Mandag E = V. y ŷ + V ẑ (kartesiske koordinater) r sin θ φ ˆφ (kulekoordinater)
|
|
- Helena Lauritzen
- 6 år siden
- Visninger:
Transkript
1 Institutt fo fysikk, NTNU TFY4155/FY13: Elektisitet og magnetisme Vå 26, uke 6 Mandag Beegning av E fa V [FGT 24.4; YF 23.5; TM 23.3; F 21.1; LHL 19.9; DJG 2.3.1, 1.2.2] Gadientopeatoen : V = V V ˆx + x = V ˆ + 1 E = V y ŷ + V ẑ (katesiske koodinate) z V θ ˆθ + 1 V sin θ φ ˆφ (kulekoodinate) (NB: Det e ikke meningen at du skal gå undt og huske på hvodan gadientopeatoen se ut i kulekoodinate. Den vil bli oppgitt desom det f.eks. skulle bli buk fo den til eksamen.) Hvis vi ha kulesymmeti (dvs E og V kun avhengig av, ikke av vinklene θ og φ): Betydning av gadientopeatoen E = E()ˆ = V ˆ Vektoen V peke i den etningen de V øke askest, dvs i den etningen de den etningsdeivete til V e støst. Ettesom E = V, bety det at det elektiske feltet peke i den etningen de V avta askest. Eksempel: Desom en punktladning q plassees et sted de V =, bli den ikke utsatt fo noen elektisk kaft, fo da e F = qe = q V =. Oppsummeing til nå, og møte med Maxwell-ligning n 1 Coulombs lov (empiisk lov fo kaft mellom to ladninge q og q i innbydes avstand ): F = qq 4πε 2 ˆ Elektisk felt fa punktladning q (følge av definisjonen kaft p ladningsenhet ): E = F q = q 4πε 2 ˆ 1
2 Konsevativ kaft: F dl e uavhengig av integasjonsveien, dvs veien mellom punktene og B. Demed: F dl = (dvs nå vi integee undt en lukket kuve) Med definisjonen av E følge det da at det elektostatiske feltet også e konsevativt, dvs: E dl e uavhengig av integasjonsveien, og demed E dl = Dette e en av Maxwells ligninge (vel å meke, fo statiske felt, dvs felt som ikke ende seg med tiden). Et konsevativt vektofelt kan alltid avledes fa et skalat potensial: E = V Potensialfoskjellen mellom to punkte og B kan beegnes desom vi kjenne det elektiske feltet i omådet mellom og B: V = V B V = E dl upeposisjonspinsippet gjelde fo elektisk kaft F (ekspeimentelt esultat): F i = F ij = kaft på ladning q i fa ladninge q j (j = 1, 2,... n) Da følge det at supeposisjonspinsippet også gjelde fo elektisk felt E, og fo elektisk potensial V, E = E j V = V j He e E j og V j bidag til henholdsvis felt og potensial fa ladning numme j. 2
3 Fedag Elektisk fluks [FGT 23.1; YF 22.1; TM 22.2; F 25.3; LHL 19.7; DJG 2.2.1] φ = E d Noen gange skive vi φ E fo å pesisee at det e snakk om elektisk fluks. Vi ha tidligee definet elektiske feltlinje slik at den elektiske feltstyken E = E skulle væe poposjonal med tettheten av feltlinje, elle antall feltlinje p flateenhet. v ovenstående definisjon av elektisk fluks φ kan vi da slutte at φ epesentee antall feltlinje som kysse flaten. Følgende figu illustee hva dette gå ut på: d θ flate E ^ d = n d ^ n = enhetsvekto nomalt til flaten d = flateelement (f.eks. dx dy ) Flaten e en vilkålig tenkt elle valgt flate i ommet. Det elektiske feltet eksistee i omådet de flaten e plasset. (E kan væe null elle foskjellig fa null.) Flaten tenkes så delt inn i små flateelemente d = ˆnd, med aeal d og oienteing i ommet spesifiset ved flatenomalen ˆn. Fluksen dφ gjennom flaten d e da lik E d. Den totale fluksen gjennom hele flaten få vi ved å integee opp bidagene dφ, altså ligningen ove. Mek at fluksen e en skala støelse. Den kan imidletid væe positiv elle negativ, avhengig av om vinkelen mellom vektoene E og d e minde elle støe enn 9 gade. En lukket flate e en flate som omslutte et veldefinet volum V, f.eks. et kuleskall, et peanøttskall e.l. Den elektiske fluksen gjennom en lukket flate skive vi slik (jf. notasjonen fo veiintegal undt lukket kuve): φ c = E d Indeksen c stå fo closed. Den e fosåvidt unødvendig så lenge vi skive ned integalet. Ringen på integasjonssymbolet e tilstekkelig fo å undesteke at det e snakk om en lukket flate. Med en lukket flate kan vi gjøe unna fotegnspoblemet en gang fo alle: Vi velge positiv etning på d ut av flaten. Demed kan vi konkludee med at E d > fluks ut gjennom flaten E d < fluks inn gjennom flaten 3
4 Dessuten: φ c > netto fluks ut gjennom flaten φ c < netto fluks inn gjennom flaten Fo en ikke lukket flate ha vi ingen tilsvaende mulighet fo å velge positiv etning på d. Flaten ha to side, og ingen av disse kan sies å væe me inne elle ute i fohold til den ande. I enkelte tilfelle velge vi imidletid en positiv etning på (den lukkede!) kuven (linjen) som gå undt kanten av. Da definee vi positiv etning på d ved hjelp av høyehåndsegelen: La høyehåndas fie øvige finge peke i positiv etning fo flatens omsluttende kuve. Da peke tommelen i positiv etning fo d. Gauss lov [FGT 23.2; YF 22.3; TM 22.2, 22.6; F 25.4; LHL 19.7; DJG 2.2.1] Gauss lov (på såkalt integalfom; senee i kuset, hvis vi få tid, skal vi se at vi også ha en vesjon av Gauss lov på såkalt diffeensialfom): E d = q in ε He e integalet på venste side av ligningen et flateintegal ove en lukket flate, mens q in e total (netto) ladning innenfo den lukkede flaten ( gaussflaten ). Gauss lov e en av Maxwells ligninge. (Vi konsentee oss femdeles om elektostatikk en god stund famove, men faktisk e det slik at Gauss lov også gjelde selv om E skulle finne på å vaiee med tiden.) Innholdet i ligningen kan fomulees slik: Netto antall feltlinje ut av et volum, dvs ut gjennom den lukkede flaten som avgense dette volumet, e bestemt av, og diekte poposjonal med netto ladning inne i volumet, dvs innenfo den lukkede flaten. Gauss lov følge diekte av Coulombs lov, og epesentee således ingen ny fysikk. I fobindelse med beviset fo Gauss lov fikk vi buk fo det vi kalte en omvinkel Ω. På samme måte som en liten sekto i et plan utspenne en vinkel dφ vil en liten kjegle i ommet utspenne en omvinkel dω. Videe: På samme måte som at buelengden dl i avstand fa sentum da bli dl = dφ bli aealet d av flaten som stå nomalt på og som avgenses av den lille kjeglen da lik d = 2 dω. I planet: dl = dϕ I ommet: d = 2 d Ω 4
5 La vi sektoen i planet utspenne en hel omdeining, tilsvae det en vinkel dφ = 2π dφ = 2π Tilsvaende: La vi kjeglen i ommet utspenne en hel kuleflate, tilsvae det en omvinkel dω = 2π π dφ sin θ dθ = 4π (He ha vi bukt kulekoodinate, de d = 2 sin θ dθ dφ (se øving 4!), slik at dω = sin θ dθ dφ.) 5
Mandag qq 4πε 0 r 2 ˆr F = Elektrisk felt fra punktladning q (følger av definisjonen kraft pr ladningsenhet ): F dl
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 6 Mandag 05.02.07 Oppsummering til nå, og møte med Maxwell-ligning nr 1 Coulombs lov (empirisk lov for kraft mellom to
Sammendrag, uke 14 (5. og 6. april)
Institutt fo fysikk, NTNU TFY4155/FY1003: Elektisitet og magnetisme Vå 2005 Sammendag, uke 14 (5. og 6. apil) Magnetisk vekselvikning [FGT 28, 29; YF 27, 28; TM 26, 27; AF 22, 24B; H 23; DJG 5] Magnetisme
Midtsemesterprøve onsdag 7. mars 2007 kl
Institutt fo fysikk, NTNU FY1003 lektisitet og magnetisme I TFY4155 lektomagnetisme Vå 2007 Midtsemestepøve onsdag 7. mas 2007 kl 1300 1500. Svatabellen stå på side 11. Sett tydelige kyss. Husk å skive
Øving 8. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt.
Institutt fo fysikk, NTNU TFY455/FY003: lektisitet og magnetisme Vå 2008 Øving 8 Veiledning: 04.03 i R2 25-400, 05.03 i R2 25-400 Innleveingsfist: Fedag 7. mas kl. 200 (Svatabell på siste side.) Opplysninge:
Midtsemesterprøve fredag 10. mars kl
Institutt fo fysikk, NTNU FY1003 lektisitet og magnetisme I TFY4155 lektomagnetisme Vå 006 Midtsemestepøve fedag 10. mas kl 0830 1130. Svatabellen stå på et eget ak. Sett tydelige kyss. Husk å skive på
( 6z + 3z 2 ) dz = = 4. (xi + zj) 3 i + 2 ) 3 x x 4 9 y. 3 (6 2y) (6 2y)2 4 y(6 2y)
TMA415 Matematikk 2 Vå 215 Noges teknisk natuvitenskapelige univesitet Institutt fo matematiske fag Løsningsfoslag Øving 11 Alle oppgavenumme efeee til 8. utgave av Adams & Essex Calculus: A Complete Couse.
Onsdag og fredag
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2009, uke 7 Onsdag 11.02.09 og fredag 13.02.09 Gauss lov [FGT 23.2; YF 22.3; TM 22.2, 22.6; AF 25.4; LHL 19.7; DJG 2.2.1] Gauss
Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver)
Institutt for fysikk, NTNU TFY455/FY003: Elektrisitet og magnetisme Vår 2008 Veiledning: Fredag 25. og mandag 28. januar Innleveringsfrist: Fredag. februar kl 2.00 Øving 3 Oppgave (oppvarming med noen
Forelesning 9/ ved Karsten Trulsen
Foelesning 9/2 218 ved Kasten Tulsen Husk fa sist våe to spøsmål om kuveintegale: Desom vi skal beegne et kuveintegal som state i et punkt og ende opp i et annet punkt 1, så kan det væe mange veie fo å
Tirsdag r r
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2008, uke 6 Tirsdag 05.02.08 Gauss lov [FGT 23.2; YF 22.3; TM 22.2, 22.6; AF 25.4; LHL 19.7; DJG 2.2.1] Fra forrige uke; Gauss
Onsdag og fredag
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2009, uke 4 Onsdag 21.01.09 og fredag 23.01.09 Elektrisk felt fra punktladning [FGT 22.1; YF 21.4; TM 21.4; AF 21.6; LHL 19.5;
Mandag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 4
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 4 Mandag 22.01.07 Elektriske feltlinjer [FGT 22.2; YF 21.6; TM 21.5; F 21.6; LHL 19.6; DJG 2.2.1] gir en visuell framstilling
Tirsdag E = F q. q 4πε 0 r 2 ˆr E = E j = 1 4πε 0. 2 j. r 1. r n
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2008, uke 3 Tirsdag 15.01.07 Elektrisk felt [FGT 22.1; YF 21.4; TM 21.4; AF 21.5; LHL 19.4; DJG 2.1.3] = kraft pr ladningsenhet
TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 9. Veiledning: 18. oktober. Innleveringsfrist: 23. oktober kl 14.
TFY404 Fysikk. Institutt fo fysikk, NTNU. Høsten 203. Øving 9. Veiledning: 8. oktobe. Innleveingsfist: 23. oktobe kl 4. Oppgve ) Figuen vise et unifomt elektisk felt (heltukne linje). Lngs hvilken stiplet
Kap. 22. Gauss lov. Gauss lov skjematisk. Eks.1: Homogent ladd kule =Y&F Ex = LHL Vi skal se på: Fluksen til elektrisk felt E Gauss lov
Kap.. Gauss lov Vi skal se på: Fluksen til elektisk felt E Gauss lov Integalfom og diffeensialfom Elektisk ledee. Efelt fa Coulombs lov: q E = k E = k å n q n n n dq E= k ò tot. ladn. Punktladn Flee punktladn.
KONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Noges teknisk natuitenskapelige uniesitet Institutt fo elektonikk og telekommunikasjon ide 1 a 7 Faglæe: Johannes kaa KONTINUAJONEKAMEN I EMNE TFE 4120 ELEKTROMAGNETIME Tosdag 15. august 2013 Oppgae 1
Utvalg med tilbakelegging
Utvalg med tilbakelegging Gitt n foskjellige objekte. Vi skal velge objekte på en slik måte at fo hvet objekt vi velge, notee vi hvilket det e og legge det tilbake. Det bety at vi kan velge det samme objektet
Øving 6. Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme. Veiledning: Uke 7 Innleveringsfrist: Mandag 19. februar.
Institutt fo fsikk, NTNU TFY4155/FY1003: Elektisitet og mgnetisme Vå 2007 Veiledning: Uke 7 Innleveingsfist: Mndg 19. febu Øving 6 Oppgve 1 z Figuen ove vise en gussflte (dvs lukket flte) S fomet som en
Kap 28: Magnetiske kilder. Kap 28: Magnetiske kilder. Kap 28. Rottmann integraltabell (s. 137) μ r. μ r. μ r. μ r
Kap 8 Kap 8: Magnetiske kilde Elektostatikk: Ladning q påvikes av kaft qe Definisjon E-felt E-feltet skapes fa ladninge (Coulombs lov) (Coulombs lov) Magnetostatikk: Ladning q i bevegelse påvikes av kaft
KONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Noges teknisk natuvitenskapelige univesitet Institutt fo elektonikk og telekommunikasjon ide 1 av 8 Bokmål/Nynosk Faglig/fagleg kontakt unde eksamen: Jon Olav Gepstad 41044764) Hjelpemidle: C - pesifisete
TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 10. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt.
TFY0 Fysikk. Institutt fo fysikk, NTNU. Høsten 06. Øving 0. Opplysninge: esom ikke nnet e oppgitt, nts det t systemet e i elektosttisk likevekt. esom ikke nnet e oppgitt, e potensil undefostått elektosttisk
Midtsemesterprøve onsdag 7. mars 2007 kl Versjon A
Institutt fo fysikk, NTNU FY1003 lektisitet og mgnetisme I TFY4155 lektomgnetisme Vå 2007 Midtsemestepøve onsdg 7. ms 2007 kl 1300 1500. Løsningsfoslg. Vesjon 1) Hvilken påstnd om elektisk potensil e feil?
FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
UNIVERITETET I AGDER Gimstad E K A M E N O P P G A V E : FAG: MA-9 Matematikk ÆRER: Pe enik ogstad Klasse: Dato:.6. Eksamenstid fa-til: 9.. Eksamensoppgaven bestå av følgende Antall side: 5 inkl. foside
Løsningsforslag til øving 4
Institutt for fysikk, NTNU TFY455/FY003 Elektrisitet og magnetisme Vår 2007 Veiledning uke 5 Løsningsforslag til øving 4 Oppgave a) Vi benytter oss av tipsene gitt i oppgaveteksten og tar utgangspunkt
Om bevegelsesligningene
Inst. fo Mekanikk, Temo- og Fluiddynamikk Om bevegelsesligningene (Repetisjon av utledninge fa IO 1008 Fluidmekanikk) P.-Å. Kogstad I det ettefølgende epetees kot utledningene av de fundamentale bevegelsesligninge,
Løsningsforslag Fysikk 2 Høst 2014
Løsningsfoslag Fysikk Høst 014 Løsningsfoslag Fysikk Høst 014 Opp Sva Foklaing gave a) D Det elektiske feltet gå adielt ut fa en positivt ladet patikkel. Til høye fo elektonet lage elektonet en feltstyke
Magnetisk hysterese. 1. Beregn magnetfeltet fra en strømførende spole med kjent vindingstall.
FY33 Elektisitet og magnetisme II Institutt fo fysikk, TU FY33 Elektisitet og magnetisme II, høst 7 Laboatoieøvelse Magnetisk hysteese Hensikt Hensikten med oppgave å gjøe seg kjent med opphavet til magnetiske
Onsdag og fredag
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2009, uke 13 Onsdag 25.03.09 og fredag 27.03.09 Amperes lov [FGT 30.1, 30.3; YF 28.6, 28.7; AF 26.2; H 23.6; G 5.3] B dl = µ 0
Eksamen TFY 4240: Elektromagnetisk teori
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt unde eksamen: Ola Hundei, tlf. 93411 (mobil: 95143671) Eksamen TFY 4240: Elektomagnetisk teoi 8 desembe 2007 kl. 09.00-13.00
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME Mandag 4. desember 2006 kl
NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTSTET OG MAGNETSME Mandag 4. desember
Ladning og kapasitans
FY13 Elektisitet og magnetisme Vå 9 Faglæe: Tho Bent Melø Institutt fo fysikk, NTNU Laboatoieøvelse 3 Ladning og kapasitans I denne laboatoieoppgaven vil vi studee sammenhengen mellom kapasitans, ladning
Utvalg med tilbakelegging
Utvalg med tilbakelegging Gitt n foskjellige objekte. Vi skal velge objekte på en slik måte at fo hvet objekt vi velge, notee vi hvilket det e og legge det tilbake. Det bety at vi kan velge det samme objektet
Kap 28: Magnetiske kilder
: Magnetiske kilde Elektostatikk: Ladning q påvikes av kaft qe Definisjon E-felt E-feltet skapes fa ladninge (Coulombs lov) (Coulombs lov) Magnetostatikk: Ladning q i bevegelse påvikes av kaft qv x B Definisjon
Løsningsforslag til ukeoppgave 11
Oppgave FYS1001 Vå 2018 1 Løsningsfoslag til ukeoppgave 11 Oppgave 23.04 B F m qv = F m 2eV = 6, 3 10 3 T Kaft, magnetfelt og fat stå vinkelett på hveande. Se læebok s. 690. Oppgave 23.09 a) F = qvb =
Løsningsforslag til øving
1 FY1002/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 2012. Løsningsforslag til øving 11-2012 Oppgave 1 a) Forplantning i z-retning betyr at E og B begge ligger i xy-planet. La oss for eksempel
EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG Tisdag 18. desembe 01 kl. 0900-100 Oppgave 1. Ti flevalgsspøsmål. (Telle
Betinget bevegelse
Betinget bevegelse 1.0.013 innleveing på fonte FYS-MEK 1110 1.0.013 1 Innleveinge aksenavn! enhete! kommente esultatene utegninge: skitt fo skitt, ikke bae esultatet vi tenge å fostå hva du ha gjot sett
c) etingelsen fo at det elektiske feltet E e otasjonsinvaiant om x-aksen e, med E og ee som denet ovenfo, at e E = E. Dette skal gjelde fo en vilkalig
Eksamen i klassisk feltteoi, fag 74 5, 4. august 995 Lsninge a) Koodinatene x; y; z tansfomees slik x 7 bx = x; y 7 by = y cos, z sin ; z 7 by = y sin + z cos Den invese tansfomasjonen e en otasjon en
EKSAMEN I FAG SIF 4008 FYSIKK Mandag 7. mai 2001 kl Bokmål. K. Rottmann: Matematisk formelsamling
Side 1 av 1 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt unde eksamen: Føsteamanuensis Knut Ane Stand Telefon: 73 59 34 61 EKSAMEN I FAG SIF 48 FYSIKK Mandag 7. mai
Løsning øving 12 N L. Fra Faradays induksjonslov får vi da en indusert elektromotorisk spenning:
nstitutt fo fysikk, NTNU Fg SF 4 Elektognetise og MNFFY 3 Elektisitet og gnetise Høst øsning øving Oppgve Mgnetfeltet inne i solenoiden e : ( H( (N/) ( (dvs fo < R). Utenfo solenoiden: ( > R) Fo å eegne
EKSAMEN FAG TFY4160 BØLGEFYSIKK OG FAG FY1002/MNFFY101 GENERELL FYSIKK II Lørdag 6. desember 2003 kl Bokmål
ide av 0 NORGE TEKNIK- NATURVITENKAPELIGE UNIVERITET INTITUTT FOR FYIKK Faglig kontakt unde eksamen: Føsteamanuensis Knut Ane tand Telefon: 73 59 34 6 EKAMEN FAG TFY460 ØLGEFYIKK OG FAG FY00/MNFFY0 GENERELL
b) C Det elektriske feltet går radielt ut fra en positivt ladd partikkel.
Løsningsfoslag Fysikk 2 Høst 203 Løsningsfoslag Fysikk 2 Høst 203 Opp Sva Foklaing gave a) B Fomelen fo bevegelsesmengde p = mv gi enheten kg m. s Dette kan igjen skives som: kg m = kg m s s2 s = Ns b)
Kap 28: Magnetiske kilder
: Magnetiske kilde Elektostatikk: Ladning q påvikes av kaft qe Definisjon E-felt E-feltet skapes fa ladninge (Coulombs lov) (Coulombs lov) Magnetostatikk: Ladning q i bevegelse påvikes av kaft qv x B Definisjon
Løsningsforslag til øving 3
Institutt for fysikk, NTNU TFY455/FY003 Elektromagnetisme Vår 2009 Løsningsforslag til øving 3 Oppgave a) C V = E dl = 0 dersom dl E b) B På samme måte som et legeme med null starthastighet faller i gravitasjonsfeltet
Laboratorieøvelse i MNFFY1303-Elektromagnetisme Institutt for Fysikk, NTNU MAGNETISK HYSTERESE
Laboatoieøvelse i MNFFY33-Elektomagnetisme Institutt fo Fysikk, NTNU Hensikten med oppgave å gjøe seg kjent med opphavet til magnetiske felte og målinge av slike. Det innebæe måling av magnetfelt fa enkle
Løsning midtveiseksamen H12 AST1100
Løsning midtveiseksamen H AST00 Aleksande Seland Setembe 5, 04 Ogave Vi se at kuven fo adiell hastighet e eiodisk og minne om en hamonisk funksjon. Vi kan defo anta at denne stjenen gå i bane undt et felles
Fysikk-OL Norsk finale 2005
Univesitetet i Oslo Nosk Fysikklæefoening Fysikk-OL Nosk finale 005 3. uttakingsunde Tid: Fedag 5. apil kl 09.00.00 Hjelpemidle: Tabell/fomelsamling, gafisk lommeegne Oppgavesettet bestå av 7 oppgave på
KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Fredag 11. august 2006 kl
NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 KONTNUASJONSEKSAMEN TFY4155 ELEKTOMAGNETSME Fredag 11.
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKALSK ELEKTRONIKK
Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKALSK ELEKTRONIKK Faglig/fagleg kontakt unde eksamen: Navn: Helge E. Engan Tlf.: 944 EKSAMEN I EMNE SIE415 BØLGEFORPLANTNING
EKSAMEN i. MA-132 Geometri. Torsdag 3. desember 2009 kl Tillatte hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.
Institutt fo matematiske fag EKSAMEN i MA-1 Geometi Tosdag. desembe 009 kl. 9.00-14.00 Tillatte hjelpemidle: Alle tykte og skevne hjelpemidle. Kalkulato. Bokmål Oppgave 1 I oppgaven nedenfo skal du oppgi
Mandag Ledere: Metaller. Atomenes ytterste elektron(er) er fri til å bevege seg gjennom lederen. Eksempler: Cu, Al, Ag etc.
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 7 Mandag 12.02.07 Materialer og elektriske egenskaper Hovedinndeling av materialer med hensyn på deres elektriske egenskaper:
Matematikk 3MX AA6524 / AA6526 Elever / privatister Oktober 2002
E K S A M E N LÆRINGSSENTERET Matematikk 3MX AA6524 / AA6526 Eleve / pivatiste Bokmål Eksempeloppgave ette læeplan godkjent juli 2000 Videegående kus II Studieetning fo allmenne, økonomiske og administative
KONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Noges teknisk natuitenskapelige uniesitet Institutt fo elektoniske systeme ide 1 a 7 Faglæe: Johannes kaa KONTINUAJONEKAMEN I EMNE TFE 4120 ELEKTROMAGNETIME August 2017 Alle anlige deloppgae telle 4 poeng.
Midtsemesterprøve fredag 10. mars kl
Institutt for fysikk, NTNU FY1003 Elektrisitet og magnetisme TFY4155 Elektromagnetisme Vår 2006 Midtsemesterprøve fredag 10. mars kl 0830 1130. Løsningsforslag 1) A. (Andel som svarte riktig: 83%) Det
FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
UNIVERITETET I GDER Gimstad E K M E N O P P G V E : G: M-9 Matematikk LÆRER: Pe Henik Hogstad Klasse: Dato: 8..8 Eksamenstid fa-til: 9.. Eksamensoppgaven bestå av følgende ntall side: 6 inkl. foside vedlegg
Løsningsforslag for eksamen i FY101 Elektromagnetisme torsdag 12. desember 2002
Løsningsfoslag fo eksamen i FY Elektomagnetisme tosdag. desembe Ved sensueing vil alle delspøsmål i utgangspunktet bli gitt samme vekt (uavhengig av oppgavenumme), men vi fobeholde oss etten til justeinge.
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTISITET OG MAGNETISME I TFY4155
Kap. 22. Gauss lov. Vi skal se på: Fluksen til elektrisk felt E Gauss lov. Elektrisk ledere. Integralform og differensialform
Kap. 22. Gauss lov Vi skal se på: Fluksen til elektrisk felt E Gauss lov Integralform og differensialform Elektrisk ledere. E-felt fra Coulombs lov: E k q r 2 r E k n q r n 2 0n r 0n dq E k r 2 r tot.
Kap 28: Magnetiske kilder. Kap 28: Magnetiske kilder. Magnetisme
Kap 8 9.3.15 Magnetisme Magnetostatikk (ingen tidsvaiasjon): Kap 7. Magnetiske kefte Kap 8: Magnetiske kilde Elektodynamikk: Kap 9-31: Tidsvaiasjon: Induksjon mm. Kap 8: Magnetiske kilde Elektostatikk:
Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener.
NTNU Institutt for matematiske fag TMA45 Matematikk, øving, vår Løsningsforslag Notasjon og merknader Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener. Oppgaver fra kapittel
b) 3 MATEMATISKE METODER I 1 ( ) ( ) ( ) ( ) ( ) ( ) Repetisjonsoppgaver Bruk av regneregler: 1 Regn ut: e) 0 x ) 4 3 d) 4 x f) 5y
MATEMATISKE METODER I Buk av egneegle: Regn ut: a ( ( b 7 c ( 7 y 8 d 8 e f 5y y Regn ut og tekk sammen: a 5a b a b a + b b y + y + + y c t t + 6 ( 6t t + 8 d s+ s + s ( s + s Multiplise ut og odne a (
Gauss lov. Kap. 22. Gauss lov. Gauss lov skjematisk. Vi skal se på: Fluksen til elektrisk felt E Gauss lov Integralform og differensialform
Kap. 5..6 Kap.. Gauss lov Vi skal se på: Fluksen til elektrisk felt E Gauss lov Integralform og differensialform Elektrisk ledere. Efelt fra Coulombs lov: q E k r r E k n q r n n r n dq E k r r tot. ladn.
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 17. desember 2007 kl K. Rottmann: Matematisk formelsamling (eller tilsvarende).
NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTSTET OG MAGNETSME Mandag 17. desember
Kapittel 2: Krumlinjet bevegelse
Kapittel : Kumlinjet bevegelse Vannett kast v = v v = gt x 0 1 x = vt 0 y= gt y Skått kast v = v v = v gt x 0x y 0y 1 x = v0 t y = v x 0 t gt y Sving uten dosseing U+ G = ma N = G v R = m R = μn = μmg
a) C Det elektriske feltet går radielt ut fra en positivt ladet partikkel og radielt innover mot en negativt ladd partikkel.
Løsningsfoslag Fysikk 2 Vå 2015 Løsningsfoslag Fysikk 2 Vå 2015 Oppgav e Sva Foklaing a) C Det elektiske feltet gå adielt ut fa en positivt ladet patikkel og adielt innove mot en negativt ladd patikkel.
TFY4104 Fysikk. Institutt for fysikk, NTNU. ving 10.
TFY0 Fysikk. Institutt fo fysikk, NTNU. ving 0. Opplysninge: esom ikke nnet e oppgitt, nts det t systemet e i elektosttisk likevekt. esom ikke nnet e oppgitt, e potensil"undefosttt elektosttisk potensil",
1. En tynn stav med lengde L har uniform ladning λ per lengdeenhet. Hvor mye ladning dq er det på en liten lengde dx av staven?
Ladet stav 1 En tynn stav med lengde L har uniform ladning per lengdeenhet Hvor mye ladning d er det på en liten lengde d av staven? A /d B d C 2 d D d/ E L d Løsning: Med linjeladning (dvs ladning per
Newtons lover i én dimensjon (2)
Newtons love i én dimensjon () 9.1.13 husk: data lab fedag 1-16 FYS-MEK 111 9.1.13 1 Identifikasjon av keftene: 1. Del poblemet inn i system og omgivelse.. Tegn figu av objektet og alt som beøe det. 3.
Øving 15. H j B j M j
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007 Veiledning: Uke 17 Innleveringsfrist: Mandag 30. april Øving 15 Oppgave 1 H j j M j H 0 0 M 0 I En sylinderformet jernstav
Betraktninger rundt det klassiske elektronet.
Betaktninge undt det klassiske elektonet. Kistian Beland Matteus Häge - 1 - - - Innholdsfotegnelse: 1. Sammendag - 5 -. Innledning - 6 -. Innledende betaktninge - 7-4. Vå elektonmodell - 8-5. Enegi i feltene
Løsningsforslag eksamen 2. august 2003 SIF 4005 Fysikk for kjemi og materialteknologi
Løsningsfslag eksamen. august SF 5 Fysikk f kjemi g mateialteknlgi Oppgave lektstatikk a) Sylineens ttale laning pe lengeenhet finnes ve å integee laningsfelingen ( ) ve aealelementet A= e sylineens aius
EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 30. mai 2006 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003
1 Virtuelt arbeid for stive legemer
1 Vituelt abeid fo stive legeme Innhold: Abeidsbegepet i mekanikk Pinsippet om vituelt abeid fo stive legeme Litteatu: Igens, Statikk, kap. 10.1 10.2 Hibbele, Statics, kap. 11.1 11.3 Bell, Konstuksjonsmekanikk
FYS1120 Elektromagnetisme
Det matematisk-naturvitenskapelige fakultet Universitetet i Oslo FY112 Elektromagnetisme Løsningsforslag til ukesoppgave 1 Oppgave 1 a i Her er alternativ 1 riktig. Hvis massetettheten er F, vil et linjestykke
KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1120 Elektromagnetisme Eksamensdag: 10. oktober 2016 Tid for eksamen: 10.00 13.00 Oppgavesettet er på 8 sider. Vedlegg: Tillatte
TFE4120 Elektromagnetisme
NTNU IET, IME-fkultetet, Noge teknisk-ntuvitenskpelige univesitet TFE4120 Elektomgnetisme Løsningsfoslg øving 5 Oppgve 1 ) Pg. symmeti h vi E = E()ˆ gjennom hele oppgven. i) Vi l Gussflten S væe oveflten
Newtons lover i to og tre dimensjoner
Newtons love i to og te dimensjone 7..13 innleveing: buk iktige boks! FYS-MEK 111 7..13 1 Skått kast kontaktkaft: luftmotstand langtekkende kaft: gavitasjon initialbetingelse: () v() v v cos( α ) iˆ +
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME
Mandag 7. mai. Elektromagnetisk induksjon (fortsatt) [FGT ; YF ; TM ; AF ; LHL 24.1; DJG 7.
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke19 Mandag 7. mai Elektromagnetisk induksjon (fortsatt) [FGT 30.1-30.6; YF 29.1-29.5; TM 28.2-28.3; AF 27.1-27.3; LHL 24.1;
Midtsemesterprøve fredag 11. mars kl
Institutt for fysikk, NTNU FY1003 Elektrisitet og magnetisme TFY4155 Elektromagnetisme Vår 2005 Midtsemesterprøve fredag 11. mars kl 1030 1330. Løsningsforslag 1) B. Newtons 3. lov: Kraft = motkraft. (Andel
Løsningsforslag Fysikk 2 Høst 2015
Løsningsfoslag Fysikk Høst 015 Oppgave Sva Foklaing a) A Vi pøve oss fa ed noen kjente fole: ε vbl B ε Φ vl t vl Nå vi nå egne ed enhete på denne foelen få vi Wb B s s Wb Magnetfeltet kan altså åles i
Notat i FYS-MEK/F 1110 våren 2006
1 Notat i FYS-MEK/F 1110 våen 2006 Rulling og skliing av kule og sylinde Foelest 24. mai 2006 av Ant Inge Vistnes Geneelt Rotasjonsdynamikk e en svæt viktig del av mekanikkuset våt. Dette e nytt stoff
LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY003 ELEKTRISITET
FASIT FRAMSKUTT EKSAMEN VÅREN Oppg. 1
FASIT FRAMSKUTT EKSAMEN VÅREN 00 SENSORTEORI Oppg. Ein elastisk pendel ha eit lodd ed asse 0,0 kg og ei fjø ed fjøkonstant 0,0 N/. Pendelen svinga ed aplitude 0. a) Finn svingetida (peioden) til pendelen.
Løsningsforslag til øving 8
FY12/TFY416 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 21. Løsningsforslag til øving 8 Oppgave 1 Helt generelt vil vi ha, for en elektromagnetisk bølge som forplanter seg i retning ˆk og som er polarisert
TFY4104 Fysikk. Institutt for fysikk, NTNU. ving 9.
TFY404 Fsikk. Institutt fo fsikk, NTNU. ving 9. Oppgve ) Figuen vise et unifomt elektisk felt (heltukne linje). Lngs hvilken stiplet linje ende potensilet seg ikke? 2 C 3 D 4 2 3 4 b) Den potensielle enegien
TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 10.
TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 015. Løsningsforslag til øving 10. Oppgave A B C D 1 x x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 1 x 13 x 14 x 15 x 16 x 17 x 18 x 9 x 0 x 1) Glass-staven
Løsningsforslag Eksamen i fag TEP4110 Fluidmekanikk
Oppgave Løsningsfoslag Eksamen i fag TEP40 Fluidmekanikk Onsdag 8 desembe 00 kl 500 900 Hastighetspotensialet fo en todimensjonal potensialstømning av en inkompessibel fluid e gitt som: (, ) Acos ln ()
KONTINUASJONSEKSAMEN I FAG SIF4028 FYSIKK MED ELEKTROMAGNETISME Mandag 7. august 2000 Tid:
Sie 1 av 9 NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt une eksamen: Navn: Ragnval Mathiesen Tlf. 93584 KONTINUASJONSEKSAMEN I FAG SIF48 FYSIKK MED ELEKTROMAGNETISME
Øving 11. Oppgave 1. E t0 = 2. Her er
FY00/TFY460 Bølgefysi. Institutt for fysi, NTNU. Høsten 0. Veiledning: Mandag 5. og tirsdag 6. november. Innleveringsfrist: Mandag. november l :00. Øving Tema: Dipol-Ståling, reflesjon og transmisjon av
Oppgave 8.12 Gitt en potensialhvirvel med styrke K i origo. Bestem sirkulasjonen ' langs kurven C. Sirkulasjonen er definert som: ' /
Løsning øving 3 Oppgve 8. Gitt en potensilhvivel med styke i oigo. Bestem sikulsjonen ' lngs kuven C. C y (I oppgven stå det t vi skl gå med klokk, men he h vi gått mot klokk i oveensstemmelse med definisjonen
LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I Mandag 17. desember 2007 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I FY1003 ELEKTISITET OG
LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I FY1003 ELEKTISITET OG
Billige arboresenser og matchinger
Billige aboesense og matchinge Magnus Lie Hetland 16. jan 009 Dette e foelesningsnotate til føste foelesning i faget Algoitmekonstuksjon, videegående kus, ved Institutt fo datateknikk og infomasjonsvitenskap,
Løsningsforslag Fysikk 2 Vår 2013 Oppgav e
Løsningsfoslag Fysikk 2 Vå 203 Løsningsfoslag Fysikk 2 Vå 203 Oppgav e Sva Foklaing a) B Feltet E gå adielt ut fa en positivt ladning. Siden ladning og 2 e like stoe, og ligge like langt unna P vil E væe
LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl
NORGES TEKNISK- NATURVITENSKAPEIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 ØSNINGSFORSAG TI EKSAMEN I TFY4155 EEKTROMAGNETISME
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Onsdag 3. juni 2009 kl
NOGES TEKNISK- NATUVITENSKAPEIGE UNIVESITET INSTITUTT FO FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 EEKTISITET OG MAGNETISME TFY4155
EKSAMEN I EMNE SIF4005 FYSIKK For kjemi og materialteknologi Onsdag 11. desember 2002 kl
Sie 1av 6 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt une eksamen: Institutt fo fysikk, Realfagbygget Pofesso Cathaina Davies Tel: 73593688 Bokmål EKSAMEN I EMNE