Velkommen til studiet Forord Innledning... 14

Størrelse: px
Begynne med side:

Download "Velkommen til studiet... 13 Forord... 13 Innledning... 14"

Transkript

1 Innhold Velkommen til studiet Forord Innledning Kapittel 1 Kalkulus Inger Christin Borge 1.1 Funksjoner og reelle tall Innledning Funksjon og definisjonsmengde Tallinja og intervaller Diverse funksjoner Begrepet grenseverdi Begrepet kontinuitet og de reelle tallene Fortegnsskjema og polynomdivisjon Funksjonsdrøfting definisjoner Derivasjon Gjennomsnittlig vekstfart Momentan vekstfart den deriverte Derivasjon Derivasjonsregler Den dobbeltderiverte Funksjonsdrøfting Maksimums- og minimumsproblemer Integrasjon Areal under en graf det bestemte integralet Integrasjon og antiderivasjon Antiderivasjon det ubestemte integralet Substitusjon og delvis integrasjon Areal til et område Volum til et omdreiningslegeme Overflate til et omdreiningslegeme

2 6 INNHOLD 1.4 Eksponentialfunksjoner og differensiallikninger Logaritmer og eksponenter Eksponential- og logaritmefunksjoner Derivasjon og integrasjon av eksponential- og logaritmefunksjoner Differensiallikninger Første ordens lineære differensiallikninger Separable differensiallikninger Modellering anvendelser Kapittel 2 Tallenes hemmeligheter Olav Gravir Imenes 2.1 Innledning Regning med hele tall Velordningsprinsippet Lukkethet under operasjoner Divisjon Delelighet Minste felles multiplum og største felles faktor Euklids algoritme for å finne største felles faktor Kongruens Definisjon av kongruens Eksempler på kongruens Regning med rester Formelle bevis for regneregler i kongruensregning Delelighetsregler Feiloppdaging ved hjelp av kongruensregning Lineære kongruenslikninger Løsning med klokkemetoden Løsning med multiplikasjonstabell Nulldivisorer Løsning med diofantiske likninger Heltallsløsninger av lineære likninger Løsning av diofantiske likninger Pytagoreiske tripler Tallenes byggesteiner: Primtall Eratostenes såld Bruk av aritmetikkens fundamentalteorem til å skrive og multiplisere tall Bevis av aritmetikkens fundamentalsetning Kryptografi Bokstavkoder Feiloppdagingskoder Koder med offentlig nøkkel

3 INNHOLD Fibonacci-tallene Historisk eksempel: Kaninoppdrett Det gylne snitt I naturen Binets formel Eksponentiell vekst av kaniner Litteratur Kapittel 3 Geometri Nils Henry Rasmussen 3.1 Vektorregning Innledning Definisjoner Regneregler for vektorer Metriske egenskaper til vektorer i planet Flere anvendelser av skalarproduktet Projeksjoner Bevis av setninger i geometrien med vektorregning Avbildninger i planet og symmetrier Innledning Avbildninger i planet Sammensetninger av kongruensavbildninger Odde og like avbildninger Bevis av teoremet Symmetrier Grupper Avbildninger som ikke er kongruensavbildninger, og matriser Litteratur Kapittel 4 Statistikk og kvantitativ metode Knut Ole Lysø 4.1 Stokastiske forsøk og stokastisk variabel Forventet verdi Varians og standardavvik Normalfordelingen Standard normalfordeling Generell normalfordeling Populasjon, utvalg og utvalgsfordelinger Ulike typer utvalg Hva vi skal skaffe informasjon om Utvalgsfordelingen til middelverdien og andeler Grensefordeling og sentralgrenseteoremet Utvalgsfordeling til andeler

4 8 INNHOLD 4.4 Estimering Punktestimator og punktestimat Intervallestimat/konfidensintervall for gjennomsnittet Intervallestimat/konfidensintervall for andelen p Intervallestimat/konfidensintervall for forskjell i andeler p 1 p Intervallestimat/konfidensintervall for forskjell i gjennomsnitt Hypoteseprøving Hypoteser om en binomisk p eller andelen p ¼ S=N innledende problemstillinger Hypoteser om et populasjonsgjennomsnitt Hypoteseprøving mellom to populasjoner Hypoteseprøving mellom to andeler p 1 og p Hypoteseprøving mellom to populasjonsgjennomsnitt 1 og Hypoteseprøving mellom to populasjonsgjennomsnitt i relaterte stikkprøver Lineære sammenhenger mellom variable Korrelasjon og korrelasjonskoeffisient Hypoteser om korrelasjonskoeffisienten i populasjonen Enkel regresjon Hypoteseprøving i modellen enkel regresjon Statistiske tabeller Litteratur Kapittel 5 Kvalitative metoder i matematikkdidaktisk forskning Kristin Ran Choi Hinna 5.1 Innledning Hva er matematikkdidaktikk? Hva er forskning? Bacheloroppgaven Eksempler på bacheloroppgaver i matematikkdidaktikk Ulike tilnærminger til datainnsamling Observasjon Intervju Triangulering Dokumentanalyse Analyse, tolkning og fortolkning Validitet og reliabilitet Validitet Reliabilitet Etikk

5 INNHOLD Bacheloroppgaven: Forberedelser og skriving Forberedelser Skrive en fagtekst Litteratur Kapittel 6 Undervisningskunnskap i matematikk for lærere på trinn Arne Jakobsen, Janne Fauskanger, Reidar Mosvold og Raymond Bjuland 6.1 Innledning Undervisningskunnskap i matematikk UKM Ulike deler av UKM Avrunding Litteratur Kapittel 7 Kunnskapskvartetten i matematikk Bodil Kleve 7.1 De fire kategoriene i kvartetten en utdypning Foundation Transformation Connection Contingency Kunnskapskvartetten hvorfor og hvordan? Eksempler fra klasserommet Brøk i 5. klasse eksempel Brøk i 5. klasse eksempel Sammenhengen i matematikktimen (connection) Geometri på ungdomstrinnet Oppsummering Litteratur Kapittel 8 Internasjonale studier i matematikk design, relevans, resultater og trender Liv Sissel Grønmo 8.1 Internasjonale komparative undersøkelser i matematikk Kjennetegn på matematikk i norsk skole Utviklingen i matematikkprestasjoner i Norge fra 1995 til Tilbakegang og framgang på ungdomstrinnet i nordiske land Algebra i Norge, Sverige og Finland Eksempler på oppgaver fra TIMSS Norske elevers prestasjoner i aritmetikk på barnetrinnet Norske elevers prestasjoner i algebra på ungdomstrinnet

6 10 INNHOLD 8.5 Norske elevers prestasjoner i matematikk i slutten av videregående skole Norske lærerstudenters prestasjoner i algebra Ulike trender i Norge og Sverige Oppsummering Litteratur Kapittel 9 Vurdering Helga Kufaas Tellefsen 9.1 Kontroll eller tilrettelegging for læring? Nasjonale og internasjonale tester Internasjonale tester Nasjonale tester Hva forteller de? Vurdering for læring Matematisk kompetanse Undervisningskunnskap Vurdering for læring i klasserommet Undervisningssekvens Standpunktvurdering Litteratur Kapittel 10 Kartlegging og undervisning i dynamisk perspektiv Svein Aastrup og Ketil Johnsen 10.1 Innledning Dynamisk kartlegging Utgangspunkt for kartlegging Hva forteller tradisjonelle kartleggingsprøver, og hva trenger læreren å vite? Fange opp eleven som sliter i matematikk Å støtte eleven til mestring Den dynamiske kommunikasjonen Hvem kartlegger Første gang forberedelser Erfaringer fra dynamisk kartlegging Å lete etter elevens uformelle matematikkunnskaper I møte med eleven Gjennomføring av dynamisk kartlegging Jonas, 7. trinn Supplerende kartlegging Hva vi fant

7 INNHOLD Dynamisk undervisning Planlegging av tiltak Tiltak rettet mot Jonas Oppgaveformer Struktur og prosess Samhandling og metakognisjon Betydningen av vurdering Oppsummering Litteratur Kapittel 11 Problemløsning i matematikk George H. Hitching og Hans Wilhelm Mørch 11.1 Innledning Oversikt over innhold Hva er problemløsning? Et relativt begrep Ikke bare én løsningsmetode Holdninger til matematikkfaget Utforskning Pólyas strategi for problemløsning Fire faser Eksempler på Pólyas strategi i praksis løste problemer Pólya om heuristikk Misoppfatninger rundt Pólyas strategi Pólya på grunnskolen Problemløsning og gruppearbeid Oppgaver til gruppearbeid Heterogene eller homogene grupper Ikke bare gruppearbeid Utfordringer Det skal være ekte problemløsning Å komme gjennom pensum Faglig kunnskap Problemløsningsoppgaver Kilder med problemløsningsoppgaver Litteratur

8 12 INNHOLD Kapittel 12 Utematematikk Dag Gulaker 12.1 Om matematikk ute Hva gjør vi? Aktiviteter Eksempler på tema som kan knyttes til utematematikk Nedbør og måling av nedbør Vann, vannforbruk og vann som ressurs Besøk et kraftverk Aktiviteter med vann Måling av avstander og høyder Hvor mange liter er et tre? Geometriske former Symmetri Puls Mål og spiss vinkel Regn med avfallet vårt Synslengde, siktlinje og høyde Lengde- og breddegrader, GPS Strikk og funksjoner Rasvinkel Trafikk Fangst/gjenfangst Lyd, trafikkstøy og måling Den matematiske turen Sola, himmelretning og tid Litteratur Presentasjon av redaktører og forfattere Bildeliste Stikkord

Velkommen til studiet... 15 Forord... 15 Innledning... 16

Velkommen til studiet... 15 Forord... 15 Innledning... 16 Innhold Velkommen til studiet... 15 Forord... 15 Innledning... 16 Kapittel 1 Tallenes hemmeligheter... 19 Olav Gravir Imenes 1.1 Innledning... 19 1.2 Regning med hele tall... 23 1.2.1 Etterfølgerprinsippet...

Detaljer

Velkommen til studiet... 15 Forord... 15 Innledning... 16

Velkommen til studiet... 15 Forord... 15 Innledning... 16 Innhold Velkommen til studiet... 15 Forord... 15 Innledning... 16 Kapittel 1 Tallenes hemmeligheter... 19 Olav Gravir Imenes 1.1 Innledning... 19 1.2 Regning med hele tall... 23 1.2.1 Etterfølgerprinsippet...

Detaljer

Emneplan 2014-2015. Matematikk 2 for 1.-10. trinn. Videreutdanning for lærere. HBV - Fakultet for humaniora og utdanningsvitenskap, studiested Drammen

Emneplan 2014-2015. Matematikk 2 for 1.-10. trinn. Videreutdanning for lærere. HBV - Fakultet for humaniora og utdanningsvitenskap, studiested Drammen Emneplan 2014-2015 Matematikk 2 for 1.-10. trinn Videreutdanning for lærere HBV - Fakultet for humaniora og, studiested Drammen Høgskolen i Buskerud og Vestfold Postboks 7053 3007 Drammen Side 2/6 KFK-MAT2

Detaljer

Emneplan Matematikk 2 for trinn. Videreutdanning for lærere. HBV - Fakultet for humaniora og utdanningsvitenskap, studiested Drammen

Emneplan Matematikk 2 for trinn. Videreutdanning for lærere. HBV - Fakultet for humaniora og utdanningsvitenskap, studiested Drammen Emneplan 2014-2015 Matematikk 2 for 1.-10. trinn Videreutdanning for lærere HBV - Fakultet for humaniora og, studiested Drammen Høgskolen i Buskerud og Vestfold Postboks 7053 3007 Drammen Side 2/6 KFK-MAT2

Detaljer

MATEMATIKK 1 (for 8. 10. trinn) Emnebeskrivelser for studieåret 2014/2015

MATEMATIKK 1 (for 8. 10. trinn) Emnebeskrivelser for studieåret 2014/2015 MATEMATIKK 1 (for 8. 10. trinn) Emnebeskrivelser for studieåret 2014/2015 Emnenavn Grunnleggende matematikk Precalculus MA6001 Undervisningssemester Høst 2014 Professor Petter Bergh petter.bergh@math.ntnu.no

Detaljer

Studieplan 2016/2017

Studieplan 2016/2017 Matematikk 2 for 5.-10. trinn Studiepoeng: 30 Studiets nivå og organisering 1 / 10 Studieplan 2016/2017 Studiet er et videreutdanningstilbud i matematikk på Bachelornivå og tilbys gjennom Kompetanse for

Detaljer

Matematikk påbygging

Matematikk påbygging Høgskolen i Østfold Matematikk påbygging Omfang: 1 år 60 studiepoeng Påbyggingsstudium Godkjent Av Dato: 14.08.04 Endret av Dato: Innholdsfortegnelse INNHOLDSFORTEGNELSE... 2 MÅLGRUPPE OG OPPTAKSKRAV...

Detaljer

Innhold DEL I MATEMATIKK SKOLEFAG OG KULTURARV 21

Innhold DEL I MATEMATIKK SKOLEFAG OG KULTURARV 21 Innhold Velkommen til studiet... 13 Oppbygning... 15 Sammenheng og helhet... 16 Pedagogisk struktur... 17 Lykke til med et spennende kurs... 19 DEL I MATEMATIKK SKOLEFAG OG KULTURARV 21 Kapittel 1 Tall...

Detaljer

NTNU KOMPiS Studieplan for MATEMATIKK 1 (8. - 10. trinn) Studieåret 2014/2015

NTNU KOMPiS Studieplan for MATEMATIKK 1 (8. - 10. trinn) Studieåret 2014/2015 Godkjent april 2014 NTNU KOMPiS Studieplan for MATEMATIKK 1 (8. - 10. trinn) Studieåret 2014/2015 Profesjons- og yrkesmål Dette studiet er beregnet for lærere som har godkjent lærerutdanning med innslag

Detaljer

Innhold DEL I MATEMATIKK SKOLEFAG OG KULTURARV.. 21

Innhold DEL I MATEMATIKK SKOLEFAG OG KULTURARV.. 21 Innhold Velkommen til studiet... 13 Oppbygning... 15 Sammenheng og helhet... 16 Pedagogisk struktur... 17 Lykke til med et spennende kurs... 19 DEL I MATEMATIKK SKOLEFAG OG KULTURARV.. 21 Kapittel 1 Tall...

Detaljer

NTNU KOMPiS Studieplan for MATEMATIKK 1 (8.-13. trinn) med hovedvekt på 8.-10. trinn Studieåret 2015/2016

NTNU KOMPiS Studieplan for MATEMATIKK 1 (8.-13. trinn) med hovedvekt på 8.-10. trinn Studieåret 2015/2016 Versjon 01/15 NTNU KOMPiS Studieplan for MATEMATIKK 1 (8.-13. trinn) med hovedvekt på 8.-10. trinn Studieåret 2015/2016 Profesjons- og yrkesmål Dette studiet er beregnet for lærere på ungdomstrinnet som

Detaljer

MATEMATIKK FOR REALFAG PROGRAMFAG I STUDIESPESIALISERENDE UTDANNINGSPROGRAM

MATEMATIKK FOR REALFAG PROGRAMFAG I STUDIESPESIALISERENDE UTDANNINGSPROGRAM MATEMATIKK FOR REALFAG PROGRAMFAG I STUDIESPESIALISERENDE UTDANNINGSPROGRAM Fastsatt som forskrift av Utdanningsdirektoratet 27. mars 2006 etter delegasjon i brev 26. september 2005 fra Utdannings- og

Detaljer

Læreplan i matematikk for samfunnsfag - programfag i studiespesialiserende program

Læreplan i matematikk for samfunnsfag - programfag i studiespesialiserende program Læreplan i matematikk for samfunnsfag - programfag i studiespesialiserende program Fastsatt som forskrift av Utdanningsdirektoratet 27. mars 2006 etter delegasjon i brev 26. september 2005 fra Utdannings-

Detaljer

MATEMATIKK FOR UNGDOMSTRINNET Del 1

MATEMATIKK FOR UNGDOMSTRINNET Del 1 HiST Avdeling for lærer- og tolkeutdanning Fag: MATEMATIKK FOR UNGDOMSTRINNET Del 1 Kode: MX130UNG Studiepoeng: 30 Vedtatt: Fastsatt av dekan 28. mai 2009 Fagplanens inndeling: 1. Innledning 2. Innhold

Detaljer

1T og 1P på Studiespesialiserende

1T og 1P på Studiespesialiserende 1T og 1P på Studiespesialiserende Snart skal du velge hvilket matematikkurs du ønsker å følge på VG1. Valget ditt på VG1, kommer også å påvirke dine valgmulighetene på VG2 og VG3. Vi ønsker derfor å informere

Detaljer

Læreplan i matematikk X - programfag i utdanningsprogram for studiespesialisering

Læreplan i matematikk X - programfag i utdanningsprogram for studiespesialisering Læreplan i matematikk X - programfag i utdanningsprogram for Fastsatt som forskrift av Utdanningsdirektoratet 22. mai 2006 etter delegasjon i brev 26. september 2005 fra Utdannings- og forskningsdepartementet

Detaljer

TIMSS Advanced 2008 et forskningsprosjekt

TIMSS Advanced 2008 et forskningsprosjekt TIMSS Advanced 2008 et forskningsprosjekt En internasjonal komparativ studie siste året i videregående skole: matematikk (i Norge 3MX) fysikk (i Norge 3FY) En trendstudie som viser utviklingen over tid

Detaljer

NTNU KOMPiS Studieplan for MATEMATIKK 2 (8.-13. trinn) med hovedvekt på 8.-10. trinn Studieåret 2015/2016

NTNU KOMPiS Studieplan for MATEMATIKK 2 (8.-13. trinn) med hovedvekt på 8.-10. trinn Studieåret 2015/2016 NTNU KOMPiS Studieplan for MATEMATIKK 2 (8.-13. trinn) med hovedvekt på 8.-10. trinn Studieåret 2015/2016 Profesjons- og yrkesmål Dette studiet er beregnet for lærere på ungdomstrinnet som ønsker videreutdanning

Detaljer

Fagplan for matematikk 2MU (30 studiepoeng) kompetanse for kvalitet

Fagplan for matematikk 2MU (30 studiepoeng) kompetanse for kvalitet Fagplan for matematikk 2MU (30 studiepoeng) kompetanse for kvalitet Fagplan for matematikk 2MU (30 studiepoeng) kompetanse for kvalitet bygger på nasjonale retningslinjer for matematikkfaget i rammeplan

Detaljer

Oppfriskningskurs i matematikk 2008

Oppfriskningskurs i matematikk 2008 Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-

Detaljer

Studieplan 2009/2010. Matematikk 2. Studiepoeng: Arbeidsmengde i studiepoeng er: 30. Studiets varighet, omfang og nivå. Innledning.

Studieplan 2009/2010. Matematikk 2. Studiepoeng: Arbeidsmengde i studiepoeng er: 30. Studiets varighet, omfang og nivå. Innledning. Studieplan 2009/2010 Matematikk 2 Studiepoeng: Arbeidsmengde i studiepoeng er: 30. Studiets varighet, omfang og nivå Studiet gir 30 studiepoeng og går over et semester. Innledning Matematikk 2 skal forberede

Detaljer

EKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014

EKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014 EKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014 Matematikk R2 Oversikt over hovedområdene: Programfag Hovedområder Matematikk R1 Geometri Algebra Funksjoner Matematikk R2 Geometri Algebra Funksjoner

Detaljer

Rekruttering til realfag. Bente Solbakken Høgskolen i Nesna

Rekruttering til realfag. Bente Solbakken Høgskolen i Nesna Rekruttering til realfag. Bente Solbakken Høgskolen i Nesna TIMSS Komparativ Komparativ = sammenliknbar Trendstudie En trendstudie - viser trender over tid Skalert gjennomsnitt = gjennomsnitt som konstrueres

Detaljer

TIMSS Advanced 2008 et forskningsprosjekt

TIMSS Advanced 2008 et forskningsprosjekt TIMSS Advanced 2008 et forskningsprosjekt En internasjonal komparativ studie siste året i videregående skole: matematikk (i Norge 3MX) fysikk (i Norge 3FY) En trendstudie som viser utviklingen over tid

Detaljer

Studieplan - Nettmat 2

Studieplan - Nettmat 2 Studieplan - Nettmat 2 Matematikk 2, nettbasert videreutdanning for lærere pa 5. - 10. trinn (30 studiepoeng) Studiepoeng: 30 studiepoeng Undervisningsspråk: Norsk Studiets omfang/varighet: Studiet har

Detaljer

Studieplan 2015/2016

Studieplan 2015/2016 1 / 9 Studieplan 2015/2016 Matematikk 2 for ungdomstrinnet Studiepoeng: 30 Studiets varighet, omfang og nivå Studiet er et videreutdanningstilbud i matematikk på Bachelornivå og tilbys gjennom Kompetanse

Detaljer

Forord Kapittel 1 Mangfold i lærerutdanningens matematikk Kapittel 2 Læringspartner og sosiomatematiske normer som potensial for elevers læring

Forord Kapittel 1 Mangfold i lærerutdanningens matematikk Kapittel 2 Læringspartner og sosiomatematiske normer som potensial for elevers læring Innhold Forord... 5 Kapittel 1 Mangfold i lærerutdanningens matematikk... 13 Ellen Konstanse Hovik og Bodil Kleve Et teoretisk perspektiv på undervisningskunnskap i matematikk...13 Undervisningskunnskap

Detaljer

Studieplan for Matematikk II

Studieplan for Matematikk II Studieplan for Matematikk II Videreutdanning for ungdomsskolelærere Studentene skal utvikle undervisningskunnskap i matematikk knyttet til sentrale emner i gjeldende læreplan gjennom nær kobling mellom

Detaljer

2MA Matematikk: Emne 3

2MA Matematikk: Emne 3 2MA5101-3 Matematikk: Emne 3 Emnekode: 2MA5101-3 Studiepoeng: 15 Semester Høst / Vår Språk Norsk Forkunnskaper Ingen Læringsutbytte Kunnskap har inngående undervisningskunnskap i matematikken elevene arbeider

Detaljer

Liv Sissel Grønmo Institutt for lærerutdanning og skoleforskning, UiO Arne Hole Institutt for lærerutdanning og skoleforskning, UiO

Liv Sissel Grønmo Institutt for lærerutdanning og skoleforskning, UiO Arne Hole Institutt for lærerutdanning og skoleforskning, UiO Introduksjon Liv Sissel Grønmo Institutt for lærerutdanning og skoleforskning, UiO Arne Hole Institutt for lærerutdanning og skoleforskning, UiO Denne boka handler om matematikk i norsk skole i et bredt

Detaljer

RAMMER FOR MUNTLIG EKSAMEN I MATEMATIKK ELEVER 2015

RAMMER FOR MUNTLIG EKSAMEN I MATEMATIKK ELEVER 2015 RAMMER FOR MUNIG EKSAMEN I MAEMAIKK EEVER 2015 Fagkoder: MA1012, MA1014, MA1016, MA1018, MA1101,MA1105, MA1106, MA1110, REA3021, REA3023, REA3025, REA3027, REA3029 Årstrinn: Vg1, Vg2 og Vg3 Gjelder for

Detaljer

Studieåret 2017/2018

Studieåret 2017/2018 Versjon 01/17 NTNU KOMPiS Studieplan for MATEMATIKK 1 (8.-13. trinn) Studieåret 2017/2018 Profesjons- og yrkesmål Dette studiet er beregnet for lærere på ungdomstrinnet og på videregående skole som ønsker

Detaljer

Studieplan 2015/2016

Studieplan 2015/2016 Matematikk GLU 5-10 Studiepoeng: 60 Studiets varighet, omfang og nivå Studiet er et fulltidsstudium på et år. Innledning Studieplan 2015/2016 e skal gjennom faget matematikk bli i stand til å gjøre en

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

Nummer 8-10. H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf: 22 400 400. www.aschehoug.no

Nummer 8-10. H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf: 22 400 400. www.aschehoug.no Nummer 8-10 H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf: 22 400 400 www.aschehoug.no Hvorfor styrker man algebra i skolen? Det klages over at begynnerstudenter ved ulike høgskoler/universiteter har

Detaljer

Matematikk - Forkurs for ingeniørutdanning

Matematikk - Forkurs for ingeniørutdanning Emne FIN100_2, BOKMÅL, 2014 HØST, versjon 31.mai.2015 23:43:28 Matematikk - Forkurs for ingeniørutdanning Emnekode: FIN100_2, Vekting: 0 studiepoeng Tilbys av: Det teknisk-naturvitenskapelige fakultet,

Detaljer

2MA Matematikk: Emne 4

2MA Matematikk: Emne 4 2MA5101-4 Matematikk: Emne 4 Emnekode: 2MA5101-4 Studiepoeng: 15 Språk Norsk Krav til forkunnskaper Ingen spesielle krav Læringsutbytte Faget matematikk i lærerutdanningen e skal gjennom faget matematikk

Detaljer

Årsplan i matematikk ved Blussuvoll skole.

Årsplan i matematikk ved Blussuvoll skole. Årsplan i matematikk ved Blussuvoll skole. Hovedområder i faget: Målinger Statistikk, sannsynlighet og Funksjoner Undervisningstimetall per uke: 8.trinn 9.trinn 10.trinn 3,00 2,25 3,00 Læreverk/materiell:

Detaljer

Læringsmuligheter (OTL) og prestasjoner i matematikk på 8. trinn

Læringsmuligheter (OTL) og prestasjoner i matematikk på 8. trinn Læringsmuligheter (OTL) og prestasjoner i matematikk på 8. trinn Denne presentasjonen bygger på kapittel 4 i boka L.S. Grønmo & T. Onstad (red.): Opptur og nedtur. Analyser av TIMSS-data for Norge og Sverige.

Detaljer

FK208 Matematikk, tresemester Undervisningsplan 2017

FK208 Matematikk, tresemester Undervisningsplan 2017 Lærebok: Tore Oldervoll, Odd Orskaug, Audhild Vaaje, Otto Svorstøl og Sigbjørn Hals: «Sinus Forkurs Grunnbok 2016», for ingeniørutdanning. Cappelen Damm forlag, ISBN 9788202509057 Oppgåvesamling: Same

Detaljer

Fagplan for matematikk 2U - matematikk for ungdomstrinnet (30 studiepoeng)

Fagplan for matematikk 2U - matematikk for ungdomstrinnet (30 studiepoeng) Fagplan for matematikk 2U - matematikk for ungdomstrinnet (30 studiepoeng) Fagplanen bygger på rammeplan for allmennlærerutdanning av 2003. Fagplan godkjent av Avdelingsstyret 1. april 2005. Siste revisjon

Detaljer

TIMSS 2007 et forskningsprosjekt

TIMSS 2007 et forskningsprosjekt TIMSS 2007 et forskningsprosjekt En internasjonal komparativ studie som viser norske elevers kunnskaper i matematikk og naturfag i et internasjonalt perspektiv En trendstudie som viser utviklingen over

Detaljer

Grunnleggende matematikk for ingeniører Side 1 av 5

<kode> Grunnleggende matematikk for ingeniører Side 1 av 5 Grunnleggende matematikk for ingeniører Side 1 av 5 Emnebeskrivelse 1 Emnenavn og kode Grunnleggende matematikk for ingeniører 2 Studiepoeng 10 studiepoeng 3 Innledning Dette er det ene av

Detaljer

MAT jan jan jan MAT Våren 2010

MAT jan jan jan MAT Våren 2010 MAT 1012 Våren 2010 Mandag 18. januar 2010 Forelesning I denne første forelesningen skal vi friske opp litt rundt funksjoner i en variabel, se på hvordan de vokser/avtar, studere kritiske punkter og beskrive

Detaljer

Sammendrag R1. Sandnes VGS 19. august 2009

Sammendrag R1. Sandnes VGS 19. august 2009 Sammendrag R1 Sandnes VGS 19. august 2009 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A

Detaljer

Manual for wxmaxima tilpasset R1

Manual for wxmaxima tilpasset R1 Manual for wxmaxima tilpasset R1 Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, også regner symbolsk. Det vil si at den kan forenkle uttrykk,

Detaljer

2MA Matematikk: Emne 2

2MA Matematikk: Emne 2 2MA5101-22 Matematikk: Emne 2 Emnekode: 2MA5101-22 Studiepoeng: 15 Semester Høst / Vår Språk Norsk Forkunnskaper Ingen spesielle krav Læringsutbytte Faget matematikk i lærerutdanningen e skal gjennom faget

Detaljer

Sammendrag R1. 26. januar 2011

Sammendrag R1. 26. januar 2011 Sammendrag R1 26. januar 2011 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A B hvis to påstander

Detaljer

Computers in Technology Education

Computers in Technology Education Computers in Technology Education Beregningsorientert matematikk ved Høgskolen i Oslo Skisse til samlet innhold i MAT1 og MAT2 JOHN HAUGAN Både NTNU og UiO har en god del repetisjon av videregående skoles

Detaljer

2MA Matematikk: Emne 3

2MA Matematikk: Emne 3 2MA5101-3 Matematikk: Emne 3 Emnekode: 2MA5101-3 Studiepoeng: 15 Semester Vår Språk Norsk Forkunnskaper Ingen Læringsutbytte Faget matematikk i lærerutdanningen e skal gjennom faget matematikk bli i stand

Detaljer

Oppfriskning av blokk 1 i TMA4240

Oppfriskning av blokk 1 i TMA4240 Oppfriskning av blokk 1 i TMA4240 Geir-Arne Fuglstad November 21, 2016 2 Hva har vi gjort i dette kurset? Vi har studert to sterkt relaterte grener av matematikk Sannsynlighetsteori: matematisk teori for

Detaljer

2MA Matematikk: Emne 1

2MA Matematikk: Emne 1 2MA5101-1 Matematikk: Emne 1 Emnekode: 2MA5101-1 Studiepoeng: 15 Språk Norsk Krav til forkunnskaper Ingen spesielle krav Læringsutbytte Faget matematikk i lærerutdanningen e skal gjennom faget matematikk

Detaljer

Matematikk X. det digitale verktøyet. Kristen Nastad. Aschehoug Undervisning

Matematikk X. det digitale verktøyet. Kristen Nastad. Aschehoug Undervisning Matematikk X og det digitale verktøyet Kristen Nastad Aschehoug Undervisning Forord Heftet er skrevet på grunnlag av versjon 1.6.4295 2008 12 09 av operativsystemet til programmet TI-nspire TM CAS Operating

Detaljer

TIMSS 2007 et forskningsprosjekt

TIMSS 2007 et forskningsprosjekt TIMSS 2007 et forskningsprosjekt En internasjonal komparativ studie som viser norske elevers kunnskaper i matematikk og naturfag i et internasjonalt perspektiv En trendstudie som viser utviklingen over

Detaljer

Fremdriftsplan for sommerkurset 2014 Planen er ment som et utgangspunkt, kan justeres underveis

Fremdriftsplan for sommerkurset 2014 Planen er ment som et utgangspunkt, kan justeres underveis Oldervoll m.fl. Sinus matematikk, Forkurs grunnbok, Cappelen Jerstad m.fl. Rom-Stoff-Tid, Forkurs grunnbok, Cappelen. Øving: EN/MMT (D3-11), PD (D3-15), EA/DA (D3-17) Fremdriftsplan for sommerkurset 2014

Detaljer

Eivind Eriksen. Matematikk for økonomi og finans

Eivind Eriksen. Matematikk for økonomi og finans Eivind Eriksen Matematikk for økonomi og finans # CAPPELEN DAMM AS 2016 ISBN 978-82-02-47417-1 1. utgave, 1. opplag 2016 Materialet i denne publikasjonen er omfattet av åndsverklovens bestemmelser. Uten

Detaljer

The College Professor: Such rawness in a pupil is a shame. Lack of preparation in the high school is to blame.

The College Professor: Such rawness in a pupil is a shame. Lack of preparation in the high school is to blame. Verse from a Forgotten Source The College Professor: Such rawness in a pupil is a shame. Lack of preparation in the high school is to blame. The High School Teacher: What crudity! The boy s a fool! The

Detaljer

Årsplan i matematikk for 5. trinn, skoleåret 2009/2010. Læreverk Abakus 5A og 5B (grunnbøker+oppgavebøker), digitale læringsressurser

Årsplan i matematikk for 5. trinn, skoleåret 2009/2010. Læreverk Abakus 5A og 5B (grunnbøker+oppgavebøker), digitale læringsressurser Årsplan i matematikk for 5. trinn, skoleåret 2009/2010. Hovedområde Læreverk Abakus 5A og 5B (grunnbøker+oppgavebøker), digitale sressurser for 5. trinn Fra Lese-forlivet-planen brukes jevnlig i alle fag

Detaljer

Krasjkurs MAT101 og MAT111

Krasjkurs MAT101 og MAT111 Krasjkurs MAT101 og MAT111 Forord Disse notatene ble skrevet under et åtte timer (to firetimers forelesninger) i løpet av 10. og 11. desember 2012. Det er mulig at noen av utregningene ikke stemmer, enten

Detaljer

TIMSS 2007 et forskningsprosjekt

TIMSS 2007 et forskningsprosjekt TIMSS 2007 et forskningsprosjekt En internasjonal komparativ studie som viser norske elevers kunnskaper i matematikk og naturfag i et internasjonalt perspektiv En trendstudie som viser utviklingen over

Detaljer

TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010

TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010 TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010 Toke Meier Carlsen Institutt for matematiske fag 30. september 2010 2 Fremdriftplan I går 5.5 Ubestemte integraler og substitusjon

Detaljer

Hovedresultater fra TIMSS 2015

Hovedresultater fra TIMSS 2015 Hovedresultater fra TIMSS 2015 Pressekonferanse 29. november 2016 TIMSS Hva er TIMSS TIMSS undersøker elevenes kompetanse i matematikk og naturfag. Gjennom spørreskjemaer samles det i tillegg inn relevant

Detaljer

Innhold. Innledning. Del I

Innhold. Innledning. Del I Innhold Del I Innledning 1 Hva er statistikk?...17 1.1 Bokas innhold 18 1.1.1 Noen eksempler 18 1.1.2 Historie 21 1.1.3 Bokas oppbygning 22 1.2 Noen viktige begreper 23 1.2.1 Populasjon og utvalg 23 1.2.2

Detaljer

Læreplan i matematikk. Kompetansemål etter 10. årstrinn

Læreplan i matematikk. Kompetansemål etter 10. årstrinn Læreplan i matematikk Kompetansemål etter 10. årstrinn Tall og algebra Eleven skal kunne: 1. Sammenlikne og regne om hele tal, desimaltall, brøker, prosent, promille og tall på standardform 2. Regne med

Detaljer

Meningsfull matematikk for alle

Meningsfull matematikk for alle Meningsfull matematikk for alle Anne-Mari Jensen Novemberkonferansen 2015 26-Nov-15 Elevene: En vei mot et yrke Et statussymbol Personlig tilfredsstillelse Nødvendig i hverdagen Må vite hva vi skal bruke

Detaljer

Mål og innhold i Matte 1

Mål og innhold i Matte 1 Mål og innhold i Institutt for matematiske fag 15. november 2013 på Målet med denne oversikten er at vi skal se hvor vi er i pensum, og at du skal kunne finne hva du kan/ikke kan. Jeg vil i tillegg vise

Detaljer

Forskningsmetode for sykepleierutdanningene

Forskningsmetode for sykepleierutdanningene Forskningsmetode for sykepleierutdanningene Boken har mange relevante, og i hovedsak norske eksempler på sykepleieforskning og gir en introduksjon til forskningsmetode for sykepleierutdanninger. Vurdering:

Detaljer

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 4 Statistikk og kvantitativ metode

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 4 Statistikk og kvantitativ metode QED 1 7 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 4 Statistikk og kvantitativ metode Kapittel 4 Oppgave 1 La være antall øyne på terningen. a) Vi får følgende sannsynlighetsfordeling

Detaljer

Guri A. Nortvedt Institutt for lærerutdanning og skoleforskning. Revidert læreplan i matematikk

Guri A. Nortvedt Institutt for lærerutdanning og skoleforskning. Revidert læreplan i matematikk Guri A. Nortvedt Institutt for lærerutdanning og skoleforskning Revidert læreplan i matematikk Læreplan i matematikk Skoleforordningen 1734 Regning og matematikk Dagliglivets matematikk Grunnleggende ferdigheter

Detaljer

Fagplan for matematikk 2, trinn 5-10 (30 studiepoeng) oppdrag

Fagplan for matematikk 2, trinn 5-10 (30 studiepoeng) oppdrag Fagplan for matematikk 2, trinn 5-10 (30 studiepoeng) oppdrag 30 studiepoeng Samlings- og nettbasert videreutdanning Studieprogramkode KFKMU2 Godkjent av fakultetets studieutvalg 7. mai 2012. Redaksjonelle

Detaljer

Microsoft Mathematics Brukermanual matematikk vgs

Microsoft Mathematics Brukermanual matematikk vgs Microsoft Mathematics Brukermanual matematikk vgs Generelt om Microsoft Mathematics... 2 Nedlasting... 2 Innholdsoversikt... 2 Fremgangsmåte... 3 Tall og algebra... 4 Omgjøring mellom enheter... 4 Likninger...

Detaljer

Årsplan i Matematikk 7. trinn

Årsplan i Matematikk 7. trinn Årsplan i Matematikk 7. trinn 2017-2018 Tidspunkt Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: Eleven skal: Eleven skal: Brøk Uke 34-35 - Kunne regne med brøk og plassere

Detaljer

Studieåret 2017/2018

Studieåret 2017/2018 Januar 17 NTNU KOMPiS Studieplan for MATEMATIKK 2 (8.-13. trinn) Studieåret 2017/2018 Profesjons- og yrkesmål Dette studiet er beregnet for lærere på ungdomstrinnet og på videregående skole som ønsker

Detaljer

Regn i hodet: 46 + 28. Å uttrykke tall. Ulike uttrykksmåter. Det vesentlige er utvikling. Hvordan jobbe med dette? Hvordan jobbe med dette? 10.09.

Regn i hodet: 46 + 28. Å uttrykke tall. Ulike uttrykksmåter. Det vesentlige er utvikling. Hvordan jobbe med dette? Hvordan jobbe med dette? 10.09. Hva er Hvorfor Singaporematematikk er folk interesserte i Singapore-matematikk Fordi elevene i Singapore stadig får best resultat på En samling undervisningsstrategier vanlig i Singapore internasjonale

Detaljer

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2 Prøve i FO929A - Matematikk Dato: 1. juni 2012 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 2 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

Emnebeskrivelse videreutdanning i matematikk for lærere

Emnebeskrivelse videreutdanning i matematikk for lærere Emnebeskrivelse videreutdanning i matematikk for lærere Emnekode: Bestemmes senere Emnenavn: Matematikk 1 matematikk og matematikkdidaktikk for lærere 1.-7. trinn Antall studiepoeng: 15 + 15 Undervisningsspråk:

Detaljer

Mål og innhold i Matte 1

Mål og innhold i Matte 1 Mål og innhold i Institutt for matematiske fag på 19. oktober 2013 Målet med denne oversikten er at vi skal se hvor vi er i pensum, og at du skal kunne finne hva du kan/ikke kan. Jeg vil i tillegg vise

Detaljer

MAT4010 Matematikk, skole og kultur

MAT4010 Matematikk, skole og kultur MAT4010 Matematikk, skole og kultur Helmer Aslaksen Institutt for lærerutdanning og skoleforskning/matematisk institutt Universitetet i Oslo helmer.aslaksen@gmail.com www.math.nus.edu.sg/aslaksen/ Velkommen

Detaljer

TMA4100: Repetisjon før midtsemesterprøven

TMA4100: Repetisjon før midtsemesterprøven TMA4100: Repetisjon før midtsemesterprøven 10.10.09 Lars Sydnes sydnes@math.ntnu.no Institutt for matematiske fag October 1, 2009 L.S. (NTNU) TMA4100: Oversikt October 1, 2009 1 / 20 Kapittel 1: Funksjoner.

Detaljer

MAT4010 Matematikk, skole og kultur

MAT4010 Matematikk, skole og kultur MAT4010 Matematikk, skole og kultur Helmer Aslaksen Institutt for lærerutdanning og skoleforskning/matematisk institutt Universitetet i Oslo helmer.aslaksen@gmail.com www.math.nus.edu.sg/aslaksen/ Velkommen

Detaljer

Oppsummering TMA4100. Kristian Seip. 16./17. november 2015

Oppsummering TMA4100. Kristian Seip. 16./17. november 2015 Oppsummering TMA4100 Kristian Seip 16./17. november 2015 Forelesningene 17./18. november Denne forelesningen beskriver de store linjer og sammenhengen mellom de ulike deltemaene i TMA4100 noen tips for

Detaljer

Innhold. Del 1 Grunnleggende begreper og prinsipper... 39

Innhold. Del 1 Grunnleggende begreper og prinsipper... 39 Innhold Kapittel 1 Vitenskap: grunnleggende antakelser... 13 Hva er vitenskap?... 14 Psykologi som vitenskap: tre tradisjoner... 17 Forutsetninger vitenskap bygger på... 21 Siktemål med forsk ning... 22

Detaljer

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x).

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Funksjoner En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Mengden D kalles definisjonsmengden (eng.: domain) til f. Merknad Dersom

Detaljer

AKERSHUS FYLKESKOMMUNE FROGN VIDEREGÅENDE SKOLE MATEMATIKK 1T & 1P

AKERSHUS FYLKESKOMMUNE FROGN VIDEREGÅENDE SKOLE MATEMATIKK 1T & 1P AKERSHUS FYLKESKOMMUNE FROGN VIDEREGÅENDE SKOLE MATEMATIKK 1T & 1P 1 INNHOLDSFORTEGNELSE MATEMATIKK... 1 1T & 1P... 1 Nye matematikkurs... 3 Matematikk for studieforberedende utdanningsprogrammer... 3

Detaljer

NTNU MA0003. Ole Jacob Broch. Norwegian University of Science and Technology. MA0003 p.1/29

NTNU MA0003. Ole Jacob Broch. Norwegian University of Science and Technology. MA0003 p.1/29 MA0003 Ole Jacob Broch Norwegian University of Science and Technology MA0003 p.1/29 Oversikt, torsdag 13/1 Avsnitt 1.3: intervaller og intervallnotasjon definisjons- og verdimengden til en funksjon Avsnitt

Detaljer

Kapittel 1 Vitenskap: grunnleggende antakelser

Kapittel 1 Vitenskap: grunnleggende antakelser Innholdsfortegnelse Kapittel 1 Vitenskap: grunnleggende antakelser... 13 Hva er vitenskap?... 14 Psykologi som vitenskap: tre tradisjoner... 17 Forutsetninger vitenskap bygger på... 21 Siktemål med forskning...

Detaljer

Lær å bruke wxmaxima

Lær å bruke wxmaxima Bjørn Ove Thue og Sigbjørn Hals Lær å bruke wxmaxima Et godt og gratis CAS-verktøy med enkelt brukergrensesnitt. Oppdatert versjon, november 2009 Lær å bruke wxmaxima. Eksempler fra Sinus-bøkene fra Cappelen

Detaljer

lærerutdanning og kunst- og kulturfag

lærerutdanning og kunst- og kulturfag NO EN Matematikk 1 I Matematikk 1 arbeider studentene med matematikkdidaktiske og matematikkfaglige temaer. Temaene er arbeid med utviklingen av tallbegrepet og overgangen fra tall til algebra. Det arbeides

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 2 Regning 4 2.1 Tallet e...................................... 4 3 Sannsynlighetsregning

Detaljer

Velkommen til eksamenskurs i matematikk 1

Velkommen til eksamenskurs i matematikk 1 Velkommen til eksamenskurs i matematikk 1 Haakon C. Bakka Institutt for matematiske fag 4.-5. desember 2010 Program I dag og i morgen skal vi holde på fra 10-16 med en pause fra 13-14. Vi skal gjennom:

Detaljer

2.23 lage og utforske enkle geometriske mønstre og beskrive

2.23 lage og utforske enkle geometriske mønstre og beskrive Kompetansemål etter 2. årstrinn Tall 2.11 telle til 100, dele opp og bygge mengder opp til 10, sette sammen og dele opp tiergrupper 2.12 bruke tallinjen til beregninger og til å angi tallstørrelser 2.13

Detaljer

Mål og innhold i Matte 1

Mål og innhold i Matte 1 Mål og innhold i Institutt for matematiske fag 1. november 2013 Målet med denne oversikten er at vi skal se hvor vi er i pensum, og at du skal kunne finne hva du kan/ikke kan. Jeg vil i tillegg vise hva

Detaljer

Årsplan Matematikk 2014 2015 Årstrinn: 7. årstrinn Lærere:

Årsplan Matematikk 2014 2015 Årstrinn: 7. årstrinn Lærere: Årsplan Matematikk 2014 2015 Årstrinn: 7. årstrinn Lærere: Cordula Norheim, Åsmund Gundersen, Renate Dahl Akersveien 4, 0177 OSLO, Tlf: 23 29 25 00 Kompetansemål Tidspunkt Tema/Innhold Lærestoff Arbeidsmåter

Detaljer

FAGPLAN 1-ÅRIG FORKURS

FAGPLAN 1-ÅRIG FORKURS FAGPLAN 1-ÅRIG FORKURS FOR INGENIØRUTDANNING Gjeldende fom. høsten 2009 Universitetet i Tromsø Institutt for ingeniørvitenskap og sikkerhet Revidert vår 2009 1-ÅRIG FORKURS Vedlagte studieplan er utarbeidet

Detaljer

Kortfattet løsningsforslag til ekstra prøveeksamen i MAT1100, høsten 2014

Kortfattet løsningsforslag til ekstra prøveeksamen i MAT1100, høsten 2014 Kortfattet løsningsforslag til ekstra prøveeksamen i MAT, høsten 4 DEL Oppgave. 3 poeng Hvis f, y = ye y, er f y lik: A y 3 e y B y e y C e y ye y D e y y e y E e y ye y Riktig svar: D e y y e y Oppgave.

Detaljer

Innhold. del 1 ideologiske prinsipper ved vurdering av elever

Innhold. del 1 ideologiske prinsipper ved vurdering av elever Innhold innledning...................................................... 11 Stephen Dobson, Astrid Birgitte Eggen, Kari Smith Vurdering som prosess............................................... 11 Vurdering

Detaljer

Oppsummering TMA4100. Kristian Seip. 26./28. november 2013

Oppsummering TMA4100. Kristian Seip. 26./28. november 2013 Oppsummering TMA4100 Kristian Seip 26./28. november 2013 Forelesningene 26./28. november Disse forelesningene er et forsøk på å se de store linjer og sammenhengen mellom de ulike deltemaene i TMA4100 delvis

Detaljer

Lær å bruke GeoGebra 4.0

Lær å bruke GeoGebra 4.0 Lær å bruke GeoGebra 4.0 av Sigbjørn Hals Innhold: Generelt om GeoGebra... 2 Innstillinger... 2 Likninger og ulikheter... 5 Implisitte likninger... 5 Ulikheter... 9 Statistikkberegninger i regnearket...

Detaljer

Kapittel 2. Antiderivering. 2.1 Derivasjon

Kapittel 2. Antiderivering. 2.1 Derivasjon Kapittel 2 Antiderivering I dette og neste kapittel skal vi bli kjent med noen typer difflikninger og lære hvordan disse kan løses. Til dette trenger vi derivering og antiderivering. 2.1 Derivasjon I Kapittel

Detaljer

Studieplan for MATEMATIKK 1 (8.-13. trinn) Studieåret 2016/2017

Studieplan for MATEMATIKK 1 (8.-13. trinn) Studieåret 2016/2017 NTNU KOMPiS Studieplan for MATEMATIKK 1 (8.-13. trinn) Studieåret 2016/2017 Profesjons- og yrkesmål Dette studiet er beregnet for lærere på ungdomstrinnet og på videregående skole som ønsker videreutdanning

Detaljer