 1. Iledig *****..... * 0 1. Produktmametkorrelasjoskoeffisiete og sammehege med lieær regresjo.

Detaljer

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE Eme: Statistikk Gruppe(r): Alle ( 2. årskull) Eksamesoppgav Atall sider (ikl. e består av: forside): 5 Tillatte hjelpemidler: Emekode: LO070A Dato: 11.06.2004

Detaljer

Påliteligheten til en stikkprøve

Påliteligheten til en stikkprøve Pålitelighete til e stikkprøve Om origiale... 1 Beskrivelse... 2 Oppgaver... 4 Løsigsforslag... 4 Didaktisk bakgru... 5 Om origiale "Zuverlässigkeit eier Stichprobe" på http://www.mathe-olie.at/galerie/wstat2/stichprobe/dee

Detaljer

Likningssystem for maksimum likelihood løsning

Likningssystem for maksimum likelihood løsning Maksimum likelihood metode Likigssystem for maksimum likelihood løsig Treig av klassifikator ute merket treigssett. Atakelser (i første omgag): Atall klasser c er kjet, ÁpriorisasyligheteeP(w i ), i =

Detaljer

LØSNING: Eksamen 28. mai 2015

LØSNING: Eksamen 28. mai 2015 LØSNING: Eksame 28. mai 2015 MAT110 Statistikk 1, vår 2015 Oppgave 1: revisjo ) a) Situasjoe som beskrives i oppgave ka modelleres med e ure. I dee ure er fordelige kjet, M atall bilag med feil og N 100

Detaljer

Forelesning 13 Analyser av gjennomsnittsverdier. Er inntektsfordelingen for kvinner og menn i EU-undersøkelsen lik?

Forelesning 13 Analyser av gjennomsnittsverdier. Er inntektsfordelingen for kvinner og menn i EU-undersøkelsen lik? 2 verdier Forelesning 13 Analyser av gjennomsnittsverdier Valg av type statistisk generalisering i bivariat analyse er avhengig av hvilke variabler vi har Avhengig variabel kategorivariabel kontinuerlig

Detaljer

Medisinsk statistikk, KLH3004 Dmf, NTNU 2009. Styrke- og utvalgsberegning

Medisinsk statistikk, KLH3004 Dmf, NTNU 2009. Styrke- og utvalgsberegning Styrke- og utvalgsberegning Geir Jacobsen, ISM Sample size and Power calculations The essential question in any trial/analysis: How many patients/persons/observations do I need? Sample size (an example)

Detaljer

Kapittel 7: Inferens for forventningerukjent standardavvik

Kapittel 7: Inferens for forventningerukjent standardavvik Kapittel 7: Inferens for forventningerukjent standardavvik 7.1: Inferens for forventningen i en populasjon 7.2: Inferens for å sammenligne to forventninger 7.1 Inferens for forventningen i en populasjon

Detaljer

Lineær regresjonsanalyse (13.4)

Lineær regresjonsanalyse (13.4) 2 Kap. 13: Lieær korrelasjos- og regresjosaalyse ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Kap. 13.1-13.3: Lieær korrelasjosaalyse. Disse avsitt er ikke pesum, me de lieære

Detaljer

Forventningsverdi. MAT0100V Sannsynlighetsregning og kombinatorikk

Forventningsverdi. MAT0100V Sannsynlighetsregning og kombinatorikk MAT0100V Sasylighetsregig og kombiatorikk Forvetigsverdi Sasylighetsfordelige til e tilfeldig variabel X gir sasylighete for de ulike verdiee X ka ata Forvetig, varias og stadardavvik Tilærmig av biomiske

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner

ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner Bo Lindqvist Institutt for matematiske fag 2 Kapittel 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to

Detaljer

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye)

Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) INF234 Er du? Er du? - Annet Hvor mye teoretisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Hvor mye praktisk kunnskap har du tilegnet deg på dette emnet? (1 = ingen, 5 = mye) Hvor

Detaljer

Fagdag 2-3mx 24.09.07

Fagdag 2-3mx 24.09.07 Fagdag 2-3mx 24.09.07 Jeg beklager at jeg ikke har fuet oe ye morsomme spill vi ka studere, til gjegjeld skal dere slippe prøve/test dee gage. Istruks: Vi arbeider som valig med 3 persoer på hver gruppe.

Detaljer

«Uncertainty of the Uncertainty» Del 4 av 6

«Uncertainty of the Uncertainty» Del 4 av 6 «Ucertaity of the Ucertaity» Del 4 av 6 v/rue Øverlad, Traior Elsikkerhet AS Iledig Dette er del fire i artikkelserie om «Ucertaity of the Ucertaity». I dag skal jeg vise deg utledige av formele: σ m s,

Detaljer

EKSAMEN I TMA4245 Statistikk

EKSAMEN I TMA4245 Statistikk Noregs tekisk aturvitskaplege uiversitet Istitutt for matematiske fag Side 1 av 5 Fagleg kotakt uder eksame: Turid Follestad (98 06 68 80/73 59 35 37) Hugo Hammer (45 21 01 84/73 59 77 74) Eirik Mo (41

Detaljer

Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 2013. Skrevet av Stian Lydersen 16 januar 2013

Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 2013. Skrevet av Stian Lydersen 16 januar 2013 1 Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 013. Skrevet av Stian Lydersen 16 januar 013 Vi antar at vårt utvalg er et tilfeldig og representativt utvalg for

Detaljer

IO 77/45 29. november 1977 ESTIMERING AV ENGELDERIVERTE PA DATA MED MALEFEIL. Odd Skarstad 1) INNHOLD

IO 77/45 29. november 1977 ESTIMERING AV ENGELDERIVERTE PA DATA MED MALEFEIL. Odd Skarstad 1) INNHOLD IO 77/45 29. ovember 977 ESTIMERING V ENGELDERIVERTE P DT MED MLEFEIL av Odd Skarstad ) INNHOLD I. Data fra forbruksudersøkelse II. Estimerig ved målefeil. Iledig 2. Systematiske målefeil 2 3. Tilfeldige

Detaljer

Forelesning Moment og Momentgenererende funksjoner

Forelesning Moment og Momentgenererende funksjoner ushu.li@uib.o Forelesig + 3 Momet og Mometgeererede fuksjoer 1. Oppsummerig til Forelesig 1 1.1) Fuksjoe av S.V: hvis variabele er e fuksjo (trasformasjo) av S.V. : g( ), da er også e S.V.: til ethvert

Detaljer

Innhold: Hvorfor statistikk? Litteratur

Innhold: Hvorfor statistikk? Litteratur 1 Ihold: Medisisk statistikk, termi IC av Stia Lyderse, professor i medisisk statistikk Regioseter for bar og uges psykiske helse (RBUP) Midt-Norge Deskriptiv statistikk Ekel sasylighetsregig og diagostiske

Detaljer

The regulation requires that everyone at NTNU shall have fire drills and fire prevention courses.

The regulation requires that everyone at NTNU shall have fire drills and fire prevention courses. 1 The law The regulation requires that everyone at NTNU shall have fire drills and fire prevention courses. 2. 3 Make your self familiar with: Evacuation routes Manual fire alarms Location of fire extinguishers

Detaljer

PSY 1002 Statistikk og metode. Frode Svartdal April 2016

PSY 1002 Statistikk og metode. Frode Svartdal April 2016 PSY 1002 Statistikk og metode Frode Svartdal April 2016 GANGEN I HYPOTESETESTING 1. Formuler en hypotese «Man får bedre karakterer hvis man leser pensum» 2. Formuler motstykket, nullhypotesen H 0 «Man

Detaljer

Kritisk lesning og skriving To sider av samme sak? Geir Jacobsen. Institutt for samfunnsmedisin. Kritisk lesning. Med en glidende overgang vil denne

Kritisk lesning og skriving To sider av samme sak? Geir Jacobsen. Institutt for samfunnsmedisin. Kritisk lesning. Med en glidende overgang vil denne og skriving To sider av samme sak? Geir Jacobsen Institutt for samfunnsmedisin Med en glidende overgang vil denne presentasjonen først handle om av fagartikler I engelsk litteratur brukes også begrepene

Detaljer

TEORI OG PRAKSIS. Kjønnsidentitet og polaritetsteori. En kasusstudie av en samtalegruppe med transpersoner

TEORI OG PRAKSIS. Kjønnsidentitet og polaritetsteori. En kasusstudie av en samtalegruppe med transpersoner TEORI OG PRAKSIS Kjønnsidentitet og polaritetsteori En kasusstudie av en samtalegruppe med transpersoner Av Vikram Kolmannskog 1 - - NØKKELORD: transpersoner, kjønnsidentitet og uttrykk, polariteter, kjønnsnormer,

Detaljer

Innhold: Hvorfor statistikk? Læringsmål statistikk (3 og 7 januar 2013) Litteratur. For å kunne lese medisinsk litteratur inkl vitenskapelige artikler

Innhold: Hvorfor statistikk? Læringsmål statistikk (3 og 7 januar 2013) Litteratur. For å kunne lese medisinsk litteratur inkl vitenskapelige artikler Lærigsmål statistikk (3 og 7 jauar 3) Medisisk statistikk, termi IC av Stia Lyderse, professor i medisisk statistikk Regioalt kuskapsseter for bar og uge - Psykisk helse og barever (RKBU Midt-Norge) Forelesig

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro. ÅMA0 Sasylighetsregig med statistikk, våre 008 Kp. 4 Kotiuerlige tilfeldige variable; Normalfordelig Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsfordeliger) Vi har til å sett

Detaljer

Ma Analyse II Øving 5

Ma Analyse II Øving 5 Ma0 - Aalyse II Øvig 5 Øistei Søvik.0.0 Oppgaver 9. Determie whether the give sequece is (a) bouded (above or below), (b) positive or egative (ultimately), (c) icreasig, decreasig, or alteratig, ad (d)

Detaljer

7.2 Sammenligning av to forventinger

7.2 Sammenligning av to forventinger 7.2 Sammenligning av to forventinger To-utvalgs z-observator To-utvalgs t-prosedyrer To-utvalgs t-tester To-utvalgs t-konfidensintervall Robusthet To-utvalgs t-prosedyrerår variansene er like Sammenlikning

Detaljer

Kritisk lesning og skriving To sider av samme sak?

Kritisk lesning og skriving To sider av samme sak? og skriving To sider av samme sak? Geir Jacobsen Institutt for samfunnsmedisin Med en glidende overgang vil denne presentasjonen først handle om Kritisk lesning av fagartikler I engelsk litteratur brukes

Detaljer

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 14.12.2007

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 14.12.2007 Høgskole Telemark Avdelg for estetske fag, folkekultur og lærerutdag BOKMÅL 4..7 UTATT PRØVE I MATEMATIKK, Modul 5 studepoeg Td: 5 tmer Hjelpemdler: Kalkulator og vedlagt formelsamlg (bakerst oppgavesettet).

Detaljer

EKSAMENSOPPGAVE I SØK1004 STATISTIKK FOR ØKONOMER STATISTICS FOR ECONOMISTS

EKSAMENSOPPGAVE I SØK1004 STATISTIKK FOR ØKONOMER STATISTICS FOR ECONOMISTS NTNU Norges teknisk-naturvitenskapelige universitet Institutt for samfunnsøkonomi EKSAMENSOPPGAVE I SØK004 STATISTIKK FOR ØKONOMER STATISTICS FOR ECONOMISTS Faglig kontakt under eksamen: Hildegunn E. Stokke

Detaljer

STATISTIKK :D INNHOLD

STATISTIKK :D INNHOLD STATISTIKK :D INNHOLD Et par tig som ka bli yttige.... Sasylighetsregig... 3. Stokastiske variable og sasylighetsfordeliger.... 4. Forvetig og varias... 3 5. Diskrete fordeliger... 4 Diskret uiform fordelig...

Detaljer

Hva er statistikk? TMA4240 Statistikk H2015. Denne forelesningen. Pensum

Hva er statistikk? TMA4240 Statistikk H2015. Denne forelesningen. Pensum Hva er statistikk? TMA440 Statistikk H015 Siste forelesig: oppsummerig og avslutig Statistikk har som mål å utvikle vår kuskap basert på isamlig og aalyse av empiriske data. To greer: Sasylighetsteori:

Detaljer

1 8-1: Oversikt. 2 8-2: Grunnleggende hypotesetesting. 3 Section 8-3: Å teste påstander om andeler. 4 Section 8-5: Teste en påstand om gjennomsnittet

1 8-1: Oversikt. 2 8-2: Grunnleggende hypotesetesting. 3 Section 8-3: Å teste påstander om andeler. 4 Section 8-5: Teste en påstand om gjennomsnittet 1 8-1: Oversikt 2 8-2: Grunnleggende hypotesetesting 3 Section 8-3: Å teste påstander om andeler 4 Section 8-5: Teste en påstand om gjennomsnittet Definisjoner Hypotese En hypotese er en påstand om noe

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

«Uncertainty of the Uncertainty» Del 5 av 6

«Uncertainty of the Uncertainty» Del 5 av 6 «Ucertaity of the Ucertaity» Del 5 av 6 v/rue Øverlad, Traior Elsikkerhet AS Dette er femte del i artikkelserie om «Ucertaity of the Ucertaity». Jeg skal vise deg utledig av «Ucertaity of the Ucertaity»-formele:

Detaljer

Bostøttesamling

Bostøttesamling Bostøttesamling 2016 Teresebjerke@husbankenno 04112016 2 09112016 https://wwwyoutubecom/watch?v=khjy5lwf3tg&feature=youtube 3 09112016 Hva skjer fremover? 4 09112016 «Gode selvbetjeningsløsninger» Kilde:

Detaljer

Kategoriske data, del I: Kategoriske data - del 2 (Rosner, ) Kategoriske data, del II: 2x2 tabell, parede data (Mc Nemar s test)

Kategoriske data, del I: Kategoriske data - del 2 (Rosner, ) Kategoriske data, del II: 2x2 tabell, parede data (Mc Nemar s test) Kategoriske data, del I: Kategoriske data - del (Rosner, 10.3-10.7) 1 januar 009 Stian Lydersen To behandlinger og to utfall. (generelt: variable, verdier). x tabell. Uavhengige observasjoner Sammenheng

Detaljer