TMA4140 Diskret Matematikk Høst 2016

Størrelse: px
Begynne med side:

Download "TMA4140 Diskret Matematikk Høst 2016"

Transkript

1 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA44 Diskret Matematikk Høst 26 Seksjon 3. Husk at w = λ, den tomme strengen, for enhver streng w. 4 a) Følgende utledning/derivasjon viser at strengen tilhører språket generert av G: S S S S A. b) Alle produksjoner resulterer i en streng som slutter med S, A eller. Det medfører at alle strenger i L(G) slutter på. Dermed har vi at L(G). c) I starten av enhver utledning bruker vi produksjonen S S ingen eller flere ganger, etterfult av produksjonen S A. På dette tidspunktet har vi en streng på formen A. Videre bruker vi produksjonen A A ingen eller flere ganger og avslutter med A. Fra dette ser vi at språket generert av G er L(G) = { m n m,n 3}. 6 d) Her kan vi enten begynne med produksjonen S AA eller S B. Begynner vi med førstnevnte kan vi produsere enhver streng bestående kun av a er, av partalls lengde større eller lik 4, da hver A gir opphav to nye a er. Begynner vi med sistnevnte kan vi istedet produsere enhver streng av bestående kun av b er av lengde større eller lik. Summa sumarum får vi L(G) = {a 2m m 2} {b n n }. e) Her må vi begynne med produksjonen S AB. Videre vil bruk av produksjonene A a Ab og B bb a kunne generere a k b k i første del av strengen, og b l a l i andre del av strengen. Vi kan når som helst terminere ved å bruke produksjonene A λ og B λ. Dermed får vi at L(G) = {a k b k+l a l k,l }. 2 Vi ønsker å finne en kontekstfri grammatikk som genererer språket av alle palindromer over alfabetet {, }, dvs. alle bitstrenger som leses likt forlengs som baklengs. Et eksempel på et palindrom er. Vi gjør nå en viktig observasjon. For en streng w lar vi w R betegne den reverserte strengen. For eksempel er R =. En streng w {,} er et palindrom hvis og bare hvis w = vv R w = vv R w = vv R for en streng v {,}. I eksempelet over ser vi at = ()() R. Vi kan bruke denne observasjonen til 7. november 28 Side av 5

2 å bygge alle palindromer ved å legge til like terminaler på hver side i strengen fra midten (siden siste symbol i v er først symbol i v R osv.). Til slutt kan vi legge til, eller λ i midten, avhengig om vi vil ha en streng av odde eller partalls lengde. Grammatikken skal være kontekstfri som betyr at enhver produksjon kun skal ha én enkelt ikke-terminal på vensteresiden. Vi setter G = (V,T,S,P), der V = {,,S}, T = {,} og produksjonene, P, er som følger: S S, S S, S λ, S, S. Seksjon Merk at oppgaven ber oss om å bevise eller motbevise hvorvidt hver av påstandene er sanne for alle A V. a) Usann: For A = {} har vi A A 2 = {}. b) Usann: Vi har = 2 og λ. Merk at påstanden er sann for alle A som er ikketomme. Hvis A kan vi la w A være en streng av korteste lengde i A (merk at det kan være flere av denne lengden). Hvis A = A 2 så har vi at w = uv, der u, v A. Men siden w har kortest lengde av alle strengene i A må vi ha at u = λ eller v = λ, så λ A. c) Sann: Siden wλ = w for enhver streng w ser vi at påstanden er sann. d) Sann: Vi beviser at (A ) = A ved å vise at begge er delmengder av hverandre. Per definisjon er (A ) = k= (A ) k, så vi ser at A (A ) (k = ). For å vise den motsatte inklusjonen lar vi w være en vilkårlig streng i (A ). Igjen per definisjon har vi at w er en konkatinering av strenger fra A, dvs. at w = v v m, der v i A. Hver v i er igjen en konkatinering av strenger fra A, dvs. at v i = v i, v i,ni hvor v i,n j A. Det betyr at w kan skrives på formen w = v, v,n v 2, v 2,n2 v m, v m,nm, som viser at w er en konkatinering av strenger fra A. Ergo er w A. Dette viser at (A ) A. e) Usann: Hvis λ A så er A A A fordi λ A A, mens λ A. f) Usann: For A = {,} har vi A 2 = {,,}, så A 2 = 3 4 = A 2. a) Ja. b) Nei. c) Ja. d) Ja. e) Nei. f) Nei. 7. november 28 Side 2 av 5

3 2 a) Ved kjøring på strengen havner vi i s, så denne strengen aksepteres. b) Ved kjøring på strengen havner vi i s, så denne strengen aksepteres ikke. c) Ved kjøring på strengen havner vi i s, så denne strengen aksepteres. d) Ved kjøring på strengen havner vi i s, så denne strengen aksepteres. 6 s er en final tilstand så λ aksepteres. Videre ser vi at aksepteres, og hvis en streng starter med vil den også aksepteres siden vi forblir i s. Til slutt ser vi at strenger som begynner med, etterfulgt av ingen eller flere ere og så en vil aksepteres (uansett hva som kommer etter andre er). De tre typene strenger som aksepteres er derfor λ, ( ) og ( ). Språket som aksepteres av automaten kan beskrives som henholdsvis mengde, regulært uttrykk, og med ord som følger: i) L(M) = {λ} {w w {,} } { n w n N, w {,} } ii) L(M) = λ ( ) ( ) iii) Språket L(M) består av den tomme strengen samt alle strenger som begynner med, og alle strenger som har minst to er. 22 Vi går gjennom alle mulighetene som leder oss til en final tilstand. Først ser vi at λ aksepteres siden s er en final tilstand. Videre ser vi at bringer oss til s og derfor aksepteres. Til slutt ser vi at strengene som tar oss til s 5 er på formen og. Språket som aksepteres av automaten kan beskrives som henholdsvis mengde og regulært uttrykk som følger: i) L(M) = { n n N} { n n N} { m n m,n N} { m n m,n N} ii) L(M) = Det regulære uttrykket kan eventuelt skrives mer kompakt (men mindre lesbart) som (λ ( ) ). Merk forøvrig at s 4 er en «søppeltilstand», som betyr at hvis vi først havner der kommer vi oss ikke ut igjen, og aksepteres dermed ikke. Det betyr at strenger som begynner med for eksempel ikke vil aksepteres. 24 Vi ønsker å lage en automat som gjenkjenner språket bestående av alle bitstrenger som slutter med. Vi trenger derfor å holde rede på hvilke to symboler som ble lest sist. Vi lar de ulike mulighetene være representert ved tilstander som følger: s ikke lest noenting s kun lest s 2 kun lest s 3 siste to leste er s 4 siste to leste er s 5 siste to leste er 7. november 28 Side 3 av 5

4 s 6 siste to leste er Vi ser at s blir starttilstanden og s 5 blir eneste aksepttilstand. Denne automaten blir som følger: s s 3 s 4 start s s 2 s 6 s 5 Vi kan lage en ekvivalent automat med 3 tilstander ved å observere at vi egentlig bare trenger å holde rede på «hvor langt unna» å slutte på vi er. Vi er enten to steg unna (siste to leste er, eller vi har kun lest eller λ), ett steg unna (siste leste er ), eller vi er i mål (siste to leste er ). Hvis vi lar tilstandene ξ, ξ og ξ 2 holde rede på disse får vi følgende automat: ξ start ξ ξ 2 36 Vi ønsker nå å lage en automat med fire tilstander som gjenkjenner språket bestående av alle bitstrenger som har et odde antall er og et like antall ere. Siden vi skal ha 4 tilstander er det naturlig å ha tilstander som holder rede på følgende: Tilstand Antall ere Antall ere s Like Like s Odde Like s 2 Like Odde s 3 Odde Odde Når vi begynner å lese en streng har vi lest null er og null ere, så s blir starttilstanden. 7. november 28 Side 4 av 5

5 Eneste aksepttilstand er s. Denne automaten blir da som følger: start s s s 2 s 3 7. november 28 Side 5 av 5

IN2080. Oppgave 1. Oppgave 2. Eksamen. Vår Den nondeterministiske endelige automaten A er gitt ved (Q, Σ, δ, q 0, F ) der

IN2080. Oppgave 1. Oppgave 2. Eksamen. Vår Den nondeterministiske endelige automaten A er gitt ved (Q, Σ, δ, q 0, F ) der IN2080 Eksamen Vår 2019 Oppgave 1 Den nondeterministiske endelige automaten A er gitt ved (Q, Σ, δ, q 0, F ) der Q = {q 0, q 1, q 2 } er mengden av tilstander Σ = {a, b} er inputalfabetet q 0 er starttilstanden

Detaljer

Løsningsforslag til obligatorisk oppgave 3 INF1800 Logikk og beregnbarhet, høsten 2009

Løsningsforslag til obligatorisk oppgave 3 INF1800 Logikk og beregnbarhet, høsten 2009 Løsningsforslag til obligatorisk oppgave 3 INF1800 Logikk og beregnbarhet, høsten 2009 Torgeir Lebesbye torgeirl@ifi.uio.no Universitetet i Oslo Lars-Erik Bruce larsereb@ifi.uio.no Universitetet i Oslo

Detaljer

KONTINUASJONSEKSAMEN I TMA4140 LØSNINGSFORSLAG

KONTINUASJONSEKSAMEN I TMA4140 LØSNINGSFORSLAG Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 KONTINUASJONSEKSAMEN I TMA440 LØSNINGSFORSLAG Oppgave Sannhetsverditabell for det logiske utsagnet ( (p q) ) ( q r

Detaljer

TMA4140 Diskret Matematikk Høst 2018

TMA4140 Diskret Matematikk Høst 2018 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 018 Seksjon 81 11 a) Oppgaven spør etter antall måter man kan gå opp n trappetrinn dersom man

Detaljer

Eksamensoppgave i TMA4140 Diskret matematikk

Eksamensoppgave i TMA4140 Diskret matematikk Institutt for matematiske fag Eksamensoppgave i TMA44 Diskret matematikk Faglig kontakt under eksamen: Christian Skau Tlf: 7359755 Eksamensdato: 8 desember 25 Eksamenstid (fra til): 9:-3: Hjelpemiddelkode/Tillatte

Detaljer

TMA4140 Diskret Matematikk Høst 2018

TMA4140 Diskret Matematikk Høst 2018 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 2018 Seksjon 4.1 6 Dersom a c og b d, betyr dette at det eksisterer heltall s og t slik at c

Detaljer

Eksamensoppgave i TMA4140 Diskret matematikk

Eksamensoppgave i TMA4140 Diskret matematikk Institutt for matematiske fag Eksamensoppgave i TMA414 Diskret matematikk Faglig kontakt under eksamen: Christian Skau Tlf: 97 96 5 57 Eksamensdato: 15. desember 217 Eksamenstid (fra til): 9: 13: Hjelpemiddelkode/Tillatte

Detaljer

TMA4140 Diskret Matematikk Høst 2016

TMA4140 Diskret Matematikk Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 2016 Seksjon 10.2 18 La G = (V,E) være en enkel graf med V 2. Ettersom G er enkel er de mulige

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 10. desember 2013 Tid for eksamen: 09.00 13.00 Oppgave 1 Mengdelære (10 poeng)

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. INF1080 Logiske metoder for informatikk

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. INF1080 Logiske metoder for informatikk UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag:. desember Tid for eksamen:.. INF Logiske metoder for informatikk Oppgave Mengdelære ( poeng) La A = {,, {}}, B =

Detaljer

Løsningsforslag oblig. innlevering 1

Løsningsforslag oblig. innlevering 1 Løsningsforslag oblig. innlevering 1 IN1150 Logiske metoder Høsten 2017 Oppgave 1 - Mengdelære (10 poeng) a) Ut fra opplysningene under, angi hvilke mengder A og B er. A B = {1, 2, 3, 4, 5, 6} A B = {2,

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 10: Diverse ukeoppgaver Roger Antonsen Matematisk Institutt, Universitetet i Oslo 17. april 2008 Vi øver oss litt på løse rekurrenslikninger. Oppgave 7.23 Løs

Detaljer

INF2820 V2017 Oppgavesett 6 Gruppe 7.3

INF2820 V2017 Oppgavesett 6 Gruppe 7.3 INF2820 V2017 Oppgavesett 6 Gruppe 7.3 Oppgave 1: Lag en kontekstfri grammatikk som beskriver samme språk som nettverket under. S a S S c S S b A1 A1 a S A1 c S A1 b A2 A2 c S A2 a S A2 b A3 A3 a A3 A3

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 28. november 2014 Tid for eksamen: 08.15 12.15 Oppgave 1 Mengdelære (10 poeng)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF Logiske metoder for informatikk Eksamensdag:. desember Tid for eksamen:.. Oppgavesettet er på sider. Vedlegg: Ingen Tillatte

Detaljer

LØSNINGSFORSLAG EKSAMEN VÅR07, MA0301

LØSNINGSFORSLAG EKSAMEN VÅR07, MA0301 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 LØSNINGSFORSLAG EKSAMEN VÅR07, MA0301 Oppgave 1 Om mengder. a) (10%) Sett opp en medlemsskapstabell (membership

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 28. november 2014 Tid for eksamen: 08.15 12.15 Oppgavesettet er på 6 sider. Vedlegg: Tillatte hjelpemidler: INF1080

Detaljer

MIDTSEMESTERPRØVE I TMA4140 Diskret matematikk. 13. oktober 2017 Tid:

MIDTSEMESTERPRØVE I TMA4140 Diskret matematikk. 13. oktober 2017 Tid: Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Faglig kontakt under midtsemesterprøven: Christian Skau 73591755 Bokmål MIDTSEMESTERPRØVE I TMA4140 Diskret matematikk

Detaljer

Eksamensoppgave i TMA4140 Diskret matematikk

Eksamensoppgave i TMA4140 Diskret matematikk Institutt for matematiske fag Eksamensoppgave i TMA4140 Diskret matematikk Faglig kontakt under eksamen: Christian Skau Tlf: 73 59 17 55 Eksamensdato: 15. desember 2016 Eksamenstid (fra til): 09:00 13:00

Detaljer

LØSNINGSFORSLAG UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. Oppgave 1 Mengdelære (10 poeng)

LØSNINGSFORSLAG UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet. Oppgave 1 Mengdelære (10 poeng) UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 9. desember 2010 Tid for eksamen: 09:00 13:00 INF1080 Logiske metoder for informatikk Oppgave 1 Mengdelære (10 poeng)

Detaljer

Innføring i bevisteknikk

Innføring i bevisteknikk Innføring i bevisteknikk (Kun det som undervises på forelesningen er pensum. NB! Avsnitt 1.6 og 1.7 inngår ikke i pensum) Et bevis går ut på å demonstrere at implikasjonen p q er sann. p kalles for premissen

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT30 Diskret matematikk Plenumsregning 6: Ukeoppgaver fra kapittel Roger Antonsen Matematisk Institutt, Universitetet i Oslo. februar 008 Oppgave. Skriv følgende mengder på listeform. (a) Mengden av alle

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 6: Ukeoppgaver fra kapittel 5 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 21. februar 2008 Oppgave 5.1 Skriv følgende mengder på listeform. (a) Mengden

Detaljer

EKSAMEN I FAG TMA4140 DISKRET MATEMATIKK Tirsdag 16. desember 2003 Tid :

EKSAMEN I FAG TMA4140 DISKRET MATEMATIKK Tirsdag 16. desember 2003 Tid : Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Marius Irgens 92 81 23 87 EKSAMEN I FAG TMA4140 DISKRET MATEMATIKK Tirsdag 16. desember

Detaljer

Matematikk for IT Eksamen. Løsningsforslag

Matematikk for IT Eksamen. Løsningsforslag HØGSKOLEN I ØSTFOLD, AVDELING FOR INFORMASJONSTEKNOLOGI Matematikk for IT Eksamen 4. januar 2019 Løsningsforslag Christian F. Heide January 10, 2019 OPPGAVE 1 En spørreundersøkelse blant en gruppe studenter

Detaljer

Emnenavn: Matematikk for IT. Eksamenstid: Faglærer: Christian F Heide

Emnenavn: Matematikk for IT. Eksamenstid: Faglærer: Christian F Heide EKSAMEN ny og utsatt Emnekode: ITF10705 Dato: 4. juni 2018 Hjelpemidler: - To A4-ark med valgfritt innhold på begge sider. Emnenavn: Matematikk for IT Eksamenstid: 09.00 13.00 Faglærer: Christian F Heide

Detaljer

Eksamen i Elementær Diskret Matematikk - (MA0301)

Eksamen i Elementær Diskret Matematikk - (MA0301) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Steffen Junge (73 59 17 73 / 94 16 27 27) Eksamen i Elementær Diskret Matematikk -

Detaljer

LØSNINGSFORSLAG EKSAMEN MNF130 VÅREN 2010 OPPGAVE 1

LØSNINGSFORSLAG EKSAMEN MNF130 VÅREN 2010 OPPGAVE 1 LØSNINGSFORSLAG EKSAMEN MNF130 VÅREN 2010 OPPGAVE 1 p q p p q p q T T F T T Sannhetstabell: T F F F F F T T T T F F T T T Siden proposisjonene p q og p q har samme sannhetsverdier (for alle sannhetsverdier

Detaljer

Plenumsregning 10. Diverse ukeoppgaver. Roger Antonsen april Vi øver oss litt på løse rekurrenslikninger.

Plenumsregning 10. Diverse ukeoppgaver. Roger Antonsen april Vi øver oss litt på løse rekurrenslikninger. Plenumsregning 10 Diverse ukeoppgaver Roger Antonsen - 17. april 2008 Vi øver oss litt på løse rekurrenslikninger. Oppgave 7.23 Løs følgende rekurrenslikning (c) t(n) 6t(n 1) + 9t(n 2) = 0, t(1) = 3, t(2)

Detaljer

MIDTSEMESTERPRØVE I FAG TMA4140 DISKRET MATEMATIKK Mandag 20. oktober 2003 Tid : INSTRUKSJONER:

MIDTSEMESTERPRØVE I FAG TMA4140 DISKRET MATEMATIKK Mandag 20. oktober 2003 Tid : INSTRUKSJONER: Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 MIDTSEMESTERPRØVE I FAG TMA4140 DISKRET MATEMATIKK Mandag 20. oktober 2003 Tid : 1515-1700 Tillatte hjelpemidler

Detaljer

Turingmaskiner en kortfattet introduksjon. Christian F Heide

Turingmaskiner en kortfattet introduksjon. Christian F Heide 13. november 2014 Turingmaskiner en kortfattet introduksjon Christian F Heide En turingmaskin er ikke en fysisk datamaskin, men et konsept eller en tankekonstruksjon laget for å kunne resonnere omkring

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 9. desember 2015 Tid for eksamen: 09.00 13.00 (Fortsettes på side 2.) INF1080 Logiske metoder for informatikk Oppgave

Detaljer

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng]

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng] INF1080 Logiske metoder for informatikk Digital eksamen (med løsningsforslag) Dette er et utkast til løsningsforslag til eksamen i INF1080, og feil kan forekomme. Hvis du finner noen feil, si ifra til

Detaljer

Turingmaskiner en kortfattet introduksjon. Christian F Heide

Turingmaskiner en kortfattet introduksjon. Christian F Heide 7. november 016 Turingmaskiner en kortfattet introduksjon Christian F Heide En turingmaskin er ikke en fysisk datamaskin, men et konsept eller en tankekonstruksjon laget for å kunne resonnere omkring blant

Detaljer

Emnenavn: Matematikk for IT. Eksamenstid: Faglærer: Christian F Heide

Emnenavn: Matematikk for IT. Eksamenstid: Faglærer: Christian F Heide EKSAMEN Emnekode: ITF0705 Dato: 5. desember 07 Hjelpemidler: - To A4-ark med valgfritt innhold på begge sider. Emnenavn: Matematikk for IT Eksamenstid: 09.00 3.00 Faglærer: Christian F Heide Kalkulator

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Plenumsregning 8: Ukeoppgaver Mathias Barra Matematisk institutt, Universitetet i Oslo 6. mars 2009 (Sist oppdatert: 2009-03-06 19:11) Oppgave 5.9 La A = {a, b, c} og B = {p,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 27. desember 2015 Tid for eksamen: 08.15 12:15 Oppgave 1 Grunnleggende mengdelære

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 29. november 2013 Tid for eksamen: 09.00 13.00 (Fortsettes på side 2.) Oppgave

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 9. desember 2010 Tid for eksamen: 09:00 13:00 Oppgavesettet er på 5 sider.

Detaljer

Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag

Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Institutt for matematiske fag Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Faglig kontakt under eksamen: Martin Strand Tlf: 970 7 848 Eksamensdato: 3. mai 014 Eksamenstid (fra

Detaljer

INF2080 Logikk og beregninger

INF2080 Logikk og beregninger INF2080 Logikk og beregninger Forelesning 4: Regulære uttrykk Sist oppdatert: 2012-01-24 12:05 4.1 Regulære uttrykk Beskrive aksepterte ord 4.1 Regulære uttrykk Beskrive aksepterte ord INF2080 Logikk og

Detaljer

Kap. 5, del 1: Parsering nedenfra-opp (Bottom-up parsering) INF / Stein Krogdahl Ifi, UiO

Kap. 5, del 1: Parsering nedenfra-opp (Bottom-up parsering) INF / Stein Krogdahl Ifi, UiO Kap. 5, del 1: Parsering nedenfra-opp (Bottom-up parsering) INF5110 8/2-2013 tein Krogdahl Ifi, UiO 1 Bottom up parsering (nedenfra-og-opp) Tokenklasser + ikketerminaler B B Tilstander Tabell for LR-parsering

Detaljer

Følger Sipsers bok tett både i stoff og oppgaver.

Følger Sipsers bok tett både i stoff og oppgaver. 1 - hrj 1 Følger Sipsers bok tett både i stoff og oppgaver. Tirsdag forelesninger, nytt stoff Onsdag eksempler og utfyllende stoff Torsdag oppgaver fra uka før Start: kapittel 1 (2uker), 2 (2uker),3 (2uker),4

Detaljer

EKSAMEN. Oppgavesettet består av 16 oppgaver. Ved sensur vil alle oppgaver telle like mye med unntak av oppgave 6 som teller som to oppgaver.

EKSAMEN. Oppgavesettet består av 16 oppgaver. Ved sensur vil alle oppgaver telle like mye med unntak av oppgave 6 som teller som to oppgaver. EKSAMEN Emnekode: ITF0705 Dato: 5. desember 204 Emne: Matematikk for IT Eksamenstid: kl 09.00 til kl 3.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 26. november 2010 Tid for eksamen: 13:00 17:00 Oppgave 1 La A = { }. Mengdelære

Detaljer

TMA4140 Diskret Matematikk Høst 2016

TMA4140 Diskret Matematikk Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 016 Seksjon 5 4 a) Ved å observere at 18 4 + 7, 19 3 4 + 7, 0 4 5 og 1 3 7 så ser vi at P(18),

Detaljer

EKSAMEN. Emne: Emnekode: Matematikk for IT ITF Dato: Eksamenstid: til desember Hjelpemidler: Faglærer:

EKSAMEN. Emne: Emnekode: Matematikk for IT ITF Dato: Eksamenstid: til desember Hjelpemidler: Faglærer: EKSAMEN Emnekode: ITF0705 Dato: 5. desember 05 Emne: Matematikk for IT Eksamenstid: 09.00 til 3.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer: Christian

Detaljer

MIDTSEMESTERPRØVE I TMA4140 Diskret matematikk. 14. oktober 2016 Tid:

MIDTSEMESTERPRØVE I TMA4140 Diskret matematikk. 14. oktober 2016 Tid: Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Faglig kontakt under midtsemesterprøven: Christian Skau 73591755 Bokmål MIDTSEMESTERPRØVE I TMA4140 Diskret matematikk

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 25. november 2011 Tid for eksamen: 14:45 16:45 Oppgave 1 Mengdelære (15 poeng)

Detaljer

Oppgaver til INF 5110, kapittel 5

Oppgaver til INF 5110, kapittel 5 Oppgaver til INF 5110, kapittel 5 Fra boka: 5.3 Vi har sett litt på denne på en forelesning 5.11 Vi har tidligere sett på: -> ) a 5.18 Forsøk også sette alternativet -> til slutt Utvid grammatikken på

Detaljer

INF5110 Kap. 5: Parsering nedenfra-og-opp (Bottom-up parsing) 21/ Stein Krogdahl Ifi, UiO. Angående Oblig 1:

INF5110 Kap. 5: Parsering nedenfra-og-opp (Bottom-up parsing) 21/ Stein Krogdahl Ifi, UiO. Angående Oblig 1: INF5110 Kap. 5: Parsering nedenfra-og-opp (Bottom-up parsing) Del 1 21/2-2014 Stein Krogdahl Ifi, UiO ngående Oblig 1: Blir lagt ut tirsdag/onsdag neste uke Oblig-ansvarlig Henning Berg orienterer 28/2

Detaljer

MAT 1110: Bruk av redusert trappeform

MAT 1110: Bruk av redusert trappeform Tom Lindstrøm 10/5, 2006: MAT 1110: Bruk av redusert trappeform I Lays bok brukes den reduserte trappeformen til matriser til å løse en rekke problemer knyttet til ligningssystemer, lineærkombinasjoner,

Detaljer

Generell induksjon og rekursjon. MAT1030 Diskret matematikk. Generell induksjon og rekursjon. Generell induksjon og rekursjon.

Generell induksjon og rekursjon. MAT1030 Diskret matematikk. Generell induksjon og rekursjon. Generell induksjon og rekursjon. MAT1030 Diskret matematikk Forelesning 18: Generell rekursjon og induksjon Dag Normann Matematisk Institutt, Universitetet i Oslo 12. mars 2008 Mandag så vi på induktivt definerte mengder og noen eksempler

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 5: Ukeoppgaver fra kapittel 4 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 14. februar 2008 Oppgave 4.4 Skriv ned setninger som svarer til den konverse

Detaljer

Slides til 12.1 Formelt språk og formell grammatikk

Slides til 12.1 Formelt språk og formell grammatikk Slides til 12.1 Formelt språk og formell grammatikk Andreas Leopold Knutsen April 6, 2010 Introduksjon Grammatikk er studiet av reglene som gjelder i et språk. Syntaks er læren om hvordan ord settes sammen

Detaljer

EKSAMEN. Oppgavesettet består av 9 oppgaver med i alt 21 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.

EKSAMEN. Oppgavesettet består av 9 oppgaver med i alt 21 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye. EKSAMEN Emnekode: ITF0705 Dato:. desember 00 Emne: Matematikk for IT Eksamenstid: kl 09.00 til kl 3.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Faglærer: Christian F Heide Eksamensoppgaven:

Detaljer

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon Repetisjon og mer motivasjon MAT030 Diskret matematikk Forelesning 22: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 4. april 2008 Først litt repetisjon En graf består av noder og

Detaljer

Kombinatorikk. MAT1030 Diskret Matematikk. Oppsummering av regneprinsipper

Kombinatorikk. MAT1030 Diskret Matematikk. Oppsummering av regneprinsipper MAT1030 Diskret Matematikk Forelesning 22: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo Kombinatorikk 14. april 2010 (Sist oppdatert: 2010-04-14 12:43) MAT1030 Diskret Matematikk 14.

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 22: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 14. april 2010 (Sist oppdatert: 2010-04-14 12:42) Kombinatorikk MAT1030 Diskret Matematikk 14.

Detaljer

Oppgaver til INF 5110, kapittel 5, med svarforslag Gjennomgått torsdag 26. febr Dette er versjon fra 28/7

Oppgaver til INF 5110, kapittel 5, med svarforslag Gjennomgått torsdag 26. febr Dette er versjon fra 28/7 Oppgaver til INF 5110, kapittel 5, med svarforslag Gjennomgått torsdag 26. febr. 2008. Dette er versjon fra 28/7 OPPGAVER: Fra boka: 5.3, 5.4, 5.11, 5.12, 5.13. Oppgave 2 fra Eksamen 2006. Utvid grammatikken

Detaljer

FASIT/LF FOR EKSAMEN TMA4140, H07

FASIT/LF FOR EKSAMEN TMA4140, H07 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 5 FASIT/LF FOR EKSAMEN TMA440, H07 Oppgave (0%) Benytt matematisk induksjon til å vise at for alle heltall n. n i i!

Detaljer

MA2401 Geometri Vår 2018

MA2401 Geometri Vår 2018 MA2401 Geometri Vår 2018 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 1 2.4 7 I Fanos geometri (se side 18 i læreboka) er punktene gitt ved symbolene

Detaljer

Forelesning 6 torsdag den 4. september

Forelesning 6 torsdag den 4. september Forelesning 6 torsdag den 4. september 1.13 Varianter av induksjon Merknad 1.13.1. Det finnes mange varianter av induksjon. Noen av disse kalles noen ganger sterk induksjon, men vi skal ikke benytte denne

Detaljer

Introduksjon. MAT1030 Diskret matematikk. Søkealgoritmer for grafer. En graf

Introduksjon. MAT1030 Diskret matematikk. Søkealgoritmer for grafer. En graf Introduksjon MAT13 Diskret matematikk Forelesning 21: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 9. april 28 Vi skal nå over til kapittel 1 & grafteori. Grafer fins overalt rundt

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 21: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 9. april 2008 Introduksjon Vi skal nå over til kapittel 10 & grafteori. Grafer fins overalt

Detaljer

Introduksjon. MAT1030 Diskret Matematikk. Introduksjon. En graf. Forelesning 22: Grafteori. Roger Antonsen

Introduksjon. MAT1030 Diskret Matematikk. Introduksjon. En graf. Forelesning 22: Grafteori. Roger Antonsen MAT1030 Diskret Matematikk Forelesning 22: Grafteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Introduksjon 21. april 2009 (Sist oppdatert: 2009-04-21 15:13) MAT1030 Diskret Matematikk

Detaljer

Hjemmeeksamen 1 i INF3110/4110

Hjemmeeksamen 1 i INF3110/4110 Hjemmeeksamen i INF30/40 Innleveringsfrist: fredag 24. oktober kl. 500 Innlevering Hele besvarelsen skal leveres skriftlig på papir i IFI-ekspedisjonen innen fredag 24. oktober kl. 500. Merk besvarelsen

Detaljer

Løsningsforslag Øving 7 TMA4140 Diskret matematikk Høsten 2008

Løsningsforslag Øving 7 TMA4140 Diskret matematikk Høsten 2008 Løsningsforslag Øving 7 TMA4140 Diskret matematikk Høsten 008 3-1-9 prosedyre palindromsjekk (a 1, a,..., a n : streng) svar :=sann for i := 1 to n/ if a i a n+1 i then svar :=usann {svaret er sant hvis

Detaljer

INF1820: Introduksjon til språk-og kommunikasjonsteknologi

INF1820: Introduksjon til språk-og kommunikasjonsteknologi INF1820: Introduksjon til språk-og kommunikasjonsteknologi Fjerde forelesning Lilja Øvrelid 6 februar, 2014 OVERSIKT Såkalt endelig tilstand (finite-state) -teknologi er kjapp og effektiv nyttig for et

Detaljer

INF1820: Introduksjon til språk-og kommunikasjonsteknologi

INF1820: Introduksjon til språk-og kommunikasjonsteknologi INF1820: Introduksjon til språk-og kommunikasjonsteknologi Fjerde forelesning Lilja Øvrelid 6 februar, 2014 OVERSIKT Såkalt endelig tilstand (finite-state) -teknologi er kjapp og effektiv nyttig for et

Detaljer

Oppgaver til INF 5110, kapittel 5 Fullt svar på oppgave 5.4, og en del andre oppgaver med svar

Oppgaver til INF 5110, kapittel 5 Fullt svar på oppgave 5.4, og en del andre oppgaver med svar Oppgaver til INF 5110, kapittel 5 Fullt svar på oppgave 5.4, og en del andre oppgaver med svar Fra boka: 5.3, 5.4, 5.11, 5.12, 5.13. Oppgave 2 fra Eksamen 2006 (se undervisningsplanen 2008). Utvid grammatikken

Detaljer

Oppgave 2. INF5110 oppgave 2 på eksamen v04 med teori. FirstMengder. Arne Maus Ifi. Eks. 4.9 Beregning av First-mengde. terminal

Oppgave 2. INF5110 oppgave 2 på eksamen v04 med teori. FirstMengder. Arne Maus Ifi. Eks. 4.9 Beregning av First-mengde. terminal Oppgave 2 INF5110 oppgave 2 på eksamen v04 med teori rne Maus Ifi FirstMengder Def { terminal First () = { a finnes avledning * a α } Dessuten: Om er utnullbar, så er ε First() Eks. 4.9 eregning av First-mengde

Detaljer

INF2820 Datalingvistikk V gang, Jan Tore Lønning

INF2820 Datalingvistikk V gang, Jan Tore Lønning INF2820 Datalingvistikk V2014 15. gang, 8.5.2014 Jan Tore Lønning Språk og grammatikk Språk (formelt): En endelig mengde A Ø En undermengde L A* Grammatikk: En endelig innretning som definerer L Klasser

Detaljer

INF2820 Datalingvistikk V2017 Forelesning 2, 23.1 Jan Tore Lønning

INF2820 Datalingvistikk V2017 Forelesning 2, 23.1 Jan Tore Lønning INF2820 Datalingvistikk V2017 Forelesning 2, 23.1 Jan Tore Lønning ENDELIGE TILSTANDSMASKINER OG REGULÆRE SPRÅK, DEL 2 19. januar 2017 2 Sist uke: FSA Brukes om hverandre: Finite state automaton - FSA

Detaljer

INF2820 Datalingvistikk V2012. Jan Tore Lønning

INF2820 Datalingvistikk V2012. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 20. januar 2012 2 Non-Determinism Speech and Language Processing - Jurafsky and Martin

Detaljer

Kap. 5, del 1: Parsering nedenfra-opp (Bottom up parsing) INF5110. Stein Krogdahl Ifi, UiO

Kap. 5, del 1: Parsering nedenfra-opp (Bottom up parsing) INF5110. Stein Krogdahl Ifi, UiO Kap. 5, del 1: Parsering nedenfra-opp (Bottom up parsing) INF5110 NB: Disse foilene er litt justert og utvidet i forhold til de som er delt ut tidligere på en forelesning. Ta dem ut på nytt! Stein Krogdahl

Detaljer

Løsningsforslag for 1. obligatoriske oppgave høsten 2014

Løsningsforslag for 1. obligatoriske oppgave høsten 2014 Løsningsforslag for 1 obligatoriske oppgave høsten 2014 Oppgave 1a) 1) Bruk av sannhetsverditabell: p q p p ( p ) p (( p ) S S U S U S S U U S U S U S S S S S U U S U U S Vi ser at (( p ) er en tautologi,

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Teknostart Forelesning 3 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Teknostart Forelesning 3 Tema Logikk Definisjoner og Teoremer Mengder og Egenskaper ved de Reelle Tall

Detaljer

EKSAMEN. Emnekode: Emne: Matematikk for IT ITF Eksamenstid: Dato: kl til kl desember Hjelpemidler: Faglærer:

EKSAMEN. Emnekode: Emne: Matematikk for IT ITF Eksamenstid: Dato: kl til kl desember Hjelpemidler: Faglærer: EKSAMEN Emnekode: ITF0705 Dato: 7. desember 0 Emne: Matematikk for IT Eksamenstid: kl 09.00 til kl 3.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

Cr) Høgskoleni østfold

Cr) Høgskoleni østfold Cr) Høgskoleni østfold EKSAMEN Emnekode:Emne: ITF10705Matematikk for IT Dato:Eksamenstid: 15. desember 2015 09.00 til 13.00 Hjelpemidler: To A4-ark med valgfritt innhold på begge sider. Kalkulator er ikke

Detaljer

Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008. i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. 0 1 0 0

Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008. i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. 0 1 0 0 Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008 8.4.27 Vi beregner matrisene W i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. a) W 0 = W 1 = W 2 = 1 0 0 0 1 1 0 0 b) W 0 = c) W 0 = d) W 0

Detaljer

LØSNINGSFORSLAG SIF5015 DISKRET MATEMATIKK Onsdag 18. desember 2002

LØSNINGSFORSLAG SIF5015 DISKRET MATEMATIKK Onsdag 18. desember 2002 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 LØSNINGSFORSLAG SIF55 DISKRET MATEMATIKK Onsdag 8. desember 22 Oppgave a) Vi vil ha 77x (mod 3), så vi trenger en

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 24 Løsningsforslag Øving 9 4.3.4 Vi bruker Taylor-polynom til å løse denne oppgaven. Taylor-polynomet (Maclaurinpolynomet)

Detaljer

Bottom up parsering (nedenfra-og-opp) Kap. 5 del 1 Intro til parsering nedenfra-og-opp samt LR(0) og SLR(1) grammatikker INF5110 v2006

Bottom up parsering (nedenfra-og-opp) Kap. 5 del 1 Intro til parsering nedenfra-og-opp samt LR(0) og SLR(1) grammatikker INF5110 v2006 ottom up parsering (nedenfra-og-opp) Kap. 5 del 1 Intro til parsering nedenfra-og-opp samt LR(0) og LR(1) grammatikker INF5110 v2006 rne Maus, Ifi UiO t 1 t 2 t 3 t 7 t 4 t 5 t 6 LR-parsering og grammatikker

Detaljer

Litt mer mengdelære. INF3170 Logikk. Multimengder. Definisjon (Multimengde) Eksempel

Litt mer mengdelære. INF3170 Logikk. Multimengder. Definisjon (Multimengde) Eksempel INF3170 Logikk Forelesning 2: Mengdelære, induktive definisjoner og utsagnslogikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Litt mer mengdelære 2. februar 2010 (Sist oppdatert: 2010-02-02

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3110/4110 Programmeringsspråk Eksamensdag: 2. desember 2003 Tid for eksamen: 14.30 17.30 Oppgavesettet er på 7 sider. Vedlegg:

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 10. desember 2012 Tid for eksamen: 09.00 13.00 Innledning La U være mengden

Detaljer

Grafteori. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori.

Grafteori. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori. MAT030 Diskret Matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo Grafteori 20. april 200 (Sist oppdatert: 200-04-20 4:8) MAT030 Diskret Matematikk 20. april 200

Detaljer

Prøveeksamen 2016 (med løsningsforslag)

Prøveeksamen 2016 (med løsningsforslag) Prøveeksamen 2016 (med løsningsforslag 1 Grunnleggende mengdelære La A = {0, {0}} og B = {0, {0}, {0, {0}}}. Er følgende påstander sanne eller usanne? 1 {{0}} A 2 0 B 3 A B 4 A B 1 Usann 2 Usann 3 Sann

Detaljer

Repetisjon. 1 binærtall. INF3110 Programmeringsspråk. Sist så vi ulike notasjoner for syntaks: Jernbanediagrammer. BNF-grammatikker.

Repetisjon. 1 binærtall. INF3110 Programmeringsspråk. Sist så vi ulike notasjoner for syntaks: Jernbanediagrammer. BNF-grammatikker. INF3 Programmeringsspråk INF3 Programmeringsspråk Dagens tema Syntaks (Komp 47, kap 3 (og noe 4)) Repetisjon Regulære språk i klassisk NF Regulære språk i utvidet NF Regulære språk i jerbanediagrammer

Detaljer

Forelesning 7 mandag den 8. september

Forelesning 7 mandag den 8. september Forelesning 7 mandag den 8. september 1.1 Absoluttverdien Definisjon 1.1.1. La n være et heltall. Da er absoluttverdien til n: (1) n dersom n 0; (2) n dersom n < 0. Merknad 1.1.2. Med andre ord får vi

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 20. april 2010 (Sist oppdatert: 2010-04-20 14:17) Grafteori MAT1030 Diskret Matematikk 20. april

Detaljer

Forelesning 23. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori.

Forelesning 23. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori. MAT030 Diskret Matematikk Forelesning 23: Grafteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 23 22. april 2009 (Sist oppdatert: 2009-04-22 2:37) MAT030 Diskret Matematikk

Detaljer

INF3110 Programmeringsspråk

INF3110 Programmeringsspråk INF3 Programmeringsspråk Dagens tema Syntaks (Komp 47, kap 3 (og noe 4)) Repetisjon Regulære språk i klassisk BNF Regulære språk i utvidet BNF Regulære språk i jerbanediagrammer Regulære språk og automater

Detaljer

Analysedrypp I: Bevis, mengder og funksjoner

Analysedrypp I: Bevis, mengder og funksjoner Analysedrypp I: Bevis, mengder og funksjoner Hensikten med Analysedrypp er å bygge en bro mellom MAT1100 og MAT1110 på den ene siden og MAT2400 på den andre. Egentlig burde det være unødvendig med en slik

Detaljer

LF, KONTINUASJONSEKSAMEN TMA

LF, KONTINUASJONSEKSAMEN TMA Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Haaken A. Moe 92650655 Bokmål LF, KONTINUASJONSEKSAMEN TMA4140 2008 Oppgave 1 (10%)

Detaljer

MA1202/MA S løsningsskisse

MA1202/MA S løsningsskisse Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0/MA0 0S løsningsskisse Rettet. august 0 Oppgave a) Vi finner det karakteristiske polynomet, λ 0 λ λ λ λ detλi A) λ 0 λ λ

Detaljer

En repetisjon hrj høst 2009

En repetisjon hrj høst 2009 En repetisjon hrj høst 2009 Data Maskin Data Syntaktiske objekter - endelige Mengde { } Multimengde [ ] Liste < > Symbol String = Liste av symboler Vi kan alltid finne ut om to syntaktiske objekter er

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 9: Diverse ukeoppgaver Roger Antonsen Matematisk Institutt, Universitetet i Oslo 10. april 2008 Oppgaver fra forelesningene Oppgave (fra forelesningen 10/3) a)

Detaljer

Grafteori. MAT1030 Diskret matematikk. Induksjonsbevis

Grafteori. MAT1030 Diskret matematikk. Induksjonsbevis Grafteori MAT1030 Diskret matematikk Plenumsregning 11: Ukeoppgaver fra kapittel 10 & Induksjonsbevis Roger Antonsen Matematisk Institutt, Universitetet i Oslo 24. april 2008 Vi regner oppgavene på tavlen

Detaljer