Når Merge sort og Insertion sort samarbeider

Størrelse: px
Begynne med side:

Download "Når Merge sort og Insertion sort samarbeider"

Transkript

1 Når Merge sort og Insertion sort samarbeider Lars Sydnes 8. november Innledning Her skal vi undersøke to algoritmer som brukes til å sortere lister, Merge sort og Insertion sort. Det at Merge sort har linearitmisk kjøretid og Insertion sort har kvadratisk kjøretid betyr at Merge sort generelt sett er raskere enn Insertion sort, når vi arbeider med tilstrekkelig store lister. Kjøretidsestimatene kan ikke svare på følgende spørsmål: Hvor store må listene være for at Merge sort skal være raskere enn Insertion sort? Hvilken algoritme er raskest for små lister? Vi må altså være åpne for at Insertion sort kan sortere små lister raskere enn Merge sort, hvis vi ikke vet bedre. Vi skal undersøke en implementasjon av Merge sort som tar hensyn til at Insertion sort kan være raskere når listene er små. Algoritmen velger hvilken strategi som skal brukes ved å sammenligne antallet elementer som skal sorteres med konstanten int insertionsortthreshold. Når antallet elementer som skal sorteres er mindre enn insertionsortthreshold sorteres elementene med Insertion sort. Når antallet elementer som skal sorteres er høyere, sorteres elementene ved Merge sort, det vil si at listen deles i to deler som sorteres hver for seg før de flettes sammen til en sortert liste. Den implementasjonen vi ser på er rekursiv. Det betyr at de to delene som skal sorteres hver for seg blir sortert med den samme metoden. Det spørsmålet vi ønsker å få svar på her er: Hvilken verdi for insertionsortthreshold gir den mest effektive sorteringsalgoritmen? 2 Eksperimentet Vi målte kjøretid og antall kall av compareto for sorterte lister av typen 1, 2, 3,..., n og usorterte lister uten duplikater av størrelse 1000, 2000, 3000,..., , 1

2 med ulike verdier av insertionsortthreshold. Vi undersøkte verdier av insertionsortthreshold i intervallet fra 2 til 50. Målingene ble gjort i tilfeldig rekkefølge. 3 Resultater 3.1 Usorterte lister Kjøretid i sekunder InsertionSortThreshold Figur 1: Gjennomsnittlig kjøretid, målt for usorterte lister. Figur 1 viser gjennomsnittlig kjøretid for ulike verdier av insertionsortthreshold. Det ser ut til at kjøretiden først avtar, for så å øke. Hvilken verdi av insertionsortthreshold som gir kortest kjøretid er vanskelig å si, men det later til at den befinne seg mellom 5 og 20. Hvis vi ser på gjennomsnittlig antall kall av compareto, er bildet enda tydeligere. Figur 2 viser tydelig at antall kall av compareto er lavest når insertionsortthreshold er lik Sorterte lister Figur 3 og 4 viser at kjøretiden avtar når insetionsortthreshold øker. Målingene av gjennomsnittlig antall kall av compareto viser noe interessant: Gjennomsnittlig antall kall av compareto er i alle tilfellene lik

3 Antall sammenligninger InsertionSortThreshold Figur 2: Gjennomsnittlig antall kall av compareto, målt for usorterte lister. Kjøretid i sekunder 3e 04 6e 04 9e InsertionSortThreshold Figur 3: Gjennomsnittlig kjøretid, målt for sorterte lister 3

4 Kjøretid i sekunder 4e 04 8e InsertionSortThreshold Figur 4: Gjennomsnittlig kjøretid, målt for sorterte lister 3.3 Antall kall av compareto som kostnadsmodell De to foregående avsnittene belyser forholdet mellom antall kall av compareto og kjøretiden. Figur 5 viser sammenhengen mellom kjøretiden og antall kall av compareto i eksperimentene. 4

5 Figur 5: Plott av kjøretid mot antall kall av compareto, for usorterte lister. Hvert datapunkt svarer til én måling. 5

6 4 Diskusjon 4.1 insertionsortthreshold Vi kan oppsummere måleresultatene slik: For usorterte lister bør insertionsortthreshold har en lav verdi. For sorterte lister bør insertionsortthreshold har en høy verdi. Det betyr: Hvis vi velger en lav verdi av insertionsortthreshold, så blir vi straffet når vi møter en ferdigsortert liste. Hvis vi velger en høy verdi av insertionsortthreshold, så blir vi straffet når vi møter en usortert liste. En brukbar almenn sorteringsalgoritme må altså finne et brukbart balansepunkt. La oss se på hvordan vi kan finne et slikt balansepunkt. Figur 3 og 4 forteller oss at vi neppe bør la insertionsortthreshold være mindre enn 5; da blir kjøretiden dramatisk forverret når vi sorterer lister som allerede er sortert. På den annen side forteller figur 1 at insertionsortthreshold ikke bør overstige 30. I motsatt fall vil kjøretiden bli forverret når vi sorterer usorterte lister. I en optimal versjon av denne algoritmen vil altså 5 < insertionsortthreshold < 30. Dersom vi fokuserer på antallet kall av compareto, så kan figur 2 gi oss enda klarere svar, nemlig at den optimale verdien kan ligge mellom 5 og 10. Det er dog ikke klart at antall kall av compareto er noe vi bør legge vekt på. 4.2 Antall kall av compareto som kostnadsmodell Figur 5, som viser målinger for usorterte lister, viser noe som er i nærheten av en lineær sammenheng mellom minimal kjøretid og antall kall av compareto. Det later til å være en tilsvarende sammenheng mellom maksimal forventet kjøretid og antall kall av compareto. Slik sett, kan vi si at antall kall av compareto fungerer som en god kostnadsmodell. Dette understrekes av at figur 1 og figur 2 gir omtrent samme inntrykk, selv om figur 2 viser mye mer regelmessige målinger. Situasjonen er mer komplisert når vi arbeider med ferdig sorterte lister. Her er gjennomsnittlig antall kall av compareto uavhengig av 6

7 insertionsortthreshold. Forklaringen på dette er meget enkel: Når listen er sortert ender sorteringsalgoritmen opp med å sammenligne alle naboelementer 1 gang. I en liste med n elementer vil det altså foregå n 1 sammenligninger. Når vi bruker Insertion sort er dette alt som skjer. Når vi bruker Merge sort vil det i tillegg foregå en hel del unødvendig kopiering: Hvis insertionsortthreshold= k og listen har n elementer, vil det foregå log 2 (n/k) kopieringer, som hver for seg har lineær kjøretid. Utifra denne analysen skal kjøretiden T (n) A n + B n log 2 (n/k), der det første leddet stammer fra compareto, mens det andre leddet stammer fra kopieringen. Dette forklarer hvorfor antall kall av compareto er uavhengig av insertionsortthreshold og kjøretiden avtar når insertionsortthreshold øker. Til tross for denne detaljerte diskusjonen er konklusjonen meget enkel: Antall kall av compareto er konstant, og er derfor en ubrukelig kostnadsmodell når vi skal sammenligne ulike verdier av insertionsortthreshold for sorterte lister. Dette betyr dog ikke at denne kostnadsmodellen generelt sett er ubrukelig. Det hele avhenger av hvilket spørsmål man stiller. 5 Begrensninger Her vil jeg nevne noen innvendinger jeg har mot denne undersøkelsen. Disse innvendingene kan ganske enkelt oppsummeres ved å peke på at følgende spørsmål henger i løse luften. Hva vil det si at en sorteringsalgoritme er en optimal almenn sorteringsalgoritme? Vi kan peke på følgende konkrete innvendinger: Undersøkelsen tok kun for seg sorterte og usorterte lister. Det er vanskelig å si hvordan det står til med delvis sorterte lister og lister man møter i det virkelige Liv Undersøkelsen tok kun for seg lister med størrelse 1000, Kan det tenkes at konklusjonene blir annerledes om vi undersøker større eller mindre lister? Undersøkelsen tok kun for seg lister av Integer-objekter. comparetometoden til disse objektene er serdeles rask. Dersom man gjorde en tilsvarende undersøkelse for String-objekter, ville kjøretiden til compareto antageligvis få større betydning. Kjøretiden knyttet til kopiering vil dog være tilnærmet uforandret i og med at det kun innebærer å flytte referanser til objekter. Vi har ikke funnet den optimale insertionsortthreshold. Til gjengjeld vet vi en hel del mer om dette spørsmålet. Det som står fast er at lave verdier av 7

8 insertionsortthreshold straffer seg når listen man sorterer en ferdigsortert liste, og at høye verdier av insertionsortthreshold straffer seg når listen ikke er sortert fra før. Det er denne balansegangen man må beherske. 8

Løsningsforslag til eksamen i PG4200 Algoritmer og datastrukturer 10. desember 2014

Løsningsforslag til eksamen i PG4200 Algoritmer og datastrukturer 10. desember 2014 Løsningsforslag Dette er et utbygd løsningsforslag. D.v.s at det kan forekomme feil og at løsningene er mer omfattende enn det som kreves av studentene på eksamen. Oppgavesettet består av 5 (fem) sider.

Detaljer

NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013

NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013 NITH PG00 Algoritmer og datastrukturer Løsningsforslag Eksamen.juni 0 Dette løsningsforslaget er til tider mer detaljert enn det man vil forvente av en eksamensbesvarelse. Det er altså ikke et eksempel

Detaljer

INF2220: Time 12 - Sortering

INF2220: Time 12 - Sortering INF0: Time 1 - Sortering Mathias Lohne mathialo Noen algoritmer Vi skal nå se på noen konkrete sorteringsalgoritmer. Gjennomgående i alle eksempler vil vi sortere tall etter tallverdi, men som diskutert

Detaljer

Norges Informasjonsteknologiske Høgskole

Norges Informasjonsteknologiske Høgskole Oppgavesettet består av 6 (seks) sider. Norges Informasjonsteknologiske Høgskole PG4200 Algoritmer og datastrukturer Side 1 av 6 Tillatte hjelpemidler: Ingen Varighet: 3 timer Dato: 4. juni 2014 Fagansvarlig:

Detaljer

Sortering i Lineær Tid

Sortering i Lineær Tid Sortering i Lineær Tid Lars Vidar Magnusson 5.2.2014 Kapittel 8 Counting Sort Radix Sort Bucket Sort Sammenligningsbasert Sortering Sorteringsalgoritmene vi har sett på så langt har alle vært sammenligningsbaserte

Detaljer

Løsningsforslag for Obligatorisk Oppgave 2. Algoritmer og Datastrukturer ITF20006

Løsningsforslag for Obligatorisk Oppgave 2. Algoritmer og Datastrukturer ITF20006 Løsningsforslag for Obligatorisk Oppgave 2 Algoritmer og Datastrukturer ITF20006 Lars Vidar Magnusson Frist 28.02.14 Den andre obligatoriske oppgaven tar for seg forelesning 5, 6, og 7 som dreier seg om

Detaljer

Sorteringsproblemet. Gitt en array A med n elementer som kan sammenlignes med hverandre:

Sorteringsproblemet. Gitt en array A med n elementer som kan sammenlignes med hverandre: Sortering Sorteringsproblemet Gitt en array A med n elementer som kan sammenlignes med hverandre: Finn en ordning (eller permutasjon) av elementene i A slik at de står i stigende (evt. avtagende) rekkefølge

Detaljer

Heapsort. Lars Vidar Magnusson Kapittel 6 Heaps Heapsort Prioritetskøer

Heapsort. Lars Vidar Magnusson Kapittel 6 Heaps Heapsort Prioritetskøer Heapsort Lars Vidar Magnusson 24.1.2014 Kapittel 6 Heaps Heapsort Prioritetskøer Sorterings Problemet Sorterings problemet er et av de mest fundementalske problemene innen informatikken. Vi sorterer typisk

Detaljer

NORGES INFORMASJONSTEKNOLOGISKE HØGSKOLE PG4200 Algoritmer og datastrukturer

NORGES INFORMASJONSTEKNOLOGISKE HØGSKOLE PG4200 Algoritmer og datastrukturer Oppgavesettet består av 7 (syv) sider. NORGES INFORMASJONSTEKNOLOGISKE HØGSKOLE PG4200 Algoritmer og datastrukturer Tillatte hjelpemidler: Ingen Side av 7 Varighet: 3 timer Dato:.august 203 Fagansvarlig:

Detaljer

Først litt praktisk info. Sorteringsmetoder. Nordisk mesterskap i programmering (NCPC) Agenda

Først litt praktisk info. Sorteringsmetoder. Nordisk mesterskap i programmering (NCPC) Agenda Først litt praktisk info Sorteringsmetoder Gruppeøvinger har startet http://selje.idi.ntnu.no:1234/tdt4120/gru ppeoving.php De som ikke har fått gruppe må velge en av de 4 gruppende og sende mail til algdat@idi.ntnu.no

Detaljer

PG 4200 Algoritmer og datastrukturer Innlevering 2

PG 4200 Algoritmer og datastrukturer Innlevering 2 PG 4200 Algoritmer og datastrukturer Innlevering 2 Frist: Mandag 21.april 2014 kl 23.55 Utdelt materiale: Se zip-filen innlevering2.zip. Innlevering: Lever en zip-fil som inneholder følgende: PG4200_innlevering_2.pdf:

Detaljer

MED TIDESTIMATER Løsningsforslag

MED TIDESTIMATER Løsningsforslag Oppgavesettet består av 12 (mange) sider. Norges Informasjonsteknologiske Høgskole PG4200 Algoritmer og datastrukturer Side 1 av 12 Tillatte hjelpemidler: Ingen Varighet: 3 timer Dato: 6. august 2014 Fagansvarlig:

Detaljer

Kap.8 Sortering og søking sist oppdatert 16.03

Kap.8 Sortering og søking sist oppdatert 16.03 Kap.8 Sortering og søking sist oppdatert 16.03 Del 1 Søking - lineær søking m/u sorterte elementer - binærsøking - analyse Del 2 Sortering - gamle sorteringsmetoder fra i høst - nye -analyse Copyright

Detaljer

Hvor raskt klarer vi å sortere?

Hvor raskt klarer vi å sortere? Sortering Sorteringsproblemet Gitt en array med n elementer som kan sammenlignes med hverandre: Finn en ordning (eller permutasjon) av elementene slik at de står i stigende (evt. avtagende) rekkefølge

Detaljer

PG4200 Algoritmer og datastrukturer Lab 1. 8.januar 2014. I dag skal vi undersøke en rekke velkjente databeholdere i Java:

PG4200 Algoritmer og datastrukturer Lab 1. 8.januar 2014. I dag skal vi undersøke en rekke velkjente databeholdere i Java: PG4200 Algoritmer og datastrukturer Lab 1 8.januar 2014 Innledning I dag skal vi undersøke en rekke velkjente databeholdere i Java: java.util.arraylist java.util.linkedlist java.util.hashset java.util.treeset

Detaljer

Øvingsforelesning 6. Sorteringsalgoritmer. Martin Kirkholt Melhus Basert på foiler av Kristian Veøy 30/09/14 1

Øvingsforelesning 6. Sorteringsalgoritmer. Martin Kirkholt Melhus Basert på foiler av Kristian Veøy 30/09/14 1 Øvingsforelesning 6 Sorteringsalgoritmer Martin Kirkholt Melhus martme@stud.ntnu.no Basert på foiler av Kristian Veøy 30/09/14 1 Agenda l Spørsmål fra øving 4 l Sortering l Presentasjon av øving 6 30/09/14

Detaljer

n/b log b n = (lg n) a log b n = n log b a

n/b log b n = (lg n) a log b n = n log b a Masterteoremet 1 T (n) = at (n/b) + f(n) Antall «barn»: Størrelse per «barn»: «Høyde»: a n/b log b n = (lg n) Rota har f(n) arbeid; hver løvnode har en konstant mengde arbeid. Hva vil dominere totalen?

Detaljer

Algoritmer og Datastrukturer

Algoritmer og Datastrukturer Eksamen i Algoritmer og Datastrukturer IAI 21899 Høgskolen i Østfold Avdeling for informatikk og automatisering Torsdag 3. november 2, kl. 9. - 14. Hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs

TDT4105 Informasjonsteknologi, grunnkurs 1 TDT4105 Informasjonsteknologi, grunnkurs Matlab: Sortering og søking Anders Christensen (anders@idi.ntnu.no) Rune Sætre (satre@idi.ntnu.no) TDT4105 IT Grunnkurs 2 Pensum Matlab-boka: 12.3 og 12.5 Stoffet

Detaljer

NORGES INFORMASJONSTEKNOLOGISKE HØGSKOLE PG4200 Algoritmer og datastrukturer

NORGES INFORMASJONSTEKNOLOGISKE HØGSKOLE PG4200 Algoritmer og datastrukturer Oppgavesettet består av 8 (åtte) sider. NORGES INFORMASJONSTEKNOLOGISKE HØGSKOLE PG4200 Algoritmer og datastrukturer Tillatte hjelpemidler: Ingen Side 1 av 8 Varighet: 3 timer Dato: 4.juni 2013 Fagansvarlig:

Detaljer

Kapittel 9: Sortering og søking Kort versjon

Kapittel 9: Sortering og søking Kort versjon Kapittel 9: Sortering og søking Kort versjon Redigert av: Khalid Azim Mughal (khalid@ii.uib.no) Kilde: Java som første programmeringsspråk (3. utgave) Khalid Azim Mughal, Torill Hamre, Rolf W. Rasmussen

Detaljer

Algoritmer - definisjon

Algoritmer - definisjon Algoritmeanalyse Algoritmer - definisjon En algoritme er en beskrivelse av hvordan man løser et veldefinert problem med en presist formulert sekvens av et endelig antall enkle, utvetydige og tidsbegrensede

Detaljer

Hvorfor sortering og søking? Søking og sortering. Binære søketrær. Ordnet innsetting forbereder for mer effektiv søking og sortering INF1010 INF1010

Hvorfor sortering og søking? Søking og sortering. Binære søketrær. Ordnet innsetting forbereder for mer effektiv søking og sortering INF1010 INF1010 Hvorfor sortering og søking? Man bør ha orden i dataene umulig å leve uten i informasjonssamfunnet vi blir fort lei av å lete poleksempel internett alt er søking og sortering alternativer til sortering

Detaljer

NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013

NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013 NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 20 ette løsningsforslaget er til tider mer detaljert enn det man vil forvente av en eksamensbesvarelse. et er altså ikke et eksempel

Detaljer

Norges Informasjonsteknologiske Høgskole

Norges Informasjonsteknologiske Høgskole Oppgavesettet består av 6 (seks) sider. Norges Informasjonsteknologiske Høgskole PG4200 Algoritmer og datastrukturer Side 1 av 6 Tillatte hjelpemidler: Ingen Varighet: 3 timer Dato: 6. august 2014 Fagansvarlig:

Detaljer

Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.3

Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.3 Delkapittel 1.3 Ordnede tabeller Side 1 av 70 Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.3 1.3 Ordnede tabeller 1.3.1 Permutasjoner En samling verdier kan settes opp i en rekkefølge. Hver

Detaljer

Oppgave 1 a. INF1020 Algoritmer og datastrukturer. Oppgave 1 b

Oppgave 1 a. INF1020 Algoritmer og datastrukturer. Oppgave 1 b Oppgave 1 1 a INF1020 Algoritmer og datastrukturer Forelesning 14: Gjennomgang av eksamen vår 2001 oppgave 1,2,4 Arild Waaler Institutt for informatikk, Universitetet i Oslo Oppgave 1 a Programmer en ikke-rekursiv

Detaljer

deeegimnoorrrsstt Sjette forelesning

deeegimnoorrrsstt Sjette forelesning deeegimnoorrrsstt Sjette forelesning 1 2 Bellman-Ford BFS/DFS Binære søketrær Binærsøk Bubblesort Bucket sort Counting sort Dijkstra DAGshortest-path Edmonds- Karp Floyd- Warshall Hashing Heapsort Huffmankoding

Detaljer

Eksamen i tdt4120 Algoritmer og datastrukturer

Eksamen i tdt4120 Algoritmer og datastrukturer Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 5 Oppgavestillere: Magnus Lie Hetland Jon Marius Venstad Kvalitetskontroll: Magnar Nedland Faglig

Detaljer

Innhold. Innledning 1

Innhold. Innledning 1 Innhold Innledning 1 1 Kompleksitetsanalyse 7 1.1 Innledning.............................. 8 1.2 Hva vi beregner........................... 8 1.2.1 Enkle operasjoner...................... 8 1.2.2 Kompleksitet........................

Detaljer

Binær heap. En heap er et komplett binært tre:

Binær heap. En heap er et komplett binært tre: Heap Binær heap En heap er et komplett binært tre: Alle nivåene i treet, unntatt (muligens) det nederste, er alltid helt fylt opp med noder Alle noder på nederste nivå ligger så langt til venstre som mulig

Detaljer

Kan vi forutse en pendels bevegelse, før vi har satt den i sving?

Kan vi forutse en pendels bevegelse, før vi har satt den i sving? Gjør dette hjemme 6 #8 Kan vi forutse en pendels bevegelse, før vi har satt den i sving? Skrevet av: Kristian Sørnes Dette eksperimentet ser på hvordan man finner en matematisk formel fra et eksperiment,

Detaljer

Oppgave 1. Sekvenser (20%)

Oppgave 1. Sekvenser (20%) Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I BERGEN Eksamen i emnet I 20 - Algoritmer, datastrukturer og programmering Mandag 2.Mai 200, kl. 09-5. Ingen hjelpemidler tillatt. Oppgavesettet

Detaljer

TDT4110 Informasjonsteknologi grunnkurs: Tema: Algoritmer i praksis. Professor Alf Inge Wang

TDT4110 Informasjonsteknologi grunnkurs: Tema: Algoritmer i praksis. Professor Alf Inge Wang 1 TDT4110 Informasjonsteknologi grunnkurs: Tema: Algoritmer i praksis Professor Alf Inge Wang 2 Læringsmål og pensum Mål Lære å forstå og kunne programmere algoritmer for søk og sortering. Lære å forstå

Detaljer

Fra Kap.10 Binære søketre (BS-tre) Sist oppdatert 20.03.10 Definere en abstrakt datastruktur binært søketre. Vise hvordan binær søketre kan brukes

Fra Kap.10 Binære søketre (BS-tre) Sist oppdatert 20.03.10 Definere en abstrakt datastruktur binært søketre. Vise hvordan binær søketre kan brukes Fra Kap.10 Binære søketre (BS-tre) Sist oppdatert 20.03.10 Definere en abstrakt datastruktur binært søketre. Vise hvordan binær søketre kan brukes til å løse problemer. Undersøke ulike implementasjoner

Detaljer

Heap* En heap er et komplett binært tre: En heap er også et monotont binært tre:

Heap* En heap er et komplett binært tre: En heap er også et monotont binært tre: Heap Heap* En heap er et komplett binært tre: Alle nivåene i treet, unntatt (muligens) det nederste, er alltid helt fylt opp med noder Alle noder på nederste nivå ligger til venstre En heap er også et

Detaljer

Effektiv eksekvering av spørsmål

Effektiv eksekvering av spørsmål UNIVERSITETET I OSLO Effektiv eksekvering av spørsmål Spørsmålshåndtering Modell for kostnadsberegning Kostnad for basisoperasjoner Implementasjonsalgoritmer Institutt for Informatikk INF3100 6.4.2016

Detaljer

Innføring i matematisk analyse av algoritmer

Innføring i matematisk analyse av algoritmer DUMMY Innføring i matematisk analyse av algoritmer Lars Sydnes September 2014 Dette er ment som et supplement til læreboka Algorithms, 4.utgave av Sedgewick & Wayne, heretter omtalt som læreboka. Etter

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 2

PG4200 Algoritmer og datastrukturer Forelesning 2 PG4200 Algoritmer og datastrukturer Forelesning 2 Lars Sydnes, NITH 15. januar 2014 I. Forrige gang Praktisk eksempel: Live-koding II. Innlevering Innlevering 1 2.februar Offentliggjøring: 22.januar Innhold:

Detaljer

LO118D Forelesning 12 (DM)

LO118D Forelesning 12 (DM) LO118D Forelesning 12 (DM) Trær 15.10.2007 1 Traversering av trær 2 Beslutningstrær 3 Isomorfisme i trær Preorden-traversering 1 Behandle den nåværende noden. 2 Rekursivt behandle venstre subtre. 3 Rekursivt

Detaljer

PG4200 Algoritmer og datastrukturer forelesning 3. Lars Sydnes 29. oktober 2014

PG4200 Algoritmer og datastrukturer forelesning 3. Lars Sydnes 29. oktober 2014 PG4200 Algoritmer og datastrukturer forelesning 3 Lars Sydnes 29. oktober 2014 Plan Måling av kjøretid (delvis repetisjon) Matematisk analyse av kjøretid Presentasjon av innlevering 1 I Innlevering 1 Innlevering

Detaljer

Grådige algoritmer. Lars Vidar Magnusson Kapittel 16. Aktivitetvelgingsproblemet Huffmankoder

Grådige algoritmer. Lars Vidar Magnusson Kapittel 16. Aktivitetvelgingsproblemet Huffmankoder Grådige Algoritmer Lars Vidar Magnusson 12.3.2014 Kapittel 16 Grådige algoritmer Aktivitetvelgingsproblemet Huffmankoder Ideen bak Grådige Algoritmer Ideen bak grådige algoritmer er å løse optimaliseringsproblem

Detaljer

ALGORITMER OG DATASTRUKTURER

ALGORITMER OG DATASTRUKTURER Stud. nr: Side 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap LØSNINGSFORSLAG,

Detaljer

Løsningsforslag til eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl

Løsningsforslag til eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl Student nr.: Side 1 av 7 Løsningsforslag til eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 14. Desember 1999, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler:

Detaljer

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.1

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.1 Delkapittel 9.1 Generelt om balanserte trær Side 1 av 13 Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.1 9.1 Generelt om balanserte trær 9.1.1 Hva er et balansert tre? Begrepene balansert og

Detaljer

Prioritetskøer. Binære heaper Venstrevridde heaper (Leftist) Binomialheaper Fibonacciheaper

Prioritetskøer. Binære heaper Venstrevridde heaper (Leftist) Binomialheaper Fibonacciheaper Prioritetskøer Binære heaper Venstrevridde heaper (Leftist) Binomialheaper Fibonacciheaper Prioritetskøer er viktige i bla. operativsystemer (prosesstyring i multitaskingssystemer), og søkealgoritmer (A,

Detaljer

Algoritmeanalyse. (og litt om datastrukturer)

Algoritmeanalyse. (og litt om datastrukturer) Algoritmeanalyse (og litt om datastrukturer) Datastrukturer definisjon En datastruktur er den måten en samling data er organisert på. Datastrukturen kan være ordnet (sortert på en eller annen måte) eller

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 14. desember 2011 Eksamenstid 1500 1900 Sensurdato 14. januar Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

Effektiv eksekvering av spørsmål

Effektiv eksekvering av spørsmål UNIVERSITETET I OSLO Effektiv eksekvering av spørsmål Basert på foiler av Hector Garcia-Molina, Ragnar Normann Oversikt Spørsmålshåndtering Modell for kostnadsberegning Kostnad for basis-operasjoner Implementasjons-algoritmer

Detaljer

Pensum: fra boken (H-03)+ forelesninger

Pensum: fra boken (H-03)+ forelesninger Pensum: fra boken (H-03)+ forelesninger unntatt kursorisk tema KAP. 1 KAP. 2 KAP. 3 JAVA I-110 (ikke gjennomgått) OO + ABSTRAKSJON /GENERISK PROGRAMMERING REKURSJON ALGORITME-TIDSANALYSE; O-NOTASJON KAP.

Detaljer

Python: Rekursjon (og programmering av algoritmer) Python-bok: Kapittel 12 + teoribok om Algoritmer

Python: Rekursjon (og programmering av algoritmer) Python-bok: Kapittel 12 + teoribok om Algoritmer Python: Rekursjon (og programmering av algoritmer) Python-bok: Kapittel 12 + teoribok om Algoritmer TDT4110 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål Forstå, og kunne bruke, algoritmer

Detaljer

Søkeproblemet. Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke?

Søkeproblemet. Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke? Søking Søkeproblemet Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke? Effektiviteten til søkealgoritmer avhenger av: Om datastrukturen

Detaljer

Algoritmer og Datastrukturer

Algoritmer og Datastrukturer Eksamen i Algoritmer og Datastrukturer IAI 20102 Høgskolen i Østfold Avdeling for informatikk og automatisering Lødag 5. juni 2004, kl. 09.00-13.00 LØSNINGSFORSLAG 1 Del 1 60% Oppgave 1.1-10% Forklar kort

Detaljer

Kapittel 9: Sortering og søking Kort versjon

Kapittel 9: Sortering og søking Kort versjon Kapittel 9: Sortering og søking Kort versjon Redigert av: Khalid Azim Mughal (khalid@ii.uib.no) Kilde: Java som første programmeringsspråk (3. utgave) Khalid Azim Mughal, Torill Hamre, Rolf W. Rasmussen

Detaljer

Kapittel 9: Sortering og søking Kort versjon

Kapittel 9: Sortering og søking Kort versjon Kapittel 9: Sortering og søking Kort versjon Redigert av: Khalid Azim Mughal (khalid@ii.uib.no) Kilde: Java som første programmeringsspråk (3. utgave) Khalid Azim Mughal, Torill Hamre, Rolf W. Rasmussen

Detaljer

Norges Informasjonsteknologiske Høgskole

Norges Informasjonsteknologiske Høgskole Oppgavesettet består av 13 (mange) sider. Norges Informasjonsteknologiske Høgskole PG4200 Algoritmer og datastrukturer Side 1 av 13 Tillatte hjelpemidler: Ingen Varighet: 3 timer Dato: 4. juni 2014 Fagansvarlig:

Detaljer

Effektiv eksekvering av spørsmål

Effektiv eksekvering av spørsmål UNIVERSITETET I OSLO Effektiv eksekvering av spørsmål Spørsmålshåndtering Modell for kostnadsberegning Kostnad for basisoperasjoner Implementasjonsalgoritmer Institutt for Informatikk INF3100 21.3.2014

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Institutt for informatikk, Universitetet i Oslo Forelesning 6: Grafer II Ingrid Chieh Yu (Ifi, UiO) INF2220 28.09.2016 1 / 30 Dagens plan: Dijkstra fort.

Detaljer

Rekursiv programmering

Rekursiv programmering Rekursiv programmering Babushka-dukker En russisk Babushkadukke er en sekvens av like dukker inne i hverandre, som kan åpnes Hver gang en dukke åpnes er det en mindre utgave av dukken inni, inntil man

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF2220 Algoritmer og datastrukturer Eksamensdag: 16. desember 2013 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 8 sider.

Detaljer

Eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl

Eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl SIF8010 2003-08-09 Stud.-nr: Antall sider: 1 Eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl. 0900 1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 41661982; Magnus Lie

Detaljer

Prioritetskøer. Prioritetskøer. Binære heaper (vanligst) Prioritetskøer

Prioritetskøer. Prioritetskøer. Binære heaper (vanligst) Prioritetskøer Binære heaper (Leftist) Prioritetskøer Prioritetskøer er viktige i bla. operativsystemer (prosesstyring i multitaskingssystemer), og søkealgoritmer (A, A*, D*, etc.), og i simulering. Prioritetskøer Prioritetskøer

Detaljer

Solcellen. Nicolai Kristen Solheim

Solcellen. Nicolai Kristen Solheim Solcellen Nicolai Kristen Solheim Abstract Med denne oppgaven ønsker vi å oppnå kunnskap om hvordan man rent praktisk kan benytte en solcelle som generator for elektrisk strøm. Vi ønsker også å finne ut

Detaljer

Algdat Eksamensforelesning. Nils Barlaug

Algdat Eksamensforelesning. Nils Barlaug Algdat Eksamensforelesning Nils Barlaug Eksamen Pensum Eksamen Pensum Oppgaver du har gjort og ting du har lest Eksamen Pensum Oppgave på eksamen Oppgaver du har gjort og ting du har lest Eksamen Pensum

Detaljer

INF2220: Time 4 - Heap, Huffmann

INF2220: Time 4 - Heap, Huffmann INF0: Time 4 - Heap, Huffmann Mathias Lohne mathialo Heap (prioritetskø) En heap (også kalt prioritetskø) er en type binært tre med noen spesielle struktur- og ordningskrav. Vi har to typer heap: min-

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 5 Implementasjon av lister

PG4200 Algoritmer og datastrukturer Forelesning 5 Implementasjon av lister PG4200 Algoritmer og datastrukturer Forelesning 5 Implementasjon av lister Lars Sydnes, NITH 5. februar 2014 I. Implementasjoner Tabell-implementasjon av Stakk Tabellen er den lettest tilgjengelige datastrukturen

Detaljer

PG 4200 Algoritmer og datastrukturer Innlevering 1. Frist: 2.februar kl 21.00

PG 4200 Algoritmer og datastrukturer Innlevering 1. Frist: 2.februar kl 21.00 PG 4200 Algoritmer og datastrukturer Innlevering 1 Frist: 2.februar kl 21.00 Utdelt materiale: Alle filer som nevnes er inneholdt i zip-filen innlevering1.zip. Innlevering: Besvarelsen skal være i form

Detaljer

Algoritmer og Datastrukturer

Algoritmer og Datastrukturer Eksamen i Algoritmer og Datastrukturer IAI 20102 Høgskolen i Østfold Avdeling for informatikk og automatisering Lødag 5. juni 2004, kl. 09.00-13.00 Hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.

Detaljer

ITF20006 Algoritmer og datastrukturer Oppgavesett 7

ITF20006 Algoritmer og datastrukturer Oppgavesett 7 ITF Algoritmer og datastrukturer Oppgavesett 7 Av Thomas Gabrielsen Eksamen Oppgave. ) Det tar konstant tid å hente et gitt element fra en tabell uavhengig av dens størrelse, noe som med O-notasjon kan

Detaljer

København 20 Stockholm

København 20 Stockholm UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 115 Algoritmer og datastrukturer Eksamensdag: 26. mai 2001 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 7 sider. Vedlegg:

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 11. august 2014 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode D. Ingen

Detaljer

Kapittel 8: Sortering og søking INF100

Kapittel 8: Sortering og søking INF100 Forelesningsnotater for: Kapittel 8: Sortering og søking INF100 Java som første programmeringsspråk Khalid Azim Mughal, Torill Hamre, Rolf W. Rasmussen Cappelen Akademisk, 2003. ISBN 82-02-23274-0 http://www.ii.uib.no/~khalid/jfps/

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2015 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2015, forelesning

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2015 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2015, forelesning

Detaljer

EKSAMENSOPPGAVE. IAI20102 Algoritmer og datastrukturer

EKSAMENSOPPGAVE. IAI20102 Algoritmer og datastrukturer EKSAMENSOPPGAVE Fag: Lærer: IAI00 Algoritmer og datastrukturer André A. Hauge Dato:..005 Tid: 0900-00 Antall oppgavesider: 5 med forside Antall vedleggssider: 0 Hjelpemidler: Alle trykte og skrevne hjelpemidler,

Detaljer

Kapittel 8: Sortering og søking INF100

Kapittel 8: Sortering og søking INF100 Forelesningsnotater for: Kapittel 8: Sortering og søking INF100 Java som første programmeringsspråk Khalid Azim Mughal, Torill Hamre, Rolf W. Rasmussen Cappelen Akademisk, 2003. ISBN 82-02-23274-0 http://www.ii.uib.no/~khalid/jfps/

Detaljer

Temanotat 2006/8: Pensjonering i skoleverket etter år 2000

Temanotat 2006/8: Pensjonering i skoleverket etter år 2000 Temanotat 2006/8: Utarbeidet av Bjarne Wik for Utdanningsforbundet Temanotat 2006/8 Utarbeidet i avdeling for utredning Utdanningsforbundet Postboks 9191 Grønland 0134 OSLO www.utdanningsforbundet.no Innholdsfortegnelse

Detaljer

Vann i rør Ford Fulkerson method

Vann i rør Ford Fulkerson method Vann i rør Ford Fulkerson method Problemet Forestill deg at du har et nettverk av rør som kan transportere vann, og hvor rørene møtes i sammensveisede knytepunkter. Vannet pumpes inn i nettverket ved hjelp

Detaljer

Regning som grunnleggende ferdighet Ny GIV! Akershus. Hefte med praktiske eksempler

Regning som grunnleggende ferdighet Ny GIV! Akershus. Hefte med praktiske eksempler Regning som grunnleggende ferdighet Ny GIV! Akershus Hefte med praktiske eksempler Tone Elisabeth Bakken Sandvika, 12.september 2011 På denne og neste tre sider er det kopier fra Tangentens oppgavehefte:

Detaljer

Løsningsforslag EKSAMEN

Løsningsforslag EKSAMEN 1 Løsningsforslag EKSAMEN Emnekode: ITF20006 000 Dato: 18. mai 2012 Emne: Algoritmer og datastrukturer Eksamenstid: 09:00 til 13:00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Faglærer: Gunnar Misund

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 3. desember 2012 Eksamenstid 0900 1300 Sensurdato 3. januar 2013 Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

Korteste vei i en vektet graf uten negative kanter

Korteste vei i en vektet graf uten negative kanter Dagens plan: IN - Algoritmer og datastrukturer HØSTEN 7 Institutt for informatikk, Universitetet i Oslo IN, forelesning 7: Grafer II Korteste vei, en-til-alle, for: Vektet rettet graf uten negative kanter

Detaljer

Lars Vidar Magnusson

Lars Vidar Magnusson Binære Søketrær Lars Vidar Magnusson 14.2.2014 Kapittel 12 Binære Søketrær Søking Insetting Sletting Søketrær Søketrær er datastrukturer som støtter mange dynamiske sett operasjoner. Kan bli brukt både

Detaljer

Algoritme-Analyse. Asymptotisk ytelse. Sammenligning av kjøretid. Konstanter mot n. Algoritme-kompeksitet. Hva er størrelsen (n) av et problem?

Algoritme-Analyse. Asymptotisk ytelse. Sammenligning av kjøretid. Konstanter mot n. Algoritme-kompeksitet. Hva er størrelsen (n) av et problem? Hva er størrelsen (n) av et proble? Algorite-Analyse Algoriter og Datastrukturer Antall linjer i et nettverk Antall tegn i en tekst Antall tall so skal sorteres Antall poster det skal søkes blant Antall

Detaljer

Algoritmer og Datastrukturer

Algoritmer og Datastrukturer Eksamen i Algoritmer og Datastrukturer Høgskolen i Østfold Avdeling for informatikk og automatisering Torsdag 10. desember 1998, kl. 09.00-15.00 Hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.

Detaljer

Løsningsforslag - Parallellitet og repetisjon

Løsningsforslag - Parallellitet og repetisjon Sist endret: 17.08.2010 Hovedside FAQ Beskjeder Timeplan Ukeplan Øvinger Gruppeøving Eksamensoppgaver Pensum Notater Kode/koding Ordliste Kontakt Eksterne ressurser IDI NTNU Utskriftsversjon Løsningsforslag

Detaljer

for bare trær Andre forelesning

for bare trær Andre forelesning Formler eller bevis e.l. som er uklare? Si ifra, så kan jeg gå g jennom dem. Forelesningene er ment å være en hjelp til å forstå det man leser i boka ikke «spoon-feeding» av det samme som står der for

Detaljer

Dijkstras algoritme. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert.

Dijkstras algoritme. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert. Her finnes det også (minst) en riktig rekkefølge for Relax, men den må vi oppdage litt etter hvert. Tenk vann som sprer seg i rør: Vi behandler krysningspunktene i den rekkefølgen de fylles. Det må gi

Detaljer

Experiment Norwegian (Norway) Hoppende frø - En modell for faseoverganger og ustabilitet (10 poeng)

Experiment Norwegian (Norway) Hoppende frø - En modell for faseoverganger og ustabilitet (10 poeng) Q2-1 Hoppende frø - En modell for faseoverganger og ustabilitet (10 poeng) Vennligst les de generelle instruksjonene som ligger i egen konvolutt, før du begynner på denne oppgaven. Introduksjon Faseoverganger

Detaljer

Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.8

Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.8 Delkapittel 1.8 Algoritmeanalyse Side 1 av 12 Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.8 1.8 Algoritmeanalyse 1.8.1 En algoritmes arbeidsmengde I Delkapittel 1.1 ble det definert og diskutert

Detaljer

LO118D Forelesning 2 (DM)

LO118D Forelesning 2 (DM) LO118D Forelesning 2 (DM) Kjøretidsanalyse, matematisk induksjon, rekursjon 22.08.2007 1 Kjøretidsanalyse 2 Matematisk induksjon 3 Rekursjon Kjøretidsanalyse Eksempel Finne antall kombinasjoner med minst

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1010 Objektorientert programmering Eksamensdag: Tirsdag 12. juni 2012 Tid for eksamen: 9:00 15:00 Oppgavesettet er

Detaljer

Hva er en algoritme? INF HØSTEN 2006 INF1020. Kursansvarlige Ragnar Normann E-post: Dagens tema

Hva er en algoritme? INF HØSTEN 2006 INF1020. Kursansvarlige Ragnar Normann E-post: Dagens tema va er en algoritme? Vanlig sammenligning: Oppskrift. nput lgoritme NF1020 - ØSTEN 2006 Kursansvarlige Ragnar Normann E-post: ragnarn@ifi.uio.no Output Knuth : tillegg til å være et endelig sett med regler

Detaljer

Projeksjoner av vektorer Analyse av værdata

Projeksjoner av vektorer Analyse av værdata Projeksjoner av vektorer Analyse av værdata Lars Sydnes 11. september 2013 1 Osloserien Ved værstasjoner rundt omkring i verden måler man temperaturen hver eneste dag. Vi har tilgang til målinger gjort

Detaljer

Kontinuasjonseksamen i fag SIF8010 Algoritmer og Datastrukturer Torsdag 9. August 2001, kl

Kontinuasjonseksamen i fag SIF8010 Algoritmer og Datastrukturer Torsdag 9. August 2001, kl Student nr.: Side 1 av 5 Kontinuasjonseksamen i fag SIF8010 Algoritmer og Datastrukturer Torsdag 9. August 2001, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler: Alle

Detaljer

PG4200 Algoritmer og datastrukturer forelesning 10. Lars Sydnes 21. november 2014

PG4200 Algoritmer og datastrukturer forelesning 10. Lars Sydnes 21. november 2014 PG4200 Algoritmer og datastrukturer forelesning 10 Lars Sydnes 21. november 2014 I Grafer Grafisk fremstilling av en graf D A B C Ikke-rettet graf Grafisk fremstilling av en graf D A B C Rettet graf Grafisk

Detaljer

Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først

Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først Køer Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først Et nytt element legges alltid til sist i køen Skal vi ta ut et element, tar vi alltid

Detaljer

Løsningsforslag, Ukeoppgaver 10 INF2310, våren 2011 kompresjon og koding del II

Løsningsforslag, Ukeoppgaver 10 INF2310, våren 2011 kompresjon og koding del II Løsningsforslag, Ukeoppgaver 10 INF2310, våren 2011 kompresjon og koding del II 1. En fax-oppgave: a. Et ark med tekst og enkle strektegninger skal sendes pr digital fax over en modemlinje med kapasitet

Detaljer

Grunnleggende Datastrukturer

Grunnleggende Datastrukturer Grunnleggende Datastrukturer Lars Vidar Magnusson 7.2.2014 Kapittel 10 Stakker og køer Lenkede lister Pekere og objekter Trerepresentasjoner Datastrukturer Vi er i gang med tredje del av kurset hvor vi

Detaljer