Når Merge sort og Insertion sort samarbeider

Størrelse: px
Begynne med side:

Download "Når Merge sort og Insertion sort samarbeider"

Transkript

1 Når Merge sort og Insertion sort samarbeider Lars Sydnes 8. november Innledning Her skal vi undersøke to algoritmer som brukes til å sortere lister, Merge sort og Insertion sort. Det at Merge sort har linearitmisk kjøretid og Insertion sort har kvadratisk kjøretid betyr at Merge sort generelt sett er raskere enn Insertion sort, når vi arbeider med tilstrekkelig store lister. Kjøretidsestimatene kan ikke svare på følgende spørsmål: Hvor store må listene være for at Merge sort skal være raskere enn Insertion sort? Hvilken algoritme er raskest for små lister? Vi må altså være åpne for at Insertion sort kan sortere små lister raskere enn Merge sort, hvis vi ikke vet bedre. Vi skal undersøke en implementasjon av Merge sort som tar hensyn til at Insertion sort kan være raskere når listene er små. Algoritmen velger hvilken strategi som skal brukes ved å sammenligne antallet elementer som skal sorteres med konstanten int insertionsortthreshold. Når antallet elementer som skal sorteres er mindre enn insertionsortthreshold sorteres elementene med Insertion sort. Når antallet elementer som skal sorteres er høyere, sorteres elementene ved Merge sort, det vil si at listen deles i to deler som sorteres hver for seg før de flettes sammen til en sortert liste. Den implementasjonen vi ser på er rekursiv. Det betyr at de to delene som skal sorteres hver for seg blir sortert med den samme metoden. Det spørsmålet vi ønsker å få svar på her er: Hvilken verdi for insertionsortthreshold gir den mest effektive sorteringsalgoritmen? 2 Eksperimentet Vi målte kjøretid og antall kall av compareto for sorterte lister av typen 1, 2, 3,..., n og usorterte lister uten duplikater av størrelse 1000, 2000, 3000,..., , 1

2 med ulike verdier av insertionsortthreshold. Vi undersøkte verdier av insertionsortthreshold i intervallet fra 2 til 50. Målingene ble gjort i tilfeldig rekkefølge. 3 Resultater 3.1 Usorterte lister Kjøretid i sekunder InsertionSortThreshold Figur 1: Gjennomsnittlig kjøretid, målt for usorterte lister. Figur 1 viser gjennomsnittlig kjøretid for ulike verdier av insertionsortthreshold. Det ser ut til at kjøretiden først avtar, for så å øke. Hvilken verdi av insertionsortthreshold som gir kortest kjøretid er vanskelig å si, men det later til at den befinne seg mellom 5 og 20. Hvis vi ser på gjennomsnittlig antall kall av compareto, er bildet enda tydeligere. Figur 2 viser tydelig at antall kall av compareto er lavest når insertionsortthreshold er lik Sorterte lister Figur 3 og 4 viser at kjøretiden avtar når insetionsortthreshold øker. Målingene av gjennomsnittlig antall kall av compareto viser noe interessant: Gjennomsnittlig antall kall av compareto er i alle tilfellene lik

3 Antall sammenligninger InsertionSortThreshold Figur 2: Gjennomsnittlig antall kall av compareto, målt for usorterte lister. Kjøretid i sekunder 3e 04 6e 04 9e InsertionSortThreshold Figur 3: Gjennomsnittlig kjøretid, målt for sorterte lister 3

4 Kjøretid i sekunder 4e 04 8e InsertionSortThreshold Figur 4: Gjennomsnittlig kjøretid, målt for sorterte lister 3.3 Antall kall av compareto som kostnadsmodell De to foregående avsnittene belyser forholdet mellom antall kall av compareto og kjøretiden. Figur 5 viser sammenhengen mellom kjøretiden og antall kall av compareto i eksperimentene. 4

5 Figur 5: Plott av kjøretid mot antall kall av compareto, for usorterte lister. Hvert datapunkt svarer til én måling. 5

6 4 Diskusjon 4.1 insertionsortthreshold Vi kan oppsummere måleresultatene slik: For usorterte lister bør insertionsortthreshold har en lav verdi. For sorterte lister bør insertionsortthreshold har en høy verdi. Det betyr: Hvis vi velger en lav verdi av insertionsortthreshold, så blir vi straffet når vi møter en ferdigsortert liste. Hvis vi velger en høy verdi av insertionsortthreshold, så blir vi straffet når vi møter en usortert liste. En brukbar almenn sorteringsalgoritme må altså finne et brukbart balansepunkt. La oss se på hvordan vi kan finne et slikt balansepunkt. Figur 3 og 4 forteller oss at vi neppe bør la insertionsortthreshold være mindre enn 5; da blir kjøretiden dramatisk forverret når vi sorterer lister som allerede er sortert. På den annen side forteller figur 1 at insertionsortthreshold ikke bør overstige 30. I motsatt fall vil kjøretiden bli forverret når vi sorterer usorterte lister. I en optimal versjon av denne algoritmen vil altså 5 < insertionsortthreshold < 30. Dersom vi fokuserer på antallet kall av compareto, så kan figur 2 gi oss enda klarere svar, nemlig at den optimale verdien kan ligge mellom 5 og 10. Det er dog ikke klart at antall kall av compareto er noe vi bør legge vekt på. 4.2 Antall kall av compareto som kostnadsmodell Figur 5, som viser målinger for usorterte lister, viser noe som er i nærheten av en lineær sammenheng mellom minimal kjøretid og antall kall av compareto. Det later til å være en tilsvarende sammenheng mellom maksimal forventet kjøretid og antall kall av compareto. Slik sett, kan vi si at antall kall av compareto fungerer som en god kostnadsmodell. Dette understrekes av at figur 1 og figur 2 gir omtrent samme inntrykk, selv om figur 2 viser mye mer regelmessige målinger. Situasjonen er mer komplisert når vi arbeider med ferdig sorterte lister. Her er gjennomsnittlig antall kall av compareto uavhengig av 6

7 insertionsortthreshold. Forklaringen på dette er meget enkel: Når listen er sortert ender sorteringsalgoritmen opp med å sammenligne alle naboelementer 1 gang. I en liste med n elementer vil det altså foregå n 1 sammenligninger. Når vi bruker Insertion sort er dette alt som skjer. Når vi bruker Merge sort vil det i tillegg foregå en hel del unødvendig kopiering: Hvis insertionsortthreshold= k og listen har n elementer, vil det foregå log 2 (n/k) kopieringer, som hver for seg har lineær kjøretid. Utifra denne analysen skal kjøretiden T (n) A n + B n log 2 (n/k), der det første leddet stammer fra compareto, mens det andre leddet stammer fra kopieringen. Dette forklarer hvorfor antall kall av compareto er uavhengig av insertionsortthreshold og kjøretiden avtar når insertionsortthreshold øker. Til tross for denne detaljerte diskusjonen er konklusjonen meget enkel: Antall kall av compareto er konstant, og er derfor en ubrukelig kostnadsmodell når vi skal sammenligne ulike verdier av insertionsortthreshold for sorterte lister. Dette betyr dog ikke at denne kostnadsmodellen generelt sett er ubrukelig. Det hele avhenger av hvilket spørsmål man stiller. 5 Begrensninger Her vil jeg nevne noen innvendinger jeg har mot denne undersøkelsen. Disse innvendingene kan ganske enkelt oppsummeres ved å peke på at følgende spørsmål henger i løse luften. Hva vil det si at en sorteringsalgoritme er en optimal almenn sorteringsalgoritme? Vi kan peke på følgende konkrete innvendinger: Undersøkelsen tok kun for seg sorterte og usorterte lister. Det er vanskelig å si hvordan det står til med delvis sorterte lister og lister man møter i det virkelige Liv Undersøkelsen tok kun for seg lister med størrelse 1000, Kan det tenkes at konklusjonene blir annerledes om vi undersøker større eller mindre lister? Undersøkelsen tok kun for seg lister av Integer-objekter. comparetometoden til disse objektene er serdeles rask. Dersom man gjorde en tilsvarende undersøkelse for String-objekter, ville kjøretiden til compareto antageligvis få større betydning. Kjøretiden knyttet til kopiering vil dog være tilnærmet uforandret i og med at det kun innebærer å flytte referanser til objekter. Vi har ikke funnet den optimale insertionsortthreshold. Til gjengjeld vet vi en hel del mer om dette spørsmålet. Det som står fast er at lave verdier av 7

8 insertionsortthreshold straffer seg når listen man sorterer en ferdigsortert liste, og at høye verdier av insertionsortthreshold straffer seg når listen ikke er sortert fra før. Det er denne balansegangen man må beherske. 8

Løsningsforslag til eksamen i PG4200 Algoritmer og datastrukturer 10. desember 2014

Løsningsforslag til eksamen i PG4200 Algoritmer og datastrukturer 10. desember 2014 Løsningsforslag Dette er et utbygd løsningsforslag. D.v.s at det kan forekomme feil og at løsningene er mer omfattende enn det som kreves av studentene på eksamen. Oppgavesettet består av 5 (fem) sider.

Detaljer

PG 4200 Algoritmer og datastrukturer Innlevering 2

PG 4200 Algoritmer og datastrukturer Innlevering 2 PG 4200 Algoritmer og datastrukturer Innlevering 2 Frist: Mandag 21.april 2014 kl 23.55 Utdelt materiale: Se zip-filen innlevering2.zip. Innlevering: Lever en zip-fil som inneholder følgende: PG4200_innlevering_2.pdf:

Detaljer

MED TIDESTIMATER Løsningsforslag

MED TIDESTIMATER Løsningsforslag Oppgavesettet består av 12 (mange) sider. Norges Informasjonsteknologiske Høgskole PG4200 Algoritmer og datastrukturer Side 1 av 12 Tillatte hjelpemidler: Ingen Varighet: 3 timer Dato: 6. august 2014 Fagansvarlig:

Detaljer

PG4200 Algoritmer og datastrukturer Lab 1. 8.januar 2014. I dag skal vi undersøke en rekke velkjente databeholdere i Java:

PG4200 Algoritmer og datastrukturer Lab 1. 8.januar 2014. I dag skal vi undersøke en rekke velkjente databeholdere i Java: PG4200 Algoritmer og datastrukturer Lab 1 8.januar 2014 Innledning I dag skal vi undersøke en rekke velkjente databeholdere i Java: java.util.arraylist java.util.linkedlist java.util.hashset java.util.treeset

Detaljer

Kapittel 9: Sortering og søking Kort versjon

Kapittel 9: Sortering og søking Kort versjon Kapittel 9: Sortering og søking Kort versjon Redigert av: Khalid Azim Mughal (khalid@ii.uib.no) Kilde: Java som første programmeringsspråk (3. utgave) Khalid Azim Mughal, Torill Hamre, Rolf W. Rasmussen

Detaljer

Algoritmer - definisjon

Algoritmer - definisjon Algoritmeanalyse Algoritmer - definisjon En algoritme er en beskrivelse av hvordan man løser et veldefinert problem med en presist formulert sekvens av et endelig antall enkle, utvetydige og tidsbegrensede

Detaljer

Norges Informasjonsteknologiske Høgskole

Norges Informasjonsteknologiske Høgskole Oppgavesettet består av 6 (seks) sider. Norges Informasjonsteknologiske Høgskole PG4200 Algoritmer og datastrukturer Side 1 av 6 Tillatte hjelpemidler: Ingen Varighet: 3 timer Dato: 6. august 2014 Fagansvarlig:

Detaljer

NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013

NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013 NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 20 ette løsningsforslaget er til tider mer detaljert enn det man vil forvente av en eksamensbesvarelse. et er altså ikke et eksempel

Detaljer

Algoritmer og Datastrukturer

Algoritmer og Datastrukturer Eksamen i Algoritmer og Datastrukturer IAI 21899 Høgskolen i Østfold Avdeling for informatikk og automatisering Torsdag 3. november 2, kl. 9. - 14. Hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.

Detaljer

Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.3

Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.3 Delkapittel 1.3 Ordnede tabeller Side 1 av 70 Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.3 1.3 Ordnede tabeller 1.3.1 Permutasjoner En samling verdier kan settes opp i en rekkefølge. Hver

Detaljer

Oppgave 1 a. INF1020 Algoritmer og datastrukturer. Oppgave 1 b

Oppgave 1 a. INF1020 Algoritmer og datastrukturer. Oppgave 1 b Oppgave 1 1 a INF1020 Algoritmer og datastrukturer Forelesning 14: Gjennomgang av eksamen vår 2001 oppgave 1,2,4 Arild Waaler Institutt for informatikk, Universitetet i Oslo Oppgave 1 a Programmer en ikke-rekursiv

Detaljer

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.1

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.1 Delkapittel 9.1 Generelt om balanserte trær Side 1 av 13 Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.1 9.1 Generelt om balanserte trær 9.1.1 Hva er et balansert tre? Begrepene balansert og

Detaljer

Innhold. Innledning 1

Innhold. Innledning 1 Innhold Innledning 1 1 Kompleksitetsanalyse 7 1.1 Innledning.............................. 8 1.2 Hva vi beregner........................... 8 1.2.1 Enkle operasjoner...................... 8 1.2.2 Kompleksitet........................

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 2

PG4200 Algoritmer og datastrukturer Forelesning 2 PG4200 Algoritmer og datastrukturer Forelesning 2 Lars Sydnes, NITH 15. januar 2014 I. Forrige gang Praktisk eksempel: Live-koding II. Innlevering Innlevering 1 2.februar Offentliggjøring: 22.januar Innhold:

Detaljer

Algoritmeanalyse. (og litt om datastrukturer)

Algoritmeanalyse. (og litt om datastrukturer) Algoritmeanalyse (og litt om datastrukturer) Datastrukturer definisjon En datastruktur er den måten en samling data er organisert på. Datastrukturen kan være ordnet (sortert på en eller annen måte) eller

Detaljer

Fra Kap.10 Binære søketre (BS-tre) Sist oppdatert 20.03.10 Definere en abstrakt datastruktur binært søketre. Vise hvordan binær søketre kan brukes

Fra Kap.10 Binære søketre (BS-tre) Sist oppdatert 20.03.10 Definere en abstrakt datastruktur binært søketre. Vise hvordan binær søketre kan brukes Fra Kap.10 Binære søketre (BS-tre) Sist oppdatert 20.03.10 Definere en abstrakt datastruktur binært søketre. Vise hvordan binær søketre kan brukes til å løse problemer. Undersøke ulike implementasjoner

Detaljer

Innføring i matematisk analyse av algoritmer

Innføring i matematisk analyse av algoritmer DUMMY Innføring i matematisk analyse av algoritmer Lars Sydnes September 2014 Dette er ment som et supplement til læreboka Algorithms, 4.utgave av Sedgewick & Wayne, heretter omtalt som læreboka. Etter

Detaljer

Solcellen. Nicolai Kristen Solheim

Solcellen. Nicolai Kristen Solheim Solcellen Nicolai Kristen Solheim Abstract Med denne oppgaven ønsker vi å oppnå kunnskap om hvordan man rent praktisk kan benytte en solcelle som generator for elektrisk strøm. Vi ønsker også å finne ut

Detaljer

Rekursiv programmering

Rekursiv programmering Rekursiv programmering Babushka-dukker En russisk Babushkadukke er en sekvens av like dukker inne i hverandre, som kan åpnes Hver gang en dukke åpnes er det en mindre utgave av dukken inni, inntil man

Detaljer

EKSAMENSOPPGAVE. IAI20102 Algoritmer og datastrukturer

EKSAMENSOPPGAVE. IAI20102 Algoritmer og datastrukturer EKSAMENSOPPGAVE Fag: Lærer: IAI00 Algoritmer og datastrukturer André A. Hauge Dato:..005 Tid: 0900-00 Antall oppgavesider: 5 med forside Antall vedleggssider: 0 Hjelpemidler: Alle trykte og skrevne hjelpemidler,

Detaljer

ITF20006 Algoritmer og datastrukturer Oppgavesett 7

ITF20006 Algoritmer og datastrukturer Oppgavesett 7 ITF Algoritmer og datastrukturer Oppgavesett 7 Av Thomas Gabrielsen Eksamen Oppgave. ) Det tar konstant tid å hente et gitt element fra en tabell uavhengig av dens størrelse, noe som med O-notasjon kan

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1010 Objektorientert programmering Eksamensdag: Tirsdag 12. juni 2012 Tid for eksamen: 9:00 15:00 Oppgavesettet er

Detaljer

Løsningsforslag - Parallellitet og repetisjon

Løsningsforslag - Parallellitet og repetisjon Sist endret: 17.08.2010 Hovedside FAQ Beskjeder Timeplan Ukeplan Øvinger Gruppeøving Eksamensoppgaver Pensum Notater Kode/koding Ordliste Kontakt Eksterne ressurser IDI NTNU Utskriftsversjon Løsningsforslag

Detaljer

Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.8

Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.8 Delkapittel 1.8 Algoritmeanalyse Side 1 av 12 Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.8 1.8 Algoritmeanalyse 1.8.1 En algoritmes arbeidsmengde I Delkapittel 1.1 ble det definert og diskutert

Detaljer

PG 4200 Algoritmer og datastrukturer Innlevering 1. Frist: 2.februar kl 21.00

PG 4200 Algoritmer og datastrukturer Innlevering 1. Frist: 2.februar kl 21.00 PG 4200 Algoritmer og datastrukturer Innlevering 1 Frist: 2.februar kl 21.00 Utdelt materiale: Alle filer som nevnes er inneholdt i zip-filen innlevering1.zip. Innlevering: Besvarelsen skal være i form

Detaljer

Avanserte flytalgoritmer

Avanserte flytalgoritmer Avanserte flytalgoritmer Magnus Lie Hetland, mars 2008 Stoff hentet fra: Network Flows av Ahua m.fl. (Prentice-Hall, 1993) Graphs, Networks and Algorithms, 2. utg., av Jungnickel (Springer, 2005) Repetisjon

Detaljer

Løsningsforslag for utvalgte oppgaver fra kapittel 9

Løsningsforslag for utvalgte oppgaver fra kapittel 9 Løsningsforslag for utvalgte oppgaver fra kapittel 9 9.2 1 Grafer og minne.......................... 1 9.2 4 Omvendt graf, G T......................... 2 9.2 5 Kompleksitet............................

Detaljer

Forskriftskrav til radon i skoler og barnehager

Forskriftskrav til radon i skoler og barnehager Foto: fotolia Radonkonsentrasjonen i en bygning varierer over tid, og en radonmåling må fange opp denne naturlige variasjonen. Grenseverdiene for radon viser til årsmiddelverdien, altså gjennomsnittlig

Detaljer

Løsningsforslag EKSAMEN

Løsningsforslag EKSAMEN 1 Løsningsforslag EKSAMEN Emnekode: ITF20006 000 Dato: 18. mai 2012 Emne: Algoritmer og datastrukturer Eksamenstid: 09:00 til 13:00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Faglærer: Gunnar Misund

Detaljer

Vann i rør Ford Fulkerson method

Vann i rør Ford Fulkerson method Vann i rør Ford Fulkerson method Problemet Forestill deg at du har et nettverk av rør som kan transportere vann, og hvor rørene møtes i sammensveisede knytepunkter. Vannet pumpes inn i nettverket ved hjelp

Detaljer

EN LITEN INNFØRING I USIKKERHETSANALYSE

EN LITEN INNFØRING I USIKKERHETSANALYSE EN LITEN INNFØRING I USIKKERHETSANALYSE 1. Forskjellige typer feil: a) Definisjonsusikkerhet Eksempel: Tenk deg at du skal måle lengden av et noe ullent legeme, f.eks. en sau. Botemiddel: Legg vekt på

Detaljer

Korteste vei i en vektet graf uten negative kanter

Korteste vei i en vektet graf uten negative kanter Dagens plan: IN - Algoritmer og datastrukturer HØSTEN 7 Institutt for informatikk, Universitetet i Oslo IN, forelesning 7: Grafer II Korteste vei, en-til-alle, for: Vektet rettet graf uten negative kanter

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 10

PG4200 Algoritmer og datastrukturer Forelesning 10 PG4200 Algoritmer og datastrukturer Forelesning 10 Lars Sydnes, NITH 9. april 2014 NOE Å STUSSE PÅ? Quadratic probing i Hash-tabell: ( ) 2 i + 1 p = p + ( 1) i+1 2 Underforstått forutsetning: Heltallsaritmetikk

Detaljer

Grunnleggende Grafalgoritmer II

Grunnleggende Grafalgoritmer II Grunnleggende Grafalgoritmer II Lars Vidar Magnusson March 17, 2015 Kapittel 22 Dybde-først søk Topologisk sortering Relasjonen til backtracking Dybde-Først Søk Dybde-først søk i motsetning til et bredde-først

Detaljer

PG4200 Algoritmer og datastrukturer forelesning 10. Lars Sydnes 21. november 2014

PG4200 Algoritmer og datastrukturer forelesning 10. Lars Sydnes 21. november 2014 PG4200 Algoritmer og datastrukturer forelesning 10 Lars Sydnes 21. november 2014 I Grafer Grafisk fremstilling av en graf D A B C Ikke-rettet graf Grafisk fremstilling av en graf D A B C Rettet graf Grafisk

Detaljer

Innfartsparkering undersøkelse av bruk og brukere

Innfartsparkering undersøkelse av bruk og brukere Sammendrag: Innfartsparkering undersøkelse av bruk og brukere TØI rapport 1367/14 Forfatter(e): Petter Christiansen og Jan Usterud Hanssen Oslo 14, 51 sider Mange av de 75 undersøkte innfartsparkeringsplassene

Detaljer

Projeksjoner av vektorer Analyse av værdata

Projeksjoner av vektorer Analyse av værdata Projeksjoner av vektorer Analyse av værdata Lars Sydnes 11. september 2013 1 Osloserien Ved værstasjoner rundt omkring i verden måler man temperaturen hver eneste dag. Vi har tilgang til målinger gjort

Detaljer

Et eksempel: Åtterspillet

Et eksempel: Åtterspillet Trær Et eksempel: Åtterspillet To spillere som «trekker» annenhver gang I hvert trekk velges et av tallene 1, 2, 3, men ikke tallet som motspiller valgte i forrige trekk Valgte tall summeres fortløpende

Detaljer

Kompleksitetsteori reduksjoner

Kompleksitetsteori reduksjoner Kompleksitetsteori reduksjoner En slags liten oversikt, eller huskeliste, for kompleksitetsteorien i INF 4130. Ikke ment å være verken fullstendig eller detaljert, men kanskje egnet til å gi noen knagger

Detaljer

Backtracking som løsningsmetode

Backtracking som løsningsmetode Backtracking Backtracking som løsningsmetode Backtracking brukes til å løse problemer der løsningene kan beskrives som en sekvens med steg eller valg Kan enten finne én løsning eller alle løsninger Bygger

Detaljer

MAT1030 Forelesning 30

MAT1030 Forelesning 30 MAT1030 Forelesning 30 Kompleksitetsteori Roger Antonsen - 19. mai 2009 (Sist oppdatert: 2009-05-19 15:04) Forelesning 30: Kompleksitetsteori Oppsummering I dag er siste forelesning med nytt stoff! I morgen

Detaljer

EKSAMEN Løsningsforslag. med forbehold om bugs :-)

EKSAMEN Løsningsforslag. med forbehold om bugs :-) 1 EKSAMEN Løsningsforslag med forbehold om bugs :-) Emnekode: ITF20006 000 Dato: 20. mai 2011 Emne: Algoritmer og datastrukturer Eksamenstid: 09:00 til 13:00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater

Detaljer

Temanotat 2006/8: Pensjonering i skoleverket etter år 2000

Temanotat 2006/8: Pensjonering i skoleverket etter år 2000 Temanotat 2006/8: Utarbeidet av Bjarne Wik for Utdanningsforbundet Temanotat 2006/8 Utarbeidet i avdeling for utredning Utdanningsforbundet Postboks 9191 Grønland 0134 OSLO www.utdanningsforbundet.no Innholdsfortegnelse

Detaljer

INF1000 HashMap. Marit Nybakken marnybak@ifi.uio.no 2. november 2003

INF1000 HashMap. Marit Nybakken marnybak@ifi.uio.no 2. november 2003 INF1000 HashMap Marit Nybakken marnybak@ifi.uio.no 2. november 2003 Dette dokumentet skal tas med en klype salt og forfatteren sier fra seg alt ansvar. Dere bør ikke bruke definisjonene i dette dokumentet

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 12

PG4200 Algoritmer og datastrukturer Forelesning 12 PG4200 Algoritmer og datastrukturer Forelesning 12 Lars Sydnes, NITH 30. april 2014 I. SIST: NOTAT OM HARDE PROBLEMER INNHOLD Håndterlige problemer: Problemer med kjente algoritmer med polynomisk kjøretid

Detaljer

TDT4105/TDT4110 Informasjonsteknologi grunnkurs:

TDT4105/TDT4110 Informasjonsteknologi grunnkurs: 1 TDT4105/TDT4110 Informasjonsteknologi grunnkurs: Uke 38 Digital representasjon, del 2 - Representasjon av lyd og bilder - Komprimering av data Rune Sætre satre@idi.ntnu.no 2 Digitalisering av lyd Et

Detaljer

NIO 1. runde eksempeloppgaver

NIO 1. runde eksempeloppgaver NIO 1. runde eksempeloppgaver Oppgave 1 (dersom du ikke klarer en oppgave, bare gå videre vanskelighetsgraden er varierende) Hva må til for at hele det følgende uttrykket skal bli sant? NOT(a OR (b AND

Detaljer

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Bokmål Faglig kontakt under eksamen: Bo Lindqvist, tlf. 97589418 EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Tirsdag

Detaljer

BOKMÅL Side 1 av 7. KONTINUASJONSEKSAMEN I FAG TDT4100 Objektorientert programmering / IT1104 Programmering, videregående kurs

BOKMÅL Side 1 av 7. KONTINUASJONSEKSAMEN I FAG TDT4100 Objektorientert programmering / IT1104 Programmering, videregående kurs BOKMÅL Side 1 av 7 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap KONTINUASJONSEKSAMEN

Detaljer

LABORATORIERAPPORT. Halvlederdioden AC-beregninger. Christian Egebakken

LABORATORIERAPPORT. Halvlederdioden AC-beregninger. Christian Egebakken LABORATORIERAPPORT Halvlederdioden AC-beregninger AV Christian Egebakken Sammendrag I dette prosjektet har vi forklart den grunnleggende teorien bak dioden. Vi har undersøkt noen av bruksområdene til vanlige

Detaljer

Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

Bakgrunn og metode. 1. Før- og etteranalyse på strekninger med ATK basert på automatiske målinger 2. Måling av fart ved ATK punkt med lasterpistol

Bakgrunn og metode. 1. Før- og etteranalyse på strekninger med ATK basert på automatiske målinger 2. Måling av fart ved ATK punkt med lasterpistol TØI rapport Forfatter: Arild Ragnøy Oslo 2002, 58 sider Sammendrag: Automatisk trafikkontroll () Bakgrunn og metode Mangelfull kunnskap om effekten av på fart Automatisk trafikkontroll () er benyttet til

Detaljer

Kapittel 12: Rekursjon

Kapittel 12: Rekursjon Kapittel 12: Rekursjon Redigert av: Khalid Azim Mughal (khalid@ii.uib.no) Kilde: Java som første programmeringsspråk (3. utgave) Khalid Azim Mughal, Torill Hamre, Rolf W. Rasmussen Cappelen Akademisk Forlag,

Detaljer

Oppgave 3 a. Antagelser i oppgaveteksten. INF1020 Algoritmer og datastrukturer. Oppgave 3. Eksempelgraf

Oppgave 3 a. Antagelser i oppgaveteksten. INF1020 Algoritmer og datastrukturer. Oppgave 3. Eksempelgraf Oppgave 3 3 a IN1020 Algoritmer og datastrukturer orelesning 15: Gjennomgang av eksamen vår 2001 oppgave 3 Arild Waaler Institutt for informatikk, Universitetet i Oslo 11. desember 2006 Oppgave 3 a. Antagelser

Detaljer

Profil Lavpris Supermarked Hypermarked Totalt. Coop Prix 4 4. Coop Extra 13 5. Coop Mega 7 7. Coop Obs 5 13. Rimi 24 24. Ica Supermarked 7 7

Profil Lavpris Supermarked Hypermarked Totalt. Coop Prix 4 4. Coop Extra 13 5. Coop Mega 7 7. Coop Obs 5 13. Rimi 24 24. Ica Supermarked 7 7 Vedlegg 1 - Regresjonsanalyser 1 Innledning og formål (1) Konkurransetilsynet har i forbindelse med Vedtak 2015-24, (heretter "Vedtaket") utført kvantitative analyser på data fra kundeundersøkelsen. I

Detaljer

TDT4102 Prosedyreog objektorientert programmering Vår 2016

TDT4102 Prosedyreog objektorientert programmering Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap TDT4102 Prosedyreog objektorientert programmering Vår 2016 Øving 4 Frist: 2016-02-12 Mål for denne øvingen:

Detaljer

Kabelanlegg Side: 1 av 5

Kabelanlegg Side: 1 av 5 Kabelanlegg Side: 1 av 5 1 HENSIKT OG OMFANG... 2 2 MÅLEMETODER... 3 2.1 Kobberkabel... 3 2.1.1 Karakteristisk impedans... 3 2.1.2 Dempning/dempningsforvrengning... 3 2.1.3 Faseforvrengning... 3 2.1.4

Detaljer

Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først

Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først Køer Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først Et nytt element legges alltid til sist i køen Skal vi ta ut et element, tar vi alltid

Detaljer

Vurdering av behovet for halvårlig kontroll av bremser på tunge kjøretøy

Vurdering av behovet for halvårlig kontroll av bremser på tunge kjøretøy TØI rapport 79/25 Forfatter: Per G Karlsen Oslo 25, 22 sider Sammendrag: Vurdering av behovet for halvårlig kontroll av bremser på tunge kjøretøy Innledning Statens vegvesen har som målsetting at 95 %

Detaljer

N-dronningproblemet Obligatorisk oppgave 1 I120, H-2000

N-dronningproblemet Obligatorisk oppgave 1 I120, H-2000 N-dronningproblemet Obligatorisk oppgave 1 I120, H-2000 Innleveringsfrist : Mandag, 2. Oktober, kl.10:00 Besvarelsen legges i arkivskapet på UA i skuff merket I120 Innhold: utskrift av godt dokumentert

Detaljer

Algoritmer og datastrukturer Kapittel 11 - Delkapittel 11.2

Algoritmer og datastrukturer Kapittel 11 - Delkapittel 11.2 Algoritmer og datastrukturer Kapittel 11 - Delkapittel 11.2 11.2 Korteste vei i en graf 11.2.1 Dijkstras metode En graf er et system med noder og kanter mellom noder. Grafen kalles rettet Notasjon Verdien

Detaljer

Evaluering av 16-årsgrense for øvelseskjøring med personbil. Ulykkesrisiko etter førerprøven

Evaluering av 16-årsgrense for øvelseskjøring med personbil. Ulykkesrisiko etter førerprøven TØI rapport 498/2000 Forfatter: Fridulv Sagberg Oslo 2000, 45 sider Sammendrag: Evaluering av 16-årsgrense for øvelseskjøring med personbil. Ulykkesrisiko etter førerprøven Aldersgrensen for øvelseskjøring

Detaljer

Matematikk og fysikk RF3100

Matematikk og fysikk RF3100 DUMMY Matematikk og fysikk RF300 Løsningsforslag 23. januar 205 Tidsfrist: 30.januar 205 Oppgave a) Gjør om til kanoniske polarkoordinater, d.v.s. (r, θ)-koordinater innenfor området r 0 og 80 < θ < 80.

Detaljer

Utviklingen i alderspensjon pr. 31. desember 2013 Notatet er skrevet av: Iren Amundsen, Espen Steinung Dahl, Oddbjørn Haga, 05.02.2014.

Utviklingen i alderspensjon pr. 31. desember 2013 Notatet er skrevet av: Iren Amundsen, Espen Steinung Dahl, Oddbjørn Haga, 05.02.2014. ARBEIDS- OG VELFERDSDIREKTORATET/ STATISTIKKSEKSJONEN Utviklingen i alderspensjon pr. 31. desember 2013 Notatet er skrevet av: Iren Amundsen, Espen Steinung Dahl, Oddbjørn Haga, 05.02.2014. // NOTAT Utviklingen

Detaljer

Obligatorisk oppgave 1

Obligatorisk oppgave 1 Obligatorisk oppgave 1 Oppgave 1 a) Trykket avtar eksponentialt etter høyden. Dette kan vises ved å bruke formlene og slik at, hvor skalahøyden der er gasskonstanten for tørr luft, er temperaturen og er

Detaljer

Go with the. Niende forelesning. Mye matematikk i boka her ikke så komplisert, men mye å holde styr på.

Go with the. Niende forelesning. Mye matematikk i boka her ikke så komplisert, men mye å holde styr på. Go with the Niende forelesning Mye matematikk i boka her ikke så komplisert, men mye å holde styr på. Fokuserer på de viktigste ideene i dagens forelesning, så det forhåpentligvis blir lettere å skjønne

Detaljer

GEOGEBRA (3.0) til R1-kurset

GEOGEBRA (3.0) til R1-kurset GEOGEBRA (3.0) til R1-kurset INNHOLD Side 1. Konstruksjon 2 1.1 Startvinduet 2 1.2 Markere punkter 3 1.3 Midtpunkt 4 1.4 Linje mellom punkter 5 1.5 Vinkelrett linje 6 1.6 Tegne en mangekant 6 1.7 Høyden

Detaljer

Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080.

Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080. EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 28. FEBRUAR 2005 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 4 OPPGAVER PÅ

Detaljer

Eksamen i 45011 Algoritmer og Datastrukturer Torsdag 12. januar 1995, Kl. 0900-1300.

Eksamen i 45011 Algoritmer og Datastrukturer Torsdag 12. januar 1995, Kl. 0900-1300. UNIVERSITETET I TRONDHEIM NORGES TEKNISKE HØGSKOLE INSTITUTT FOR DATATEKNIKK OG TELEMATIKK 034 Trondheim Side 1 av 5 Eksamen i 45011 Algoritmer og Datastrukturer Torsdag 1. januar 1995, Kl. 0900-1300.

Detaljer

Effektiv bruk av frivillige i Juvente Landsmøteforslag fra Juvente Trondheim

Effektiv bruk av frivillige i Juvente Landsmøteforslag fra Juvente Trondheim 1 2 Effektiv bruk av frivillige i Juvente Landsmøteforslag fra Juvente Trondheim 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Formål Formålet med dette forslaget er å: Gjøre

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 7

PG4200 Algoritmer og datastrukturer Forelesning 7 PG4200 Algoritmer og datastrukturer Forelesning 7 Lars Sydnes, NITH 19. mars 2014 I. TERMINOLOGI FOR TRÆR TRÆR Lister: Lineære Trær: Hierarkiske Modell / Språk: Bestanddeler: Noder, forbindelser. Forbindelse

Detaljer

Divide-and-Conquer. Lars Vidar Magnusson 13.1.2015

Divide-and-Conquer. Lars Vidar Magnusson 13.1.2015 Divide-and-Conquer Lars Vidar Magnusson 13.1.2015 Kapittel 4 Maximum sub-array problemet Matrix multiplikasjon Analyse av divide-and-conquer algoritmer ved hjelp av substitusjonsmetoden Divide-and-Conquer

Detaljer

2 Om statiske variable/konstanter og statiske metoder.

2 Om statiske variable/konstanter og statiske metoder. Litt om datastrukturer i Java Av Stein Gjessing, Institutt for informatikk, Universitetet i Oslo 1 Innledning Dette notatet beskriver noe av det som foregår i primærlageret når et Javaprogram utføres.

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring - AITeL

HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring - AITeL HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring - AITeL Kandidatnr: Eksamensdato:. desember 00 Varighet: timer (9:00 1:00) Fagnummer: LO117D Fagnavn: Algoritmiske metoder Klasse(r): DA DB

Detaljer

En algoritme for permutasjonsgenerering

En algoritme for permutasjonsgenerering Innledning La oss tenke oss at vi har en grunnskole-klasse på 25 elever der enkelte av elever er uvenner med hverandre. Hvis uvenner sitter nær hverandre blir det bråk og slåssing. Er det mulig å plassere

Detaljer

TRAFIKANTERS VURDERING AV FART OG AVSTAND. Sammenfatning av litteraturstudium

TRAFIKANTERS VURDERING AV FART OG AVSTAND. Sammenfatning av litteraturstudium Arbeidsdokument av 20. september 2006 O-3129 Dimensjonsgivende trafikant Fridulv Sagberg Transportøkonomisk institutt Postboks 6110 Etterstad, 0602 Oslo Telefonnr: 22-57 38 00 Telefaxnr: 22-57 02 90 http://www.toi.no

Detaljer

LØSNINGSFORSLAG EKSAMEN VÅR07, MA0301

LØSNINGSFORSLAG EKSAMEN VÅR07, MA0301 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 LØSNINGSFORSLAG EKSAMEN VÅR07, MA0301 Oppgave 1 Om mengder. a) (10%) Sett opp en medlemsskapstabell (membership

Detaljer

Løsningsforslag, Ukeoppgaver 10 INF2310, våren 2011 kompresjon og koding del II

Løsningsforslag, Ukeoppgaver 10 INF2310, våren 2011 kompresjon og koding del II Løsningsforslag, Ukeoppgaver 10 INF2310, våren 2011 kompresjon og koding del II 1. En fax-oppgave: a. Et ark med tekst og enkle strektegninger skal sendes pr digital fax over en modemlinje med kapasitet

Detaljer

Korteste Vei I. Lars Vidar Magnusson 9.4.2014. Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei

Korteste Vei I. Lars Vidar Magnusson 9.4.2014. Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei Korteste Vei I Lars Vidar Magnusson 9.4.2014 Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei Korteste Vei Problemet I denne forelesningen skal vi se på hvordan vi kan finne korteste

Detaljer

Løsningsforslag for eksamen i REA3026 Matematikk S1-08.05.2008. eksamensoppgaver.org

Løsningsforslag for eksamen i REA3026 Matematikk S1-08.05.2008. eksamensoppgaver.org Løsningsforslag for eksamen i REA306 Matematikk S1-08.05.008 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i S1 er gratis, og det er lastet ned

Detaljer

Håndterlige og uhåndterlige problemer

Håndterlige og uhåndterlige problemer Håndterlige og uhåndterlige problemer Lars Sydnes 22. april 2014 1 Innledning Det er ikke alltid slik at alt som er teoretisk mulig er praktisk mulig. Her skal vi studere gapet mellom algoritmiske løsninger

Detaljer

Algoritmer Teoribok, kapittel 5. Algorithms

Algoritmer Teoribok, kapittel 5. Algorithms Algoritmer Teoribok, kapittel 5. Algorithms TDT 4105 Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål Lære om Algoritme som konsept Representasjon av algoritmer Oppdagelse av algoritmer Iterative

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Casio fx-9860

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Casio fx-9860 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Casio fx-9860 Innhold 1 Om Casio fx-9860 4 2 Regning 4 2.1 Tallet e......................................

Detaljer

VFKURVE3 Enkel gjennomgang av vannføringskurve-tilpasning

VFKURVE3 Enkel gjennomgang av vannføringskurve-tilpasning VFKURVE3 Enkel gjennomgang av vannføringskurve-tilpasning Hvordan kombinere målinger og faglig kunnskap for å finne sammenhengen mellom vannstand og vannføring. Motivasjon Ønsker her å foreta en kvikk

Detaljer

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.2

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.2 Delkapittel 9.2 Rød-svarte og 2-3-4 trær Side 1 av 16 Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.2 9.2 Rød-svarte og 2-3-4 trær 9.2.1 B-tre av orden 4 eller 2-3-4 tre Et rød-svart tre og et

Detaljer

a) Ved numerisk metode er det løst en differensiallikning av et objekt som faller mot jorden. Da, kan vi vi finne en tilnærming av akselerasjonen.

a) Ved numerisk metode er det løst en differensiallikning av et objekt som faller mot jorden. Da, kan vi vi finne en tilnærming av akselerasjonen. Oppgave 1 a) Ved numerisk metode er det løst en differensiallikning av et objekt som faller mot jorden. Da verdier av er kjent gjennom resultater i form av,, kan vi vi finne en tilnærming av akselerasjonen.

Detaljer

Eksempel på data: Karakterer i «Stat class» Introduksjon

Eksempel på data: Karakterer i «Stat class» Introduksjon Eksempel på data: Karakterer i «Stat class» Introduksjon Viktige begreper for å beskrive data: Enheter som er objektene i datasettet «label» som av og til brukes for å skille enhetene En variabel er en

Detaljer

6.2 Signifikanstester

6.2 Signifikanstester 6.2 Signifikanstester Konfidensintervaller er nyttige når vi ønsker å estimere en populasjonsparameter Signifikanstester er nyttige dersom vi ønsker å teste en hypotese om en parameter i en populasjon

Detaljer

Målereglement massevirke

Målereglement massevirke Side B2-1 B2 Målereglement massevirke Godkjent av styret i Norsk Virkesmåling 03.09.2014. Erstatter dokument B2 fastsatt av NVM styre 01.01.2014 A B1 C D Målereglement Sagtømmer, Generelle bestemmelser

Detaljer

Kontroll av bremser på tyngre kjøretøy ved teknisk utekontroll

Kontroll av bremser på tyngre kjøretøy ved teknisk utekontroll Sammendrag: TØI-rapport 701/2004 Forfatter(e): Per G Karlsen Oslo 2004, 52 sider Kontroll av bremser på tyngre kjøretøy ved teknisk utekontroll Med hensyn på trafikksikkerhet er det viktig at kjøretøy

Detaljer

Eksamen MAT1005 Matematikk 2P-Y Va ren 2014

Eksamen MAT1005 Matematikk 2P-Y Va ren 2014 Eksamen MAT1005 Matematikk 2P-Y Va ren 2014 Oppgave 1 (2 poeng) Nedenfor ser du hvor mange snegler Astrid har plukket i hagen hver kveld de ti siste kveldene. 10 5 22 28 2 8 50 15 40 10 Bestem gjennomsnittet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 7. oktober 2009. Tid for eksamen: 15:00 17:00. Oppgavesettet er på

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Innstillinger................................... 5 2 Regning 5 2.1 Tallregning...................................

Detaljer

1. Aleneboendes demografi

1. Aleneboendes demografi Aleneboendes levekår Aleneboendes demografi Arne S. Andersen 1. Aleneboendes demografi En stor og voksende befolkningsgruppe Rundt 900 000 nordmenn må regnes som aleneboende. Denne befolkningsgruppen har

Detaljer

Hva er en algoritme? Har allerede sett på mange algoritmer til nå i IT1101. Forholdet mellom en algoritme og et program. Algoritme program prosess

Hva er en algoritme? Har allerede sett på mange algoritmer til nå i IT1101. Forholdet mellom en algoritme og et program. Algoritme program prosess IT1101 Informatikk basisfag, dobbeltime 2/10 Hva er en algoritme? Fremgangsmåte for noe Hittil: Datarepresentasjon Datamanipulasjon Datamaskinarkutektur hvordan maskinen jobber Operativsystem Program som

Detaljer

Overslag FRA A TIL Å

Overslag FRA A TIL Å Overslag FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til overslag 2 2 Grunnleggende om overslag 2 3 Å gjøre overslag 6 4 Forsiktighetsregler 7 4.1 Når overslaget ikke

Detaljer

Måling av ST på scenen i konsertsaler

Måling av ST på scenen i konsertsaler Måling av ST på scenen i konsertsaler En studie av supportparameternes måleusikkerhet Christopher Gehe 1 FOTO: Trondheim Symfoniorkester, red. Gehe Akustisk støtte Subjektiv oppfattelse SUPPORT Objektivt

Detaljer

Boligmarkedsanalyse 4. kvartal 2012. Markedsutviklingen pr. 4. kvartal 2012

Boligmarkedsanalyse 4. kvartal 2012. Markedsutviklingen pr. 4. kvartal 2012 Boligmarkedsanalyse kvartal 22 Markedsutviklingen pr. kvartal 22 Prognosesenteret AS og Boligprodusentenes Forening 1/24/23 Markedsutviklingen pr. kvartal 22 Innhold Konklusjoner markedsutviklingen pr.

Detaljer

Matteknologisk utdanning

Matteknologisk utdanning Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 5) HØGSKOLEN I SØR-TRØNDELAG AVDELING FOR MAT- OG MEDISINSK TEKNOLOGI Matteknologisk utdanning Kandidatnr: Eksamensdato: 30. mai 2007

Detaljer