Dagens tema: Begrepsdannelse Eksterne entydighetsskranker Verdiskranker Mengdeskranker Underbegreper og underbegrepsskranker Kombinerte totale roller

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Dagens tema: Begrepsdannelse Eksterne entydighetsskranker Verdiskranker Mengdeskranker Underbegreper og underbegrepsskranker Kombinerte totale roller"

Transkript

1 UNIVERSITETET I OSLO INF1300 Introduksjon til databaser Dagens tema: Begrepsdannelse Eksterne entydighetsskranker Verdiskranker Mengdeskranker Underbegreper og underbegrepsskranker Kombinerte totale roller Institutt for informatikk INF

2 Et eksempel fra virkeligheten La oss se på setningen «På Blindern klokken 8 målte Jens 9 grader» De tre spørsmålene vi alltid må stille oss, er: Hvilke begreper har vi? Hvilken representasjon bruker vi for disse begrepene? Er setningen elementær i vårt UoD, og hvis den ikke er det, hvordan kan den splittes opp? 2

3 Et eksempel fra virkeligheten «På Blindern klokken 8 målte Jens 9 grader» Blindern er et sted med representasjon stedsnavn 8 er et tidspunkt med representasjon dato og klokkeslett Jens er en person med representasjon personnavn 9 er en temperatur med representasjon C For å avgjøre om setningen er elementær, tyr vi til et forekomstdiagram 3

4 Et eksempel fra virkeligheten Tid (.dato-klokkeslett) Person (.personnav n) Sted (.stedsnav n)...klokken...målte...temperatur... Blindern kl.8:00 Jens 9 V ærnes kl.8:00 Siri 9 Blindern kl.8:00 Lars 11 Blindern kl.8:00 Jens 9 Temperatur (.C ) Er det noen av forekomstene som må strykes? 4

5 Et eksempel fra virkeligheten Tid (.dato-klokkeslett) Person (.personnav n) Sted (.stedsnav n)...klokken...målte...temperatur... Blindern kl.8:00 Jens 9 V ærnes kl.8:00 Siri 9 Blindern kl.8:00 Lars 11 Blindern kl.8:00 Jens 9 Temperatur (.C ) Hvor skal entydighetsskranken(e) stå? 5

6 Et eksempel fra virkeligheten Tid (.dato-klokkeslett) Person (.personnav n) Sted (.stedsnav n)...klokken...målte...temperatur... Blindern kl.8:00 Jens 9 V ærnes kl.8:00 Siri 9 Blindern kl.8:00 Lars 11 Blindern kl.8:00 Jens 9 Temperatur (.C ) Dette er en entydighetsskranke over de to begrepene «Sted» og «Tid» Det gjør at setningen ikke er elementær (se neste lysark) 6

7 n-1-regelen En setning med aritet n er aldri elementær hvis det tilhørende forekomstdiagrammet har en entydighetsskranke som er kortere enn n-1 Hvis korteste entydighetsskranke har lengde n-1, er setningen elementær Hvis korteste entydighetsskranke har lengde n, er setningen nesten alltid elementær Unntakene forekommer svært sjelden i praksis, og de er ikke pensum i INF1300 (men i INF3100) Setninger med aritet 1 eller 2 er alltid elementære 7

8 Et eksempel fra virkeligheten...klokken...måltes... Temperatur (.C ) Sted (.stedsnav n) Tid (.dato-klokkeslett)...klokken...målter... Person (.personnav n) Vi har nå et skjema for elementære ternære setninger med entydighetsskranker av lengde to Entydighetsskrankene sier at Tid og Sted sammen bestemmer Temperatur og sammen bestemmer Person 8

9 Et eksempel fra virkeligheten Sted (.stedsnav n)...klokken...måltes... Tid (.dato-klokkeslett)...klokken...målter... Temperatur (.C ) Person (.personnav n) De to setningene har til felles at Tid og Sted sammen bestemmer en tredje verdi ORM-diagrammet til venstre er korrekt, men tydeliggjør ikke at for både Temperatur og Person er forekomster bestemt av en og samme kombinasjon av Tid og Sted 9

10 Et eksempel fra virkeligheten Sted (.stedsnav n)...klokken...måltes... Tid (.dato-klokkeslett)...klokken...målter... Temperatur (.C ) Person (.personnav n) Vi kan tydeliggjøre dette ved å lage et nytt begrep av kombinasjonen av begrepene Tid og Sted. Det nye begrepet kan vi i vårt UoD kalle Måling. Deretter kan vi knytte forekomster av Temperatur og Person til det nye begrepet. Entydighetsskrankene på rollene med_resultat og gjort_av uttrykker at én forekomst av Måling maksimalt har én forekomst av Temperatur og må være gjort av maksimalt én Person. Dette svarer til entydighetsskrankene over tid+sted i modellen til venstre. 10

11 Begrepsdannelse Et problem er at begrepene Tid og Sted ble borte fra modellen Hvorvidt vi kan tillate det, avhenger av UoD Hvis Tid eller Sted har andre roller enn å være tid og sted for Måling, kan vi ikke fjerne dem fra modellen La oss se nærmere på sammen-hengen mellom Tid, Sted og Måling: Entydighetsskrankene og de totale rollene uttrykker at én forekomst av Måling må være utført på eksakt ett Sted og én Tid 11

12 Begrepsdannelse Tid Måling Sted tid / med kl.8:00 m kl.8:00 m kl.8:00 m3 på / sted m1 Blindern m2 V ærnes m3 Blindern kl.8:00 m4 m4 Blindern Modellen er fortsatt ikke god nok: Den utelukker ikke at to forskjellige målinger (av samme fenomen) kan være foretatt på nøyaktig samme tid og sted 12

13 Begrepsdannelse Tid Måling Sted tid / med kl.8:00 m kl.8:00 m kl.8:00 m kl.8:00 m4 på / sted m1 Blindern m2 V ærnes m3 Blindern m4 Blindern Modellen er fortsatt ikke god nok: Den utelukker ikke at to forskjellige målinger (av samme fenomen) kan være foretatt på nøyaktig samme tid og sted Vi trenger en entydighetsskranke på tvers av faktatypene 13

14 Eksterne entydighetsskranker Entydighet på tvers av faktatyper indikerer vi med en ekstern entydighetsskranke på de involverte rollene tid og sted 14

15 Begrepsdannelse alternativ notasjon 15

16 Eksterne entydighetsskranker Vi kan også uttrykke at en person ikke kan foreta mer enn én måling av gangen Dette gjøres med en ekstern entydighetsskranke på rollene foretok og tid 16

17 Eksempel med aritet 4 På en gitt dag låner en person, kalt debitor, et beløp fra en annen person, kalt kreditor Det nye begrepet, Lån, består av én dag og to personer Hvordan vi modellerer «en annen person», kommer vi tilbake til. Forøvrig ser modellen slik ut: 17

18 Avsluttende om begrepsdannelser Alle entydighetspiler som går over mer enn én rolle i en faktatype, skjuler et (nytt) begrep. Man skal alltid vurdere om det skal lages nye begreper når man får faktatyper med lange entydighetspiler. En faktatype med aritet 3 eller 4 (eller mer) kan gjøres om til binære setninger ved å lage ett eller flere nye begreper. 18

19 Verdiskranker Antall (#) {1..69} Land (.nav n)...v ant...medaljer... {'G','S','B'} Medaljeart (.medaljekode) Begrenser mulige forekomster av et begrep I praksis: Angir en mengde verdier som er lovlige representasjoner f.eks. ved direkte opprams av verdiene, angivelse av en nedre og/eller øvre grense, innebygde kontrollsifre (eks. fødselsnumre) 19

20 Populasjoner Populasjon for en rolle: Hvis r er en rolle, betegner pop(r) mengden av forekomster i kolonnen for r i forekomsttabellen Populasjon for et begrep: Begreper har egentlig ikke forekomster løsrevet fra roller, men vi definerer likevel populasjonen til et begrep A som har roller r 1, r 2,..., r n ved pop(a) = pop(r 1 ) pop(r 2 )... pop(r n ) Merk: Populasjonen til en rolle/et begrep varierer med tiden 20

21 Populasjoner - eksempel Antall (#) {1..69} {'G','S','B'} Person (.nav n) deltar for / har deltaker Land (.nav n)...v ant...medaljer... Medaljeart (.medaljekode) Aamodt Miller Norge U SA Tyskland 11 G Tyskland 12 S Deneriaz Frankerike Tyskland 6 B USA 9 G USA 9 S USA 7 B Østerrike 9 G pop(land som vant) = {Tyskland, USA, Østerrike} pop(land som har_deltaker) = {Norge, USA, Frankrike} pop(land) = {Tyskland, USA, Østerrike, Norge, Frankrike} 21

22 Mengdeskranker Mengdeskrankene begrenser mengden av forekomster i en eller flere roller i forhold til forekomstene i andre roller Finnes i følgende varianter: Likhetsskranke Ulikhetsskranke Delmengdeskranke 22

23 Mengdelikhetsskranken A skal ha rollen r1 hvis og bare hvis A har rollen r2. pop(r1) = pop(r2) for alle tilstander 23

24 Mengdelikhetsskranken, eksempel Konsekvens: Oppdatering av har lønn krever oppdatering av har lønnstrekk og omvendt 24

25 Mengdeulikhetsskranken A skal ikke ha både rollen r1 og r2. pop(r1) pop(r2) = for alle tilstander 25

26 Mengdeulikhetsskranken, eksempel 26

27 Mengdeulikhetsskranken A skal ikke ha både rollen r1 og r2. Det kan være forekomster av A som hverken er i r1 eller r2 A skal ha en og bare en av rollene r1 og r2 27

28 Mengdeulikhetsskranke over to roller Det skal ikke være forekomster av A og B som er relatert gjennom begge faktatypene 28

29 Mengdeulikhetsskranken, eksempel Sag ikke av en gren når du sitter på en annen gren Sag ikke av en gren som noen andre sitter på Sag ikke av den grenen du selv sitter på 29

30 Den generelle mengdeulikhetsskranken pop(r i ) pop(r j ) = for alle i j (1 i k, 1 j k) 30

31 Delmengdeskranken Hvis A har rollen r2, så skal A også ha rollen r1. pop(r2) pop(r1) for alle tilstander 31

32 Delmengdeskranken, eksempel 32

33 Eksempel med aritet 4 forts. På en gitt dag låner en person debitoren - et beløp fra en annen person - kreditoren Oppgave: Hvilken skranke mangler? Hvor skal den plasseres? 33

34 Impliserte skranker skal ikke tegnes Implisert likhetsskranke skal ikke tegnes Implisert delmengdeskranke skal ikke tegnes INF

35 Impliserte skranker skal ikke tegnes Impliserte delmengdeskranker skal ikke tegnes Implisert ulikhetsskranke skal ikke tegnes 35

36 Mengdelikhetsskranke over flere roller er vanligvis ikke lov 36

37 Underbegreper Kjernespørsmål: Kan alle tenkelige forekomster av et begrep spille alle roller som er knyttet til begrepet? Hvis nei: Kan få en mer presis modell ved å innføre underbegreper B er et underbegrep av A hvis vi alltid har at pop(b) pop(a) Notasjon: 37

38 Underbegrepsskranke 38

39 Underbegreper Underbegreper arver representasjon og roller fra superbegrepet. I tillegg har de sine egne roller Underbegrepsskranker brukes til å bestemme hvilket underbegrep hver enkelt forekomst tilhører Underbegreper kan overlappe eller være disjunkte Underbegrepene kan, men må ikke, være uttømmende mhp. sitt superbegrep Resonnementer over entydighetsskranker, totale roller og underbegrepsskrankene avslører om underbegrepene er overlappende og/eller uttømmende 39

40 Eksempel på overlappende og ikke-uttømmende underbegreper 40

41 Underbegreper i flere nivåer Det transitive underbegrepet tegnes ikke inn! 41

42 Kombinert total rolle A skal ha enten rollen r1 eller rollen r2. pop(r1) pop(r2) = pop(a) for alle tilstander 42

43 Eksempel på kombinert total rolle og underbegrep 43

44 Generell kombinert total rolle pop(r1) pop(r2)... pop(rk) = pop(a) 44

45 Se opp for manglende totale roller Mangel på totale roller kan indikere et underbegrep 45

46 Spesialisering og generalisering 46

Dagens tema: Begrepsdannelse Eksterne entydighetsskranker Verdiskranker Mengdeskranker

Dagens tema: Begrepsdannelse Eksterne entydighetsskranker Verdiskranker Mengdeskranker UNIVERSITETET I OSLO INF1300 Introduksjon til databaser Dagens tema: Begrepsdannelse Eksterne entydighetsskranker Verdiskranker Mengdeskranker Institutt for informatikk 1 Et eksempel fra virkeligheten

Detaljer

INF1300 Introduksjon til databaser

INF1300 Introduksjon til databaser UNIVERSITETET I OSLO INF1300 Introduksjon til databaser Dagens tema: Begrepsdannelse Eksterne entydighetsskranker Verdiskranker Mengdeskranker INF1300 1.9.2008 Ellen Munthe-Kaas 1 Et eksempel fra virkeligheten

Detaljer

Dagens tema: Begrepsdannelse Eksterne entydighetsskranker Representasjon n-1-regelen Verdiskranker Mengdeskranker

Dagens tema: Begrepsdannelse Eksterne entydighetsskranker Representasjon n-1-regelen Verdiskranker Mengdeskranker UNIVERSITETET I OSLO INF1300 Introduksjon til databaser Dagens tema: Begrepsdannelse Eksterne entydighetsskranker Representasjon n-1-regelen Verdiskranker Mengdeskranker INF1300 29.08.2017 Mathias Stang

Detaljer

Dagens tema: Begrepsdannelse Eksterne entydighetsskranker

Dagens tema: Begrepsdannelse Eksterne entydighetsskranker UNIVERSITETET I OSLO INF1300 Introduksjon til databaser Dagens tema: Begrepsdannelse Eksterne entydighetsskranker Institutt for informatikk INF1300 29.8.2016 1 Et eksempel fra virkeligheten La oss se på

Detaljer

INF1300 Introduksjon til databaser

INF1300 Introduksjon til databaser UNIVERSITETET I OSLO INF1300 Introduksjon til databaser Dagens tema: Verdiskranker Underbegreper Underbegrepsskranker Mengdeskranker Delmengdeskranker INF1300-10.9.2007 Ellen Munthe-Kaas 1 Verdiskranker

Detaljer

UNIVERSITETET I OSLO INF1300 Introduksjon til databaser

UNIVERSITETET I OSLO INF1300 Introduksjon til databaser UNIVERSITETET I OSLO INF1300 Introduksjon til databaser Dagens tema: Underbegreper og underbegrepsforklaringer Kombinerte påkrevde roller Undertrykking av begreper Ekvivalente stier og joinskranker Behandling

Detaljer

Dagens tema: Underbegreper og underbegrepsskranker Kombinerte totale roller Behandling av tid Informasjonsbærende representasjoner Ringskranker

Dagens tema: Underbegreper og underbegrepsskranker Kombinerte totale roller Behandling av tid Informasjonsbærende representasjoner Ringskranker UNIVERSITETET I OSLO INF1300 Introduksjon til databaser Dagens tema: Underbegreper og underbegrepsskranker Kombinerte totale roller Behandling av tid Informasjonsbærende representasjoner Ringskranker Institutt

Detaljer

Informasjonsbærende representasjoner

Informasjonsbærende representasjoner UNIVERSITETET I OSLO INF1300 Introduksjon til databaser Dagens tema: Underbegreper Underbegrepsskranker Kombinerte totale roller Ekvivalente stier og joinskranker Behandling av tid Informasjonsbærende

Detaljer

UNIVERSITETET I OSLO INF1300 Introduksjon til databaser

UNIVERSITETET I OSLO INF1300 Introduksjon til databaser UNIVERSITETET I OSLO INF1300 Introduksjon til databaser Dagens tema: Underbegreper Underbegrepsskranker Kombinerte totale roller Ekvivalente stier og joinskranker Behandling av tid Informasjonsbærende

Detaljer

UNIVERSITETET I OSLO INF1300 Introduksjon til databaser

UNIVERSITETET I OSLO INF1300 Introduksjon til databaser UNIVERSITETET I OSLO INF1300 Introduksjon til databaser Dagens tema: Underbegreper og underbegrepsskranker Kombinerte totale roller Ekvivalente stier og joinskranker Behandling av tid Informasjonsbærende

Detaljer

INF1300 Introduksjon til databaser

INF1300 Introduksjon til databaser UNIVERSITETET I OSLO INF1300 Introduksjon til databaser Dagens tema: Underbegreper Underbegrepsskranker Ekvivalente stier og joinskranker Behandling av tid Informasjonsbærende representasjoner INF1300

Detaljer

Notater: INF1300. Veronika Heimsbakk 8. januar 2013

Notater: INF1300. Veronika Heimsbakk 8. januar 2013 Notater: INF1300 Veronika Heimsbakk veronahe@student.matnat.uio.no 8. januar 2013 Innhold 1 ORM 3 1.1 Setningers aritet......................... 3 1.2 Faktatyper og broer i ORM................... 3 1.3

Detaljer

Dagens tema: Ringskranker Informasjonsbærende representasjoner Behandling av tid Tommelfingerregler

Dagens tema: Ringskranker Informasjonsbærende representasjoner Behandling av tid Tommelfingerregler UNIVERSITETET I OSLO INF1300 Introduksjon til databaser Dagens tema: Ringskranker Informasjonsbærende representasjoner Behandling av tid Tommelfingerregler Institutt for informatikk INF1300 21.09.2015

Detaljer

UNIVERSITETET I OSLO INF1300. Dagens tema: Ringskranker. Tommelfingerregler. Institutt for informatikk. INF Ellen Munthe-Kaas 1

UNIVERSITETET I OSLO INF1300. Dagens tema: Ringskranker. Tommelfingerregler. Institutt for informatikk. INF Ellen Munthe-Kaas 1 UNIVERSITETET I OSLO INF1300 Introduksjon til databaser Dagens tema: Ringskranker Klisjéer (mønstre) Tommelfingerregler Institutt for informatikk INF1300 19.10.2009 Ellen Munthe-Kaas 1 Ringskranker INF1300

Detaljer

INF1300 Introduksjon til databaser

INF1300 Introduksjon til databaser UNIVERSITETET I OSLO INF1300 Introduksjon til databaser Dagens tema: Grunnbegrepene i ORM Sammenheng mellom ORM og vanlig språk Elementære setninger (fakta) Faktatyper og broer Entydighetsskranker og totale

Detaljer

INF1300 Introduksjon til databaser

INF1300 Introduksjon til databaser UNIVERSITETET I OSLO INF1300 Introduksjon til databaser Dagens tema: Grunnbegrepene i ORM Sammenheng mellom ORM og naturlig språk Elementære setninger (fakta) Faktatyper og broer Entydighetsskranker og

Detaljer

Forelesning INF1300. Simen Buodd. Plenumstime 8. September 2015

Forelesning INF1300. Simen Buodd. Plenumstime 8. September 2015 Forelesning INF1300 Simen Buodd Plenumstime 8. September 2015 Agenda Gjennomgå Oblig 3 Realisere Oblig 3 Gjennomgå oppgave side 8 på ORM-slide 3 Gjennomgå oppgave side 33 på ORM-slide 33 Oppgaver med eksterne

Detaljer

Repetisjon: (nesten) alt du trenger å kunne om ORM og realisering

Repetisjon: (nesten) alt du trenger å kunne om ORM og realisering INF1300 Introduksjon til databaser Repetisjon: (nesten) alt du trenger å kunne om ORM og realisering Mathias Stang (mjstang@ifi.uio.no) 21. november 2016 Agenda Hensikten med ORM-modellering Hva er lov

Detaljer

Repetisjon: (nesten) alt du trenger å kunne om ORM og realisering

Repetisjon: (nesten) alt du trenger å kunne om ORM og realisering INF1300 Introduksjon til databaser Repetisjon: (nesten) alt du trenger å kunne om ORM og realisering Mathias Stang (mjstang@ifi.uio.no) 21. november 2017 Agenda Hensikten med ORM-modellering Hva er lov

Detaljer

INF1300 Introduksjon til databaser

INF1300 Introduksjon til databaser UNIVERSITETET I OSLO INF1300 Introduksjon til databaser Dagens tema: Grunnbegrepene i ORM Sammenheng mellom ORM og vanlig språk Elementære setninger (fakta) Faktatyper og broer Entydighetsskranker og totale

Detaljer

Vegard Nossum. 21. oktober 2010

Vegard Nossum. 21. oktober 2010 ORM, UML og DL-Lite A,id Vegard Nossum 21. oktober 2010 Plan Introduksjon til ORM-modellering Formalisering av ORM og UML Litt om kompleksitet ORM-modellering: Begreper og forekomster Begreper tegnes som

Detaljer

INF1300 Introduksjon til databaser

INF1300 Introduksjon til databaser UNIVERSITETET I OSLO INF1300 Introduksjon til databaser Dagens tema: Grunnbegrepene i ORM Sammenheng mellom ORM og vanlig språk Elementære setninger (fakta) Faktatyper og broer Entydighetsskranker og totale

Detaljer

Dataorientert modellering

Dataorientert modellering INF2120 Dataorientert modellering Ragnar Normann 9. mars 2005 INF2120 Prosjekt i modellering 1 Dataorientering og UML UML har som utgangspunkt et objektorientert syn på tilværelsen hvor oppførsel og samspill

Detaljer

Dagens tema: Relasjonsmodellen (funksjonelle avhengigheter og nøkler, integritetsregler) Realisering: Fra ORM til relasjoner

Dagens tema: Relasjonsmodellen (funksjonelle avhengigheter og nøkler, integritetsregler) Realisering: Fra ORM til relasjoner UNIVERSITETET I OSLO INF1300 Introduksjon til databaser Dagens tema: Relasjonsmodellen (funksjonelle avhengigheter og nøkler, integritetsregler) Realisering: Fra ORM til relasjoner Institutt for informatikk

Detaljer

INF Introduksjon til databaser ORM I

INF Introduksjon til databaser ORM I INF1300 - Introduksjon til databaser ORM I Dagens tema: Grunnbegrepene i ORM Sammenheng mellom ORM og naturlig språk Elementære setninger (fakta) Faktatyper og broer Entydighetsskranker og påkrevde roller

Detaljer

INF1300 Introduksjon til databaser

INF1300 Introduksjon til databaser UNIVERSITETET I OSLO INF1300 Introduksjon til databaser Dagens tema: Ekvivalente stier Behandling av tid Informasjonsbærende representasjoner INF1300-17.9.2007 Ellen Munthe-Kaas 1 Stier Dette er en sti

Detaljer

Dagens tema: Ekvivalente stier og joinskranker Ringskranker Informasjonsbærende representasjoner Behandling av tid

Dagens tema: Ekvivalente stier og joinskranker Ringskranker Informasjonsbærende representasjoner Behandling av tid UNIVERSITETET I OSLO INF1300 Introduksjon til databaser Dagens tema: Ekvivalente stier og joinskranker Ringskranker Informasjonsbærende representasjoner Behandling av tid Tommelfingerregler ORM som analysemetode

Detaljer

INF1300 Introduksjon til databaser

INF1300 Introduksjon til databaser UNIVERSITETET I OSLO INF1300 Introduksjon til databaser Dagens tema: Data, databaser og databasehåndteringssystemer Data versus informasjon Beskrivelse av interesseområdet Begreper og representasjon av

Detaljer

Datamodellering med ORM

Datamodellering med ORM Figur 5-1. Datamodellen dokumenterer vår oppfatning av virkeligheten Interesset Datamodellering med ORM registrering påvirkning jfr. Systemutvikling fra kjernen og ut, fra skallet og inn kapittel 6 Oppfatningen

Detaljer

INF1300 Introduksjon til databaser

INF1300 Introduksjon til databaser UNIVERSITETET I OSLO INF1300 Introduksjon til databaser Dagens tema: Informasjonsbærende referansemåter Resten av realiseringsalgoritmen Sterk realisering Realisering versus modellering INF1300-31.10.2016

Detaljer

Dataorientert modellering

Dataorientert modellering INF2120 Dataorientert modellering Ragnar Normann 1. mars 2006 INF2120 Prosjekt i modellering 1 Dataorientering og UML UML har som utgangspunkt et objektorientert syn på tilværelsen hvor oppførsel og samspill

Detaljer

*UXSSHULQJ IRU JUDXWVNDOOHU (QYLVXHOOJXLGHJMHQQRPQRHQ DY1,$0JUXSSHULQJHQV XQGHUIXQGLJKHWHU

*UXSSHULQJ IRU JUDXWVNDOOHU (QYLVXHOOJXLGHJMHQQRPQRHQ DY1,$0JUXSSHULQJHQV XQGHUIXQGLJKHWHU *UXSSHULQJ IRU JUDXWVNDOOHU (QYLVXHOOJXLGHJMHQQRPQRHQ DY1,$0JUXSSHULQJHQV XQGHUIXQGLJKHWHU Historikk (Ikke bruk tid på å lese dette, den nyttige informasjonen begynner på neste side...) Ideen til å lage

Detaljer

Språk for dataorientert modellering

Språk for dataorientert modellering Språk for dataorientert modellering Hva forvirrer studentene minst, ORM/NIAM eller UML-stereotyper? (Omkamp mellom «Rundinger» og «Firkanter») Ragnar Normann (med god støtte av Gerhard Skagestein) 1 Bakgrunn

Detaljer

INF1300. Grunnbegrepene i ORM: fakta, begreper, roller, faktatyper, broer, entydighetsskranker, totale roller, funksjonelle avhengigheter

INF1300. Grunnbegrepene i ORM: fakta, begreper, roller, faktatyper, broer, entydighetsskranker, totale roller, funksjonelle avhengigheter INF1300 Grunnbegrepene i ORM: fakta, begreper, roller, faktatyper, broer, entydighetsskranker, totale roller, funksjonelle avhengigheter Ogdens trekant begrep representasjon fenomen i UoD michael@ifi.uio.no

Detaljer

INF1300 Introduksjon til databaser

INF1300 Introduksjon til databaser UNIVERSITETET I OSLO INF1300 Introduksjon til databaser Dagens tema: Data, databaser og databasehånteringssystemer Data versus informasjon Beskrivelse av interesseområdet 100%-prinsippet og det begrepsmessige

Detaljer

INF1300 Introduksjon til databaser

INF1300 Introduksjon til databaser UNIVERSITETET I OSLO INF1300 Introduksjon til databaser Dagens tema: Relasjonsmodellen Funksjonelle avhengigheter og nøkler Realisering: Fra ORM til relasjoner Institutt for informatikk INF1300--15.9.2009--michael@ifi.uio.no

Detaljer

Modellenes to formål. Datamodellering med UML (forts.) Ugrupperte og grupperte modeller. Figur 5-2. Ogdens trekant

Modellenes to formål. Datamodellering med UML (forts.) Ugrupperte og grupperte modeller. Figur 5-2. Ogdens trekant Modellenes to formål Interesseområdet Dataering med UML (forts.) Beskrivelse jfr. Systemutvikling fra kjernen og ut, fra skallet og inn kapittel 5 Oppfatningen av interesseområdet Foreskrivelse Informasjonssystem

Detaljer

Modellenes to formål. Datamodellering med UML (forts.) Fra naturlig språk til datamodell. Figur 5-2. Ogdens trekant

Modellenes to formål. Datamodellering med UML (forts.) Fra naturlig språk til datamodell. Figur 5-2. Ogdens trekant Modellenes to formål Interesseområdet Dataering med UML (forts.) Beskrivelse jfr. Systemutvikling fra kjernen og ut, fra skallet og inn kapittel 6 Oppfatningen av interesseområdet Foreskrivelse Informasjonssystem

Detaljer

Dagens plan. INF3170 Logikk

Dagens plan. INF3170 Logikk INF3170 Logikk Dagens plan Forelesning 1: Introduksjon og mengdelære Christian Mahesh Hansen Institutt for informatikk, Universitetet i Oslo 1 Praktisk informasjon 2 Hva skal vi lære? 22. januar 2007 3

Detaljer

Konvertering mellom tallsystemer

Konvertering mellom tallsystemer Konvertering mellom tallsystemer Hans Petter Taugbøl Kragset hpkragse@ifi.uio.no November 2014 1 Introduksjon Dette dokumentet er ment som en referanse for konvertering mellom det desimale, det binære,

Detaljer

INF1300 Introduksjon til databaser

INF1300 Introduksjon til databaser UNIVERSITETET I OSLO INF1300 Introduksjon til databaser Dagens tema: Ringskranker Klisjéer Tommelfingerregler ORM og normalisering Denormalisering og splitting ORM som metode INF1300 7.11.2016 Ellen Munthe-Kaas

Detaljer

Relasjonsdatabasedesign

Relasjonsdatabasedesign UNIVERSITETET I OSLO Relasjonsdatabasedesign Normalformer Institutt for Informatikk INF3100-25.1.2016 Ellen Munthe-Kaas 1 Normalformer Normalformer er et uttrykk for hvor godt vi har lykkes i en dekomposisjon

Detaljer

Dagens tema. Den redundansfri datamodellen. Modellenes to formål. Den grunnleggende konstruksjonen det elementære utsagnet

Dagens tema. Den redundansfri datamodellen. Modellenes to formål. Den grunnleggende konstruksjonen det elementære utsagnet Dagens tema Individer i interesseområdet Den redundansfri dataen Redundansfrihet ingen dobbeltlagringer eller avledninger Gruppering, normalisering eller intuisjon? Begrepsdannelse jfr. Systemutvikling

Detaljer

INF1300 Introduksjon til databaser

INF1300 Introduksjon til databaser UNIVERSITETET I OSLO Dagens tema: INF1300 Introduksjon til databaser Relasjonsmodellen (funksjonelle avhengigheter og nøkler, integritetsregler) Institutt for informatikk INF1300 12.9.2016 1 Relasjonsmodellen

Detaljer

Dagens tema: Realiseringsalgoritmen (også kalt "grupperingsalgoritmen") fra ORM-diagram til relasjonsskjema

Dagens tema: Realiseringsalgoritmen (også kalt grupperingsalgoritmen) fra ORM-diagram til relasjonsskjema UNIVERSITETET I OSLO INF1300 Introduksjon til databaser Dagens tema: Realiseringsalgoritmen (også kalt "grupperingsalgoritmen") fra ORM-diagram til relasjonsskjema Institutt for informatikk INF1300 15.9.2016

Detaljer

INF1800 LOGIKK OG BEREGNBARHET

INF1800 LOGIKK OG BEREGNBARHET INF1800 LOGIKK OG BEREGNBARHET FORELESNING 3: MENGDELÆRE, RELASJONER, FUNKSJONER Roger Antonsen Institutt for informatikk Universitetet i Oslo 26. august 2008 (Sist oppdatert: 2008-09-05 12:55) Repetisjon

Detaljer

Repetisjon INF1800 LOGIKK OG BEREGNBARHET FORELESNING 3: MENGDELÆRE, RELASJONER, FUNKSJONER. Mengder. Multimengder og tupler.

Repetisjon INF1800 LOGIKK OG BEREGNBARHET FORELESNING 3: MENGDELÆRE, RELASJONER, FUNKSJONER. Mengder. Multimengder og tupler. INF1800 LOGIKK OG BEREGNBARHET FORELESNING 3: MENGDELÆRE, RELASJONER, FUNKSJONER Roger Antonsen Repetisjon Institutt for informatikk Universitetet i Oslo 26. august 2008 (Sist oppdatert: 2008-09-05 12:55)

Detaljer

Oppdateringsanomalier Normalformer

Oppdateringsanomalier Normalformer UNIVERSITETET I OSLO INF300 Introduksjon til databaser Dagens tema: Oppdateringsanomalier Normalformer Institutt for informatikk INF300 26.0.2009 Ellen Munthe-Kaas Hva kjennetegner god relasjonsdatabasedesign?

Detaljer

Dagens plan. INF3170 Logikk. Mengder. Definisjon. Notasjon. Forelesning 0: Mengdelære, Induksjon. Martin Giese. 23. januar 2008.

Dagens plan. INF3170 Logikk. Mengder. Definisjon. Notasjon. Forelesning 0: Mengdelære, Induksjon. Martin Giese. 23. januar 2008. INF3170 Logikk Dagens plan Forelesning 0:, Induksjon Martin Giese 1 Institutt for informatikk, Universitetet i Oslo 2 23. januar 2008 Institutt for informatikk (UiO) INF3170 Logikk 23.01.2008 2 / 47 1

Detaljer

Dagens plan. INF3170 Logikk. Redundans i LK-utledninger. Bevissøk med koblinger. Forelesning 13: Automatisk bevissøk IV matriser og koblingskalkyle

Dagens plan. INF3170 Logikk. Redundans i LK-utledninger. Bevissøk med koblinger. Forelesning 13: Automatisk bevissøk IV matriser og koblingskalkyle INF3170 Logikk Dagens plan Forelesning 13: matriser og koblingskalkyle Bjarne Holen 1 Institutt for informatikk, Universitetet i Oslo 7. mai 2007 Institutt for informatikk (UiO) INF3170 Logikk 07.05.2007

Detaljer

Datamodellering med UML (forts.)

Datamodellering med UML (forts.) Datamodellering med UML (forts.) jfr. Systemutvikling fra kjernen og ut, fra skallet og inn kapittel 6 Institutt for informatikk Gerhard Skagestein 4. februar 2007 dmuml2- Modellenes to formål Interesseområdet

Detaljer

INF1300 Introduksjon til databaser

INF1300 Introduksjon til databaser INF1300 Introduksjon til databaser Data (transiente, persistente) DBMS databser informasjon interesseområdet informasjonsmodeller informasjonssystemer Transiente og persistente data Når vi programmerer,

Detaljer

Dagens plan INF3170 Logikk. Obliger og eksamen. Forelesning 1: Introduksjon, mengdelære og utsagnslogikk. Christian Mahesh Hansen og Roger Antonsen

Dagens plan INF3170 Logikk. Obliger og eksamen. Forelesning 1: Introduksjon, mengdelære og utsagnslogikk. Christian Mahesh Hansen og Roger Antonsen Dagens plan INF3170 Logikk Forelesning 1: Introduksjon, mengdelære og utsagnslogikk Christian Mahesh Hansen og Roger Antonsen Institutt for informatikk, Universitetet i Oslo 1 Praktisk informasjon 2 23.

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. INF1080 Logiske metoder for informatikk

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. INF1080 Logiske metoder for informatikk UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag:. desember Tid for eksamen:.. INF Logiske metoder for informatikk Oppgave Mengdelære ( poeng) La A = {,, {}}, B =

Detaljer

INF1800 LOGIKK OG BEREGNBARHET

INF1800 LOGIKK OG BEREGNBARHET INF1800 LOGIKK OG BEREGNBARHET FORELESNING 2: MENGDELÆRE Roger Antonsen Institutt for informatikk Universitetet i Oslo 20. august 2008 (Sist oppdatert: 2008-09-03 12:36) Mengdelære Læreboken Det meste

Detaljer

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Dag Normann

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Dag Normann MAT1030 Diskret Matematikk Forelesning 25: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo Forelesning 25 27. april 2010 (Sist oppdatert: 2010-04-27 14:16) MAT1030 Diskret Matematikk 27. april

Detaljer

R for alle a A. (, så er a, En relasjon R på en mengde A er en Ekvivalensrelasjon hvis den er refleksiv, symmetrisk og transitiv.

R for alle a A. (, så er a, En relasjon R på en mengde A er en Ekvivalensrelasjon hvis den er refleksiv, symmetrisk og transitiv. Repetisjon fra siste uke: Relasjoner En relasjon R på en mengde A er en delmengde av produktmengden A A. La R være en relasjon på en mengde A. R er refleksiv hvis R er symmetrisk hvis R er antisymmetrisk

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 25: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 27. april 2010 (Sist oppdatert: 2010-04-27 14:15) Forelesning 25 MAT1030 Diskret Matematikk 27. april

Detaljer

Relasjonsdatabasedesign

Relasjonsdatabasedesign UNIVERSITETET I OSLO Relasjonsdatabasedesign Flerverdiavhengigheter Høyere normalformer Institutt for Informatikk INF3100-26.1.2012 Ellen Munthe-Kaas 1 Flerverdiavhengigheter Flerverdiavhengigheter gir

Detaljer

R for alle a A. (, så er a, En relasjon R på en mengde A er en Ekvivalensrelasjon hvis den er refleksiv, symmetrisk og transitiv.

R for alle a A. (, så er a, En relasjon R på en mengde A er en Ekvivalensrelasjon hvis den er refleksiv, symmetrisk og transitiv. Repetisjon fra siste uke: Relasjoner En relasjon R på en mengde A er en delmengde av produktmengden A A. La R være en relasjon på en mengde A. R er refleksiv hvis R er symmetrisk hvis R er antisymmetrisk

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 11: Relasjoner Roger Antonsen Institutt for informatikk, Universitetet i Oslo 25. februar 2009 (Sist oppdatert: 2009-03-03 11:37) Kapittel 5: Relasjoner MAT1030 Diskret

Detaljer

Kapittel 5: Relasjoner

Kapittel 5: Relasjoner MAT1030 Diskret Matematikk Forelesning 11: Relasjoner Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 5: Relasjoner 25. februar 2009 (Sist oppdatert: 2009-03-03 11:37) MAT1030 Diskret

Detaljer

Modellenes to formål. Datamodellering med UML (forts.) Ugrupperte og grupperte modeller. Figur 5-2. Ogdens trekant

Modellenes to formål. Datamodellering med UML (forts.) Ugrupperte og grupperte modeller. Figur 5-2. Ogdens trekant Modellenes to formål Interesseområdet Dataering med UML (forts.) Beskrivelse jfr. Systemutvikling fra kjernen og ut, fra skallet og inn kapittel 5 Oppfatningen av interesseområdet Foreskrivelse Informasjonssystem

Detaljer

BESLUTNINGER UNDER USIKKERHET

BESLUTNINGER UNDER USIKKERHET 24. april 2002 Aanund Hylland: # BESLUTNINGER UNDER USIKKERHET Standard teori og kritikk av denne 1. Innledning En (individuell) beslutning under usikkerhet kan beskrives på følgende måte: Beslutningstakeren

Detaljer

Dagens tema: Oppdateringsanomalier Normalformer

Dagens tema: Oppdateringsanomalier Normalformer UNIVERSITETET I OSLO INF300 Introduksjon til databaser Dagens tema: Oppdateringsanomalier Normalformer Institutt for informatikk INF300 08..0 michael@ifi.uio.no Hva kjennetegner god relasjonsdatabasedesign?

Detaljer

INF1300 Introduksjon til databaser

INF1300 Introduksjon til databaser UNIVERSITETET I OSLO INF1300 Introduksjon til databaser Dagens tema: Informasjonssystemer 100%-prinsippet: Fra virkelighet til informasjonsmodell Forretningsregler, skranker og integritetsregler: Fra modell

Detaljer

Kombinatorikk. MAT1030 Diskret Matematikk. Oppsummering av regneprinsipper

Kombinatorikk. MAT1030 Diskret Matematikk. Oppsummering av regneprinsipper MAT1030 Diskret Matematikk Forelesning 22: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo Kombinatorikk 14. april 2010 (Sist oppdatert: 2010-04-14 12:43) MAT1030 Diskret Matematikk 14.

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 22: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 14. april 2010 (Sist oppdatert: 2010-04-14 12:42) Kombinatorikk MAT1030 Diskret Matematikk 14.

Detaljer

Forelesning 29: Kompleksitetsteori

Forelesning 29: Kompleksitetsteori MAT1030 Diskret Matematikk Forelesning 29: Kompleksitetsteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 29: Kompleksitetsteori 13. mai 2009 (Sist oppdatert: 2009-05-17

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1300 Introduksjon til databaser Eksamensdag: 1. desember 2014 Tid for eksamen: 09.00 15.00 Oppgavesettet er på 5 sider. Vedlegg:

Detaljer

Introduksjon. MAT1030 Diskret Matematikk. Introduksjon. En graf. Forelesning 22: Grafteori. Roger Antonsen

Introduksjon. MAT1030 Diskret Matematikk. Introduksjon. En graf. Forelesning 22: Grafteori. Roger Antonsen MAT1030 Diskret Matematikk Forelesning 22: Grafteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Introduksjon 21. april 2009 (Sist oppdatert: 2009-04-21 15:13) MAT1030 Diskret Matematikk

Detaljer

INF1300 Introduksjon til databaser

INF1300 Introduksjon til databaser UNIVERSITETET I OSLO INF300 Introduksjon til databaser Dagens tema: Oppdateringsanomalier Normalformer INF300 7.0.008 Ellen Munthe-Kaas Hva kjennetegner god relasjonsdatabasedesign? Relasjonene samler

Detaljer

Forelesning 14: Automatisk bevissøk IV matriser og koblingskalkyle Christian Mahesh Hansen mai 2006

Forelesning 14: Automatisk bevissøk IV matriser og koblingskalkyle Christian Mahesh Hansen mai 2006 Forelesning 14: Automatisk bevissøk IV matriser og koblingskalkyle Christian Mahesh Hansen - 22. mai 2006 1 Automatisk bevissøk IV 1.1 Introduksjon Bevissøk med koblinger Vi har til nå sett på forskjellige

Detaljer

UNIVERSITETET I OSLO. Relasjonsmodellen. Relasjoner og funksjonelle avhengigheter. Institutt for Informatikk. INF Ellen Munthe-Kaas 1

UNIVERSITETET I OSLO. Relasjonsmodellen. Relasjoner og funksjonelle avhengigheter. Institutt for Informatikk. INF Ellen Munthe-Kaas 1 UNIVERSITETET I OSLO Relasjonsmodellen Relasjoner og funksjonelle avhengigheter Institutt for Informatikk INF3100-23.1.2007 Ellen Munthe-Kaas 1 Relasjonsdatabasemodellen Datamodell Mengde av begreper for

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 21: Mer kombinatorikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo 15. april 2009 (Sist oppdatert: 2009-04-15 00:05) Kapittel 9: Mer kombinatorikk

Detaljer

Introduksjon. MAT1030 Diskret matematikk. Søkealgoritmer for grafer. En graf

Introduksjon. MAT1030 Diskret matematikk. Søkealgoritmer for grafer. En graf Introduksjon MAT13 Diskret matematikk Forelesning 21: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 9. april 28 Vi skal nå over til kapittel 1 & grafteori. Grafer fins overalt rundt

Detaljer

Relasjonsdatabasedesign

Relasjonsdatabasedesign UNIVERSITETET I OSLO Relasjonsdatabasedesign Oppdateringsanomalier Dekomponering Normalformer Institutt for Informatikk INF300-9..007 Ellen Munthe-Kaas Hva kjennetegner god relasjonsdatabasedesign? Beslektet

Detaljer

Relasjonsdatabasedesign

Relasjonsdatabasedesign UNIVERSITETET IOSLO Relasjonsdatabasedesign Flerverdiavhengigheter Høyere normalformer Institutt for Informatikk INF3100-1.2.2011 Ellen Munthe-Kaas 1 Flerverdiavhengigheter Generalisering av FDer Flerverdiavhengigheter

Detaljer

Relasjonsdatabasedesign

Relasjonsdatabasedesign UNIVERSITETET I OSLO Relasjonsdatabasedesign Flerverdiavhengigheter Høyere normalformer Institutt for Informatikk INF3100-27.1.2015 Ellen Munthe-Kaas 1 Flerverdiavhengigheter Flerverdiavhengigheter brukes

Detaljer

Relasjonsdatabasedesign

Relasjonsdatabasedesign UNIVERSITETET I OSLO Relasjonsdatabasedesign Funksjonelle avhengigheter Oppdateringsanomalier Dekomponering Institutt for Informatikk INF3100-17.1.2014 Ellen Munthe-Kaas 1 Definisjon av nøkler Gitt en

Detaljer

Dagens tema. Den redundansfri datamodellen. Modellenes to formål. Individer i interesseområdet

Dagens tema. Den redundansfri datamodellen. Modellenes to formål. Individer i interesseområdet Dagens tema Individer i interesseområdet Den redundansfri datamodellen Redundansfrihet ingen dobbeltlagringer eller avledninger Gruppering, normalisering eller intuisjon? jfr. Systemutvikling fra kjernen

Detaljer

INF1300 Introduksjon til databaser

INF1300 Introduksjon til databaser UNIVERSITETET I OSLO INF300 Introduksjon til databaser Dagens tema: Oppdateringsanomalier Normalformer INF300..007 Ellen Munthe-Kaas Hva kjennetegner god relasjonsdatabasedesign? Relasjonene samler beslektet

Detaljer

Gerhard Skagestein: Systemutvikling fra kjernen og ut, fra skallet og inn.

Gerhard Skagestein: Systemutvikling fra kjernen og ut, fra skallet og inn. Gerhard Skagestein: Systemutvikling fra kjernen og ut, fra skallet og inn. Oppgaver til kapittel 5 - Datamodellering med UML Oppgave 6. Ugruppert og gruppert modell Et mindre bilutleiefirma ønsker å få

Detaljer

Eksamen i Elementær Diskret Matematikk - (MA0301)

Eksamen i Elementær Diskret Matematikk - (MA0301) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Steffen Junge (73 59 17 73 / 94 16 27 27) Eksamen i Elementær Diskret Matematikk -

Detaljer

INF3170 Forelesning 1

INF3170 Forelesning 1 INF3170 Forelesning 1 Introduksjon og mengdelære Roger Antonsen - 26. januar 2010 (Sist oppdatert: 2010-01-26 14:58) Dagens plan Innhold Velkommen til INF3710 Logikk 1 Litt praktisk informasjon...................................

Detaljer

Litt mer om den hypergeometriske fordelingen og dens tilnærming av binomisk fordeling.

Litt mer om den hypergeometriske fordelingen og dens tilnærming av binomisk fordeling. 1 ECON 2130 HG mars 2015 Litt mer om den hypergeometriske fordelingen og dens tilnærming av binomisk fordeling. Grunnen til dette supplementet er dels at forholdet mellom hypergeometrisk og binomisk fordeling

Detaljer

UNIVERSITETET. Relasjonsdatabasedesign

UNIVERSITETET. Relasjonsdatabasedesign UNIVERSITETET IOSLO Relasjonsdatabasedesign Normalformer Institutt for Informatikk INF3100-31.1.2011 Ellen Munthe-Kaas 1 Hvordan dekomponere tapsfritt Fagins teorem Gitt et relasjonsskjema R(XYZ) med FDer

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2016, forelesning 5 1 / 49

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 918 51 949 Eksamensdato 12. august, 2014 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode D.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 2. desember 2013 Tid for eksamen: 09.00 15.00 Oppgavesettet er på 6 sider. Vedlegg: Tillatte hjelpemidler: INF1300

Detaljer

Retningslinjer for aggregering av risiko. Ketil Stølen

Retningslinjer for aggregering av risiko. Ketil Stølen Retningslinjer for aggregering av risiko 1 Ketil Stølen 04.04 2017 Noen presiseringer Det er ikke alle risker det meningsfylt å aggregere Vårt fokus er på store virksomheter/bedrifter Målsetningen er i

Detaljer

Relasjonsdatabasedesign

Relasjonsdatabasedesign UNIVERSITETET I OSLO Relasjonsdatabasedesign Flerverdiavhengigheter Høyere normalformer Institutt for Informatikk INF3100-24.1.2014 Ellen Munthe-Kaas 1 Flerverdiavhengigheter Flerverdiavhengigheter brukes

Detaljer

Litt mer mengdelære. INF3170 Logikk. Multimengder. Definisjon (Multimengde) Eksempel

Litt mer mengdelære. INF3170 Logikk. Multimengder. Definisjon (Multimengde) Eksempel INF3170 Logikk Forelesning 2: Mengdelære, induktive definisjoner og utsagnslogikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Litt mer mengdelære 2. februar 2010 (Sist oppdatert: 2010-02-02

Detaljer

Notater til INF2220 Eksamen

Notater til INF2220 Eksamen Notater til INF2220 Eksamen Lars Bjørlykke Kristiansen December 13, 2011 Stor O notasjon Funksjon Navn 1 Konstant log n Logaritmisk n Lineær n log n n 2 Kvadratisk n 3 Kubisk 2 n Eksponensiell n! Trær

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 25. november 2011 Tid for eksamen: 14:45 16:45 Oppgave 1 Mengdelære (15 poeng)

Detaljer

MAT1030 Forelesning 25

MAT1030 Forelesning 25 MAT1030 Forelesning 25 Trær Dag Normann - 27. april 2010 (Sist oppdatert: 2010-04-27 14:16) Forelesning 25 Litt repetisjon Vi har snakket om grafer og trær. Av begreper vi så på var følgende: Eulerstier

Detaljer

Relasjonsdatabasedesign

Relasjonsdatabasedesign UNIVERSITETET I OSLO Relasjonsdatabasedesign Oppdateringsanomalier Dekomponering Normalformer INF300-8..008 Ragnar Normann Institutt for Informatikk Hva kjennetegner god relasjonsdatabasedesign? Beslektet

Detaljer

Normalisering. Hva er normalisering?

Normalisering. Hva er normalisering? LC238D http://www.aitel.hist.no/fag/_dmdb/ Normalisering Hva er normalisering? side 2 Normaliseringens plass i utviklingsprosessen side 3 Eksempel side 4 Funksjonell avhengighet side 5-6 Første normalform

Detaljer

LØSNINGSFORSLAG UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. Oppgave 1 Mengdelære (10 poeng)

LØSNINGSFORSLAG UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. Oppgave 1 Mengdelære (10 poeng) UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 9. desember 2010 Tid for eksamen: 09:00 13:00 INF1080 Logiske metoder for informatikk Oppgave 1 Mengdelære (10 poeng)

Detaljer

LO118D Forelesning 5 (DM)

LO118D Forelesning 5 (DM) LO118D Forelesning 5 (DM) Relasjoner 03.09.2007 1 Relasjoner 2 Ekvivalensrelasjoner 3 Matriser av relasjoner 4 Relasjonsdatabaser Relasjon Relasjoner er en generalisering av funksjoner En relasjon er en

Detaljer