Vi lærer om brøk med pizza - Bruk av brøk som del av en helhet i matematikkundervisning og i læreverk. Marthe Lund Jensen

Størrelse: px
Begynne med side:

Download "Vi lærer om brøk med pizza - Bruk av brøk som del av en helhet i matematikkundervisning og i læreverk. Marthe Lund Jensen"

Transkript

1 Vi lærer om brøk med pizza - Bruk av brøk som del av en helhet i matematikkundervisning og i læreverk av Marthe Lund Jensen 556 Veileder: Bodil Kleve, Matematikk Bacheloroppgave i Grunnskolelærerutdanning 1.-7.trinn G1PEL3900 Institutt for grunnskole- og faglærerutdanning Fakultet for lærerutdanning og internasjonale studier Høgskolen i Oslo og Akershus 21.april, 2015 Antall ord: 7178

2 SAMMENDRAG I undersøkelser og analyser gjort i denne oppgaven kommer det frem at det forekommer en skjev fordeling av bruken mellom de fem ulike brøkaspektene brøk som del av en helhet, brøk som tallstørrelse, brøk som operator, brøk som kvotient og brøk som forhold i læreverkene Multi for 4. og 7.trinn, der brøk som del av en helhet får størst plass. I læreverket Matemagisk for 4.trinn er fordelingen mellom brøk som del av en helhet og operator mer jevnere enn de to andre læreverkene. I observasjoner av to matematikktimer brukes det flere aspekter av brøk, men det er usikkert om de observerte lærerne er bevisst på dette. Forskning om undervisning av brøk viser at gjensidig bruk av brøk som del av en helhet ikke styrker elevers forståelse av brøk. Det vil si at elevene kan oppleve problemer i arbeid med de fire andre brøkaspektene. En grunn til dette kan være at læreverkene også ensidig støtter seg til brøk som del av en helhet. Problemer kan oppstå dersom læreren baserer seg på læreverkene i sin matematikkundervisning. Det er mulig læreverk fokuserer på oppgaver der brøk opptrer som del av en helhet, fordi dette aspektet kan være det enkleste å illustrere og konkretisere for elevene. Man står altså i et dilemma mellom å bruke mange aspekter, eller støtte seg til det som er enklest å få elevene til å forstå, ved hjelp av figurer. Det trengs mer forskning på bruken av aspekter av brøk, og det er et tema i matematikken som lærere må få enda mer kunnskap om, slik at de selv kan bruke flere aspekter i sin undervisning, samtidig som de kan se på læreverkene med et kritisk blikk. Nøkkelord: Aspekter av brøk, matematikklæreverk, brøk som del av en helhet, kritisk blikk og klasseromsundervisning.

3 INNHOLDSFORTEGNELSE INNLEDNING... 1 PRESENTASJON... 1 BEGRUNNELSE FOR TEMA... 1 PROBLEMSTILLING... 2 HVA SIER TEORI OG FORSKNING OM BRØK?... 3 HVA ER BRØK?... 3 ASPEKTER AV BRØK... 3 PROBLEMATIKK I BRØKUNDERVISNING... 4 METODE FOR UNDERSØKELSEN... 6 FREMGANGSMÅTE OG METODE... 6 UTFORDRINGER VED METODEN... 6 OBSERVASJONER OG FUNN... 7 OBSERVASJONER AV UNDERVISNING klasse - Ninni klasse - Astrid... 8 FUNN I LÆREVERK I MATEMATIKK PÅ GRUNNSKOLEN Multi 4B Multi 7B Matemagisk 4B HVILKE ASPEKTER AV BRØK BLE BRUKT I UNDERVISNING OG I LÆREVERK? ASPEKTER AV BRØK I UNDERVISNING klasse klasse ASPEKTER AV BRØK I MATEMATIKKLÆREVERK LÆRERENS UNDERVISNING MATEMATIKKLÆREVERK STEMTE HYPOTESEN? AVSLUTNING OPPSUMMERING KONKLUSJON VIDERE ARBEID LITTERATURLISTE VEDLEGG 1: EGENERKLÆRING OM FUSK OG PLAGIERING VEDLEGG 2: OBSERVASJONSSKJEMA... 25

4 INNLEDNING PRESENTASJON Brøk som del av en helhet er det enkleste aspektet. Man har ikke tid til å tenke på alle aspektene av brøk når man begynner å arbeide som lærer. Dette sitatet er hentet fra en lærer som arbeider i grunnskole. Vi lærer om brøk med pizza, fortalte noen 4.klassinger hverandre da de gikk forbi en pizzarestaurant på klassetur. Forskning viser at kun bruk av brøk som del av helhet gir en manglende brøkforståelse. Etter å ha fått et slikt utsagn fra en lærer i matematikk og elever, samt å ha gjort funn i forskning, ønsket jeg å undersøke dette nærmere. Innenfor brøk finner vi fem aspekter. I denne oppgaven blir det tatt utgangspunkt i de fem aspekteten brøk som del av en helhet, brøk som tallstørrelse, brøk som operator, brøk som kvotient og brøk som forhold. Denne oppgaven har som formål å undersøke nettopp hvilke aspekter av brøk som opptrer i undervisning og i læreverk, samt hvilke implikasjoner bruken av brøkaspektene har å si for elevers brøkforståelse. Oppgaven vil presentere ulik teori og forskning om brøk og hva denne forskningen sier om bruken av de ulike brøkaspektene i matematikkundervisning. Videre vil det bli presentert hvilken metode som ble lagt til grunn for å undersøke bruk av brøkaspekter, hvilke observasjoner fra klasserom som ble gjort, samt funn fra matematikklæreverkene Multi og Matemagisk. Deretter blir observasjonene og funnene analysert; hvilke aspekter av brøk fant jeg i undervisning og i læreverk? Oppgaven vil så drøfte om i hvilken grad hypotesen stemte og hvilke implikasjoner bruken av de fem brøkaspektene i undervisning og læreverk har å si for elevers brøkforståelse. BEGRUNNELSE FOR TEMA Jeg har valgt å skrive om brøk i matematikkopplæringen på grunnlag av en undersøkelser vi studentene gjorde innenfor temaet. Min gruppe undersøkte elevbesvarelser og gruppearbeid på 7.trinn. I tekstoppgavene brukte vi ulike aspekter av brøk. I de muntlige oppgaver vi ga til elevene, brukte vi ulike representasjonsformer, også konkreter som Cuisinaire-staver. Vi så i observasjonene at mange elever var bundet av standardalgoritmer for å løse brøkoppgaver. Vi så også at elevene kanskje kunne ha hjelp i å bruke konkreter, da de viste problemer med overganger mellom ulike representasjonsformer av brøk. Vi så også at de fleste elevene brukte for det meste arealmodell da de skulle eksemplifisere brøker (Jensen, Eikre, Vestbø, Flobak, & Sandvik, 2014 ) (upublisert). Jeg legger til grunn egen opplæring om brøk på høgskolen, samt mappekravet om brøk som jeg skrev, som grunnlag for å velge å skrive bachelor i matematikk. 1

5 PROBLEMSTILLING For å undersøke bruken av aspekter av brøk i undervisning og i læreverk ble det kommet frem til følgende problemstilling: Hvilke aspekter av brøk forekommer i læreverk og i undervisning på 4. og 7. trinn og hvilke implikasjoner har det for elevenes forståelse av brøk? Til problemstillingen ble det satt opp én hypotese som går ut på at læreren vil støtte seg til brøk som del av en helhet i sin undervisning av brøk. 2

6 HVA SIER TEORI OG FORSKNING OM BRØK? HVA ER BRØK? Brøk er et relativt begrep og omfatter alle tall som kan skrives med formen a, der a og b er b hele tall (Solem, Alseth, & Nordberg, 2010). Brøker kan ha form som ekte og uekte brøker. Når telleren er mindre enn eller lik nevneren, er den ekte. Et eksempel på en ekte brøk an være 3 5. Brøken 7 5 er en uekte brøk. Som vi ser, vil det si at telleren er større enn nevneren. Brøk dukker opp i elevenes daglige liv, som for eksempel i tid med 1 time eller om vi skal 2 fordele noe likt mellom oss (Hinna, Rinvold, & Gustavsen, 2012). Elever møter ofte brøkundervisning der spørsmål blir lagt til side, og standardalgoritme blir trukket frem. Da blir det problematisk dersom elevene ikke forstår hva de arbeider med eller problemer med å løse en oppgave dersom de har glemt regelen (Solem et al., 2010). Også Anghileri (2006) trekker frem samme problematikk, der lærere må i hele sin matematikkopplæring og undervisning tenke på at elevene skal bli oppmuntret til å tenke, se mønstre, forutsi resultater og snakke om sammenhenger. I forhold til aspekter av brøk er det å kunne se sammenhenger mellom aspektene svært nyttig for å opparbeide seg en dypere forståelse for brøkregning (Kleve, 2014). For å kunne opparbeide seg en slik kunnskap og å kunne regne med brøk på en slik standardisert måte, ved hjelp av standardalgoritmer, er det helt nødvendig at elevene har en god og dyp forståelse for hva brøk egentlig går ut på og hva brøker egentlig vil si (Solem et al., 2010). Det finnes flere former av brøker og flere måter vi kan utrykke dem på. ASPEKTER AV BRØK Brøker kan ha ulike betydninger eller representeres ved ulike aspekter (Hinna et al., 2012). Disse aspektene kan deles inn i fem. Brøk som del av en helhet vil si at brøken blir sett på i forhold til en helhet. Når brøk opptrer som del av en helhet i en oppgaven kan vi for eksempel finne ut av hvor mye 1 av en sjokoladeplate er (McIntosh, 2007). 4 Når brøk opptrer som et tall i seg selv, fungerer brøken som en tallstørrelse (Hinna et al., 2012). For eksempel ligger brøken 1 mellom 0 og 1 på tallinja. Det er en vanlig misoppfatning 6 blant elever at brøk er en absolutt tallstørrelse. Forskjellen mellom brøk som del av en helhet og brøk som en tallstørrelse er at brøk som del av en helhet er en relativ størrelse. Det er forskjell på 1 av en bollepose og 1 av en nonstopp-pose. Det er derfor viktig at læreren klarer 3 3 3

7 å vise dette skillet mellom brøk som tallstørrelse og brøk som del av en helhet (McIntosh, 2007). Videre kan brøk fungere som operator. Da vil brøken virker inn på et annet tall eller en størrelse, for eksempel 1 av en 2 meter lang taustump eller 1 liter melk. I dette eksempelet 3 2 fungerer 1 som operator og multipliseres med 1 liter, som er operanden. 2 Det fjerde aspektet er brøk som kvotient. Når brøker fungerer som kvotient vil den være svaret i et brøkstykke (Hinna et al., 2012). For eksempel 1 : 2 = 1 (Jensen et al., 2014 ). I følge 3 6 Dickson, Brown, and Gibson (1984) får flere elever til å utføre delestykker der svaret skal stå som en brøk, enn som et desimaltall. Dette kan være en fordel med å ta i bruk dette aspektet. Brøk uttrykker forhold eller andel dersom man for eksempler sier 1 av 3 elever i klassen eier en Ipad. PROBLEMATIKK I BRØKUNDERVISNING Det er ulik forskning i matematikken som peker på samme problem, der man fokuserer på for få aspekter av brøk. Det er tilsynelatende at fokuset i brøk ligger på å se på brøker som en del av et hele. I lærebøker finner vi oppgaver der man fordeler, eller finner deler, av brusflasker, pizzaer, sjokolader eller kaker. Hvis man i brøkundervisningen dominerer bruken av brøk som del av en helhet, vil det oppstå problemer dersom brøken er større enn 1 (Kleve, 2014). Man kommer altså for kort ved å ta i bruk ett aspekt og ikke støtte seg til de fire andre tidligere omtalte aspektene. Hinna et al. (2012) påpeker det samme som Kleve; når du har en uekte brøk er det ikke lenger meningsfullt å snakke om en del av en helhet. Vi ser at det derfor er viktig at elevene blir både eksponert for og at de får arbeide med alle de fem aspektene, brøk som del av en helhet, tallstørrelse, operator, kvotient og forhold. Brøk og forståelsen for brøk er svært komplekst og må av den grunn bli forstått gjennom å drive stegvis opplæring av brøk. Det er umulig å forså brøk med en gang (Dickson et al., 1984). I følge Dickson et al. (1984) er det flere bevis på at barna selv synes at brøk som del av en helhet er det enkleste aspektet å forstå. I en undersøkelse gjort på 550 engelske 12 og 13 år gamle barn, klarte 93 prosent å korrekt skravere 2/3 av en figur. Videre hevdes det at aspektet brøk som del av en helhet er kanskje det enkleste å lære, og lærebøker bruker det nesten utelukkende. Dette kan være en av grunnene til at elevene synes det er problematisk å lære de andre fire aspektene av brøk. Allikevel kan bruken av brøk som del av en helhet fungere som en introduksjon til brøk som kvotient. Dickson et al. (1984) hevder også på det daværende tidspunkt at brøk som kvotient 4

8 trenger å forskes mer på. Det er usikkert om det har blitt forsket mer på dette brøkaspektet etter utgivelsen av denne boken. Forfatterne henviser til en studie gjort av Hart i , som viste at kun 33 prosent av de spurte elevene klarte å utføre et regnestykke med brøk som kvotient. Det vil si at få elever forsto at hvilket som helst hele tall kan deles på hvilket som helst annet tall for å gi et eksakt svar som en brøk. Forståelsen for aspektet brøk som kvotient utvikles mye senere enn aspektet brøk som del av en helhet (Dickson et al., 1984). Det oppstår et problem ved bruken av brøk som del av en helhet, dersom man skal addere brøker sammen. Ved å illustrere to brøker ved hjelp av 2 pizzaer kan det oppstå misforståelser. De får for eksempel en oppgave der de skal legge sammen Mange elever 8 8 vil da kunne få svar som 6 og ikke 6. Hvis man tar i bruk tallinje som en representasjonsform, 16 8 vil man kunne unngå dette problemet (Dickson et al., 1984). Også Anghileri (2006) er enig i problemene rundt en utelukkende bruk av brøk som del av en helhet. Hvis man skal lykkes med å forstå brøk, er det viktig at elevene har kunnskap og forståelse for å også kunne se brøker i lys av andre aspekter. Det vil si at elevene er i stand til å ikke bare se brøk som del av en helhet, men også som et punkt på en tallinje eller som svar i et divisjonsstykke. Det er også svært interessant hva Kleve (2014) skriver videre om bruken av brøk som del av en helhet. Hun skriver om Mike Askew som hevder at det er fullt mulig å arbeide med brøk uten å legge fokus på brøk som del av en helhet, men heller de fire andre brøkaspektene. Dette vil kunne føre til et mer solid brøkbegrep enn om man betrakter og jobber med brøk som del av en helhet. Askew (2001) påpeker også at det forekommer et gap mellom forskning og det som brukes av matematikkmateriale i klasserommet. Slike materiale, som matematikkbøker, kan muligens ikke være basert på undervisning av matematikk i grunnskolen. Det er ofte tidligere lærere som selv er forfattere av matematikklærebøkene, og ikke forskere innenfor pedagogikk og matematikkdidaktikk. Det er også en tankevekker om matematikkbøkene resirkulerer gamle metoder og at de ikke baserer seg på hva som er praktisk i klasserommet og den stadige utviklingen innen for forskning om forståelsen for hvordan barn tilegner seg ulike områder av matematikk (Askew, 2001). Henger så forskning og praksis sammen? Kommer denne kunnskapen frem i de norske klasserommene? Hvordan foregår så undervisning av brøk i klasserommet? Og hvilke aspekter av brøk finner vi i matematikklæreverk for grunnskolen? Den forelagte kunnskapen om bruk av brøk som del av en helhet og disse spørsmålene krever grundigere undersøkelse og er grunnlaget for min undersøkelse fra klasserom og i matematikklæreverk. 5

9 METODE FOR UNDERSØKELSEN FREMGANGSMÅTE OG METODE For å kunne undersøke problemstillingen og hypotesen nærmere ble kvalitativ metode lagt til grunn. Kvalitativ metode går ut på å blant annet skaffe mye data om et begrenset antall personer. Det ble det gjort to observasjoner av brøkundervisning på 60 minutter i hver klasse, i en 4. klasse og i en 7.klasse på en skole i Oslo. Observasjon er en egnet metode dersom man ønsker en direkte tilgang til det man skal undersøke. Kvalitative observasjoner foregår som oftest ved at man velger noen faktorer som man vil undersøke, for så å observere dette i deres naturlige setting (Christoffersen & Johannessen, 2012). Som observatør var jeg deltagende. Det vil si at jeg, i tillegg til å observere, bevegde meg rundt i klasserommet og snakket med elevene om de oppgavene de løste. For å dokumentere observasjonen ble det brukt et observasjonsskjema (se vedlegg 2). På dette skjemaet ble alle observasjonene notert ned, med hvilke aktiviteter elevene og læreren gjorde, samt hva som ble sagt under disse observasjonene. Videre ble det sett etter hvilke aspekter av brøk som det ble arbeidet med i løpet av timen. Observasjonene var strukturerte og ved en slik type observasjon bruker ofte forskeren et skjema som inneholder forhåndsbestemte områder det skal observeres på (Christoffersen & Johannessen, 2012). I tillegg til observasjonene ble det gjort en dokumentanalyse av tre ulike læreverk i matematikk; Multi for 7.trinn, Multi for 4.trinn, samt Matemagisk for 4. trinn. Dokumentanalyse går ut på å ta for seg ulike dokumenter som gir oss informasjon om et tema, for så å koble sammen teksten med relevant faglitteratur for et problemområde (Christoffersen & Johannessen, 2012). I de tre læreverkene ble det sett etter hvilke aspekter av brøk som forfatterne hadde brukt i brøkoppgavene. Funnene ble så systematisert i et skjema for å vise hvilke av de nevnte fem aspektene som ble brukt, samt hvor hyppig aspekttypene forekom. UTFORDRINGER VED METODEN Når man anvender observasjon som metode er det viktig å ha gode observasjonsskjemaer for å kunne få med seg mest mulig av det som foregår i settingen, i dette tilfellet klasserommet. Jeg oppdaget at det var problematisk å få med seg absolutt at som foregikk, da det også skulle skrives ned hva som foregikk. Det var også problematisk å intuitivt få med seg hvilket av de fem brøkaspektene som det ble arbeidet med i timen. I dokumentanalysen av lærebøker er det helt klart nødvendig å ta for seg et mye større datamateriale enn de bøkene som er brukt i denne undersøkelsen. for å kvantifisere og generalisere datamaterialet, og videre hevde om dette forekommer i flere læreverk. 6

10 OBSERVASJONER OG FUNN OBSERVASJONER AV UNDERVISNING 7.KLASSE - NINNI Den første observasjonen ble gjort i en 7.klasse. I forkant av observasjonen kom det frem i samtale med lærer, heretter kalt Ninni om hennes tanker rundt bruk av aspekter av brøk i matematikkundervisning. Hun fikk se alle de fem aspektene av brøk, og hun leste gjennom beskrivelsene av aspektene. Dette arbeidet jo vi også med på utdanningen, fortalte hun. Men man har jo ikke tid til å tenke på det når man begynner å arbeide. Hun sa deretter man bruker jo brøk som del av en helhet fordi det er det som er det enkleste aspektet. Hun fortalte også at hun var mest trygg på brøk som del av en helhet. Under observasjonen skulle elevene sitte og arbeide selvstendig med to sider i Multi 7B. I denne timen var det altså ingen felles undervisning eller formidling fra læreren Ninni. Hun gikk rundt i klasserommet og hjalp elevene. Timen startet med at Ninni fortalte hva timens mål var og hva de skulle gjøre i løpet av timen. Målet var å regne ferdig side 46 og 47 (Alseth et al., 2009). Elevene satt hver for seg, eller småsnakket med sidemann, og løste oppgaver. To elever var på side 44 og 45 (Alseth et al., 2009). Oppgavene de regnet var det blant annet oppgaven som Illustrasjon 2 (Alseth, Nordberg, & Røsseland, 2009) vist i illustrasjon 1. Der skulle de addere og subtrahere brøker og multiplisere brøker. Illustrasjon 1 (Alseth et al., 2009) Flere av elevene brukte lang tid på oppgave 6.43 (se illustrasjon 3). En elev skjønte ikke hvordan hun kunne tegne et rektangel, for så å dele det inn i åtte like deler, på tre forskjellige måter. Med støtte fra lærer, forsto hun så hvordan hun skulle gjøre det. Videre er det en annen elev som har problemer med å multiplisere ett helt tall med en brøk (se illustrasjon 2). Eleven som satt ved siden av henne fortalte at han bare ganget det hele tallet med telleren også fått svaret som en uekte brøk. Resten av timen satt elevene med oppgavene sine. Ninni fortsatte å gå gjennom klasserommet og hjelpe elevene med 7

11 brøkoppgavene. Timen avsluttes med at Ninni forteller elevene at timen er over og at de skal finne frem matpakker. Det meste som foregikk denne timen var videre selvstendig arbeid med brøkoppgaver på sidene i Multi 7B. Det som er interessant å trekke frem fra denne observasjonen er hva slags aspekter av brøk elevene arbeidet med. Dette vil bli nærmere gjennomgått senere. 4.KLASSE - ASTRID Den andre observasjonen ble gjort i en 4.klasse, på samme skole som observasjonen i 7.klasse. Læreren, heretter kalt Astrid, skulle ha en time om brøk med elevene. Hun startet opp timen med å dele ut skrivebøker, mens elevene finner frem blyanter og viskelær. Astrid skriver så opp målet for timen på en flippover. Målet for timen var å kunne addere og subtrahere med brøk. Astrid fant så fram nettressursene til Multi 4B (Gyldendal, 2014 ). De starter med å skulle finne ut hvor mange baller som er lilla i en haug med 6 baller, lik den oppgaven vist i illustrasjon 4. Svaret for denne oppgaven var 3. Det fikk elevene til. Astrid spurte så 6 Illustrasjon 3 (Alseth et al., 2009) om man kunne skrive denne brøken på en annen måte. En elev svarer 1 2. De arbeider videre med to liknende oppgaver. Illustrasjon 4 (Gyldendal, 2014 ) Deretter begynner de på noen litt vanskeligere oppgaver. Oppgaven var som følger 1 8 er grønne kuler. Hvor mange kuler er grønne?. Svaret var 1 kule. Her får de altså oppgitt brøken, for så å skulle finne ut hvor mange kuler som har fargen grønn. Oppgaven var lik illustrasjon 5. Disse type oppgavene viste seg å være Illustrasjon 5 (Gyldendal, 2014 ) 8

12 problematisk for elevene. Noen fikk riktig svar, da de fikk svare høyt i klassen. De fikk en oppgave der det sto 4 kuler er grønne. Hvor mange kuler er grønne?. Da svarte mange av 4 elevene i kor alle er grønne. Astrid forteller så til elevene at når teller og nevner er like tall, er brøken det samme som én. Hun ga så et eksempel selv på tavlen. Jeg har en pizza. Så deler jeg den i 4. Hvis jeg farger 4 pizzastykker, så er hele figuren farget. Hvis du skjønner at 4 4 er en hel, så ta handa på hodet. Mange av elevene tok så hånden på hodet. Astrid forklarte videre; Hva om jeg gjør sånn. Hun deler den samme brøksirklen opp i 8 deler. Jeg har delt den opp i flere deler. Hvor mye er fargelagt nå?. Noen elever ble forvirret og sa null av åtte. De trodde at hun hadde skravert vekk alle pizzastykkene. Da misforståelsen var oppklart svarte en annen elev åtte av åtte. Astrid spurte så om dette var det samme som 4. Eleven 4 svarte da Ja det er samme som fire av fire fordi det er hele som er fargelagt uansett. Assistenten i klassen prøvde så å forklare elevene med å spørre dem hva fire delt på fire er. To-tre elever svarte høyt én. Astrid gjorde så to liknende oppgaver på tavla, som de de nettopp hadde gjort fra nettressursen til Multi. Hun tegnet opp seks kuler og fortalte at 1 av dem er blå. Hun setter så 3 ring rundt kulene inn i tre like store deler. Hvor mange kuler er det inni én sånn del?. En elev svarte to kuler. Astrid fortalte videre at de måtte tenke på denne måten for å løse slike oppgaver. Etter denne aktiviteten får elevene prøve seg på et brøkspill, se illustrasjon 6 (Alseth et al., 2011). Elevene fikk først lov til å kikke på spillet. Så forklarte Astrid for elevene hvordan de skulle spille spillet. Hun spurte først Hva står det under terningkast 1?. En av elevene svarer En av seks. Astrid fortalte videre Ja, så hvis du kaster 1, hva skal jeg fargelegge? Jo en av seks av denne figuren. Hva er brøken? Hva er en av seks av denne figuren?. En annen elev svarer at det blir to. Astrid forklarer så på en egen figur som er delt inn i tolv deler, akkurat som på spillet elevene har fått. Hun forklarer ved å dele denne figuren inn i seks deler. De ser Illustrasjon 6 (Alseth, Kirkegaard, Nordberg, & Røsseland, 2011) 9

13 sammen da at 1 er det samme som 2. Hun snakket så om at når de får terningkast seks, skulle 6 12 man skal farge 1. Astrid fortalte barna; Det er halvparten. Hvor mange skal vi farge? Jo, 2 seks. Det er halvparten av tolv. Hun forteller til slutt av den som farger alle rutene vinner. Elevene sitter så å spiller i ca. ti minutter. Avslutningsvis tegnet Astrid opp to figurer på tavlen. Hun skrev 1 ved siden av 4 den ene figuren (illustrasjon 7). Astrid forklarte så til elevene hvis jeg skal fargelegge 1 av denne figuren, hvordan gjør jeg det? Vi må gjøre noe med denne 4 figuren. Illustrasjon 8 Illustrasjon 7 En elev svarer at de måtte dele den opp i fire like deler. Astrid svarte at det var riktig og at alle delene må være like store. Hun ser så på den andre figuren (illustrasjon 8). Hvor mange deler er figur nummer to?. En annen elev svarer at den er delt opp i to deler. Timen ble så avsluttet. FUNN I LÆREVERK I MATEMATIKK PÅ GRUNNSKOLEN Videre er det interessant å se på hva salgs aspekter av brøk som blir brukt i matematikkbøker. Multi 4B ble brukt i 4. klassen som ble observert (Alseth et al., 2011). Det samme gjelder for 7.klassen. De arbeidet i den observerte timen med Multi 7B (Alseth et al., 2009). MULTI 4B I matematikklæreboka Multi 4B grunnbok for 4. årstrinn, har forfatterne av boka satt av 20 sider til brøkregning. Illustrasjon 9 (Alseth et al., 2011) Det finnes mange oppgaver i Illustrasjon 10 (Alseth et al., 2011) denne boken som er liknende slik som oppgaven vist i illustrasjon 9. Elevene skal finne hvor stor brøkdel av den hele figuren som er fargelagt. Svaret skal vi skrive som brøk.. Denne type oppgavene er en typisk oppgaver der brøk fungerer som del av en helhet. Etter å ha gått gjennom kapittelet finner man også andre typer brøkoppgaver. Det er et par oppgaver der 10

14 brøk opptrer som en ren tallstørrelse. Et eksempel på en slik oppgave hentet fra boken er en oppgave der elevene får oppgitt fire ulike brøker, som de så skal skrive i stigende rekkefølge (illustrasjon 10). I Multi 4B finner vi også oppgaver der brøk fungerer som operator. Det vil si en oppgave der brøken virker inn på en annen tallstørrelse. En slik oppgave Illustrasjon 11 (Alseth et er som vist i illustrasjon 11. Her skal elevene finne ut hvor al., 2011) mange kaker Tage og Aisha får hver, dersom Tage får 1 3 av kakene og Aisha får 1 av kakene. 3 er igjen. Til slutt skal elevene finne ut av hvor stor brøkdel av kakene som Det er ingen oppgaver i dette læreverket der brøk opptrer som forhold, ei heller som kvotient. MULTI 7B I læreverket Multi 7B Grunnbok, som er beregnet for 7. årstrinn, finner vi også flere forskjellige brøkoppgaver, der brøkene i oppgavene opptrer i ulike aspekter. Det er satt av 11 sider til brøkregning, i et kapittel i boka der vi finner både brøk- og prosentregning, og sammenhengen mellom dem (Alseth et al., 2009). Det er flere oppgaver der brøk fungerer som del av en helhet. Et eksempel på en slik oppgavetyper, er der elevene skal finne ut hvor stor del av det belgiske flagget er fargelagt rødt og hvor stor del av flagget som ikke er fargelagt rødt (illustrasjon 12). Illustrasjon 12 (Alseth et al., 2009) Vi finner også noen oppgaver der brøk fungerer som operator. I en av disse oppgavene skal Calle sette opp et gjerde. Han trenger 24 planker som er 3 meter lange. Elevene skal så finne 4 ut hvor mange meter det er. 11

15 Vi finner én oppgave (illustrasjon 13) der brøk opptrer som forhold. I denne oppgaven skal elevene finne ut forholdet mellom pris på kakestykker, og antall kakestykker fra en hel kake. I oppgaven skal man blant annet finne ut hvilken pris man må ta for kakestykker for å tjene det samme, dersom man velger å dele opp kakestykkene i mindre biter, enn man gjorde i utgangspunktet. Vi finner flere oppgaver der brøk fungerer som en tallstørrelse. De fleste av disse oppgavene er terping og repetisjon på hvordan, ved hjelp av standardalgoritme, man adderer, subtraherer, multipliserer og dividerer med brøk. Hvis vi ser på oppgavene med en kontekst rundt seg, finner vi fire oppgaver med dette brøkaspektet. En av dem er en oppgave (illustrasjon 14) der elevene skal regne ut fire multiplisert med 2 ved hjelp av 5 en tallinje. Tallinjen er med på å skape en kontekst, eller en Illustrasjon 13 (Alseth et al., 2009) hjelp, i større grad enn oppgaver som kun inneholder tall som skal regnes ut ved hjelp av en regneoperasjon. I Multi 7B finner vi også tre oppgaver der brøk fungerer som kvotient, det vil si at brøken er svaret i et divisjonstykke. En av disse brøkoppgavene er slik som i Illustrasjon 14 (Alseth et al., 2009) illustrasjon 15, der elevene skal regne ut 2 : 3. I Multi for 7.årstrinn finner 3 vil altså flere ulike typer av brøkaspekter. Illustrasjon 15 (Alseth et al., 2009) 12

16 MATEMAGISK 4B Matemagisk er et nytt matematikklæreverk som ble utgitt i I læreboken er det satt av 14 sider til brøkregning, dersom vi ser vekk fra prøvedelen i slutten av kapittelet. Kapittelet har satt opp tre mål. Et av de forteller at man skal kunne bruke brøk for å beskrive del av hel og del av mengde (Kroknes et al., 2014). Også i Matemagisk finner vi ulike aspekter av brøk. Det er en del oppgaver der brøk opptrer som del av en helhet. To av disse oppgavene går ut på at elevene skal finne ut av hvor mange sopper som har prikker og hvor stor del av prikkene Illustrasjon 16 (Kroknes, Kavén, & Persson, 2014) som er blå, som vist i illustrasjon 16. Flere slike oppgaver finner vi gjennom hele kapittelet. Disse typene av oppgaver er helt i tråd med det målet som forfatterne har satt for kapittelet, nemlig at elevene skal kunne bruke brøk for å beskrive del av en hel. Videre finner vi også i Matemagisk en del oppgaver der brøken fungerer som en operator. I denne oppgaven har man også valgt på bruke en pizzamodell for å illustrere brøkoppgaven. I denne oppgaven, som vist i illustrasjon 20, skal elevene finne ut hvor mange pizzastykker hvert familiemedlem i familien Bakken får, dersom de spiser ulike brøkdeler av pizzaen. Vi finner også en del oppgaver der brøk opptrer som en ren tallstørrelse. I Matemagisk har man satt av to hele sider, der elevene skal plassere ulike brøker på tallinjer. Det er ti slike oppgaver fordelt på to sider. Vi finner også en del oppgaver der elevene skal sette såkalt krokodilletegn for å vise hvilken av to brøker som er den største. Det er, med de ti tallinjeoppgavene, til sammen tjue oppgaver der brøk opptrer som tallstørrelse. Illustrasjon 17 (Kroknes et al., 2014) 13

17 HVILKE ASPEKTER AV BRØK BLE BRUKT I UNDERVISNING OG I LÆREVERK? ASPEKTER AV BRØK I UNDERVISNING 7.KLASSE I samtalen med Ninni før observasjonen kom det frem at Ninni dro kjensel på brøkaspektene, men uttrykte at man ikke hadde tid til å tenke på dette når man underviste. Hun ytret seg også på en måte der det kom frem at hun mente brøk som del av en helhet er det enkleste aspektet av brøk. Det som er interessant med denne samtalen er at Ninni selv har en formening om at brøk som del av en helhet er et enkelt aspekt, et aspekt man bør begynne med. Denne kan kanskje speiles i lærebøkers flittige bruk av pizzamodeller eller kakemodeller, slik som også Solem et al. (2010) foreslår er et godt utgangspunkt i den første brøkopplæringen. Ninni er også selv tryggest på dette aspektet. Kan dette skyldes en årelang tradisjon med bruken av brøk som del av en helhet? Denne tradisjonen, og holdningen hos Ninni, står i stor kontrast til hva forskning forteller om bruken av få brøkaspekter. Hvilke aspekter jobbet så elevene med i løpet av den observerte mattetimen? Som vi så fra Multi 7B hadde boken innslag av flere aspekter av brøk (Alseth et al., 2009). På de fire sidene elevene arbeidet med i løpet av denne timen, finner vi brøkoppgaver der brøk fungerer som både brøk som del av en helhet, brøk som tallstørrelse, brøk som forhold og brøk som operator. I denne timen jobbet altså elevene med fire av fem brøkaspekter. Det er videre interessant å trekke fram det Ninni fortalte før timen. Hun sa elevene ikke hadde jobbet med brøk som operator, enda det finnes fire oppgaver der brøk fungerer som operator. En av disse er vist i illustrasjon 18. Illustrasjon 18 (Alseth et al., 2009) 14

18 4.KLASSE Astrid brukte mye av tiden i timen til å løse brøkoppgaver sammen med elevene. Oppgavene var som tidligere nevnt hentet fra nettressursene til Multi 4B (Gyldendal, 2014 ). I de første oppgavene fungerte brøk som del av en helhet (se illustrasjon fire). Videre kom det svært mange oppgaver der brøk fungerte som operator (se illustrasjon fem). Etter timen fortalte Astrid meg at hun selv ble forvirret da disse oppgavene kom opp på skjermen. Det kan bety at hun ikke var helt sikker på hvilket aspekt brøken fungerte som i disse oppgavene. Hun fortalte også at hun ble forvirret av brøkspillet. I dette spillet kan vi si at brøken fungerte som del av en helhet, men oppgaven hadde ikke en klar kontekst for å fastslå hvilket aspekt det er snakk om (se illustrasjon seks). Da Astrid etterpå skulle tegne to figurer på tavla, fungerte brøken som del av en helhet (se illustrasjon sju og åtte). Det ble i denne observerte timen bruk brøk som del av en helhet og brøk som operator. Elevene fikk altså jobbet med to ulike aspekter av brøk. Etter timen fortalte Astrid at hun hadde tenkt å jobbe med ett aspekt denne timen. Vi ser her at elevene jobbet med to. Det kan tenke seg at Astrid hadde tenkt at de skulle jobbe med brøk som del av en helhet, og misforsto da de gjorde flere oppgaver med brøk som operator. Det er mulig hun trodde at brøken fungerte som del av en helhet i disse oppgavene. ASPEKTER AV BRØK I MATEMATIKKLÆREVERK Etter en nærmere gjennomgang av de tre læreverkene Multi 4B, Multi 7B og Matemagisk 4B finner man oppgaver i disse tre bøkene der brøk opptrer i alle de fem aspektene. Fordelingen av disse brøkoppgavetypene i de tre matematikklæreverkene, var forskjellig. Antall oppgaver for hvert brøkaspekt, med antall oppgaver, er vist i tabellen nedenfor. Brøk som del av en helhet er klart representert flest ganger i alle de tre matematikklæreverkene. Vi finner 38 slike oppgaver i Multi 4B, 18 slike oppgaver i Multi 7B og 27 slike oppgaver i Matemagisk. Ved å sammenlikne med antall oppgaver under de andre aspektene, ser vi at det er en skjev fordeling i læreverkene Multi 4B og 7B. Brøkoppgaver med brøk som del av en helhet er klart i overtall. I Matemagisk er det en litt fordeling mellom del av en helhet og brøk som operator, i forhold til de to andre bøkene. Her er det 12 oppgaver hvor brøken fungerer som operator. I Multi 7B er det seks operatoroppgaver, mens i Multi 4B finner vi kun tre oppgaver. Vi finner også i bøkene oppgaver der brøken fungerer som tallstørrelse. I Multi 4B er det seks slike oppgaver, i Multi 7B er det fire, mens i Matemagisk finner vi hele 20 oppgaver. Det er mange slike oppgaver i denne boken fordi det var satt av 10 oppgaver der elevene skulle plassere brøker på tallinjer. Det er ingen oppgaver i 15

19 Multi 4B og Matemagisk der brøk fungerer som kvotient eller forhold mellom tall. Men i Multi 7B finner vi tre kvotient-oppgaver og en forhold-oppgave. Det er ikke kritikkverdig at man ikke finner kvotientoppgaver, da læreplan for matematikk i Kunnskapsløftet ikke sier at elevene skal kunne dividere med brøker på 7.trinn (Kunnskapsdepartementet, 2006). Av disse tre læreverkene ser vi at Multi 7B har brøkoppgaver med alle de fem brøkaspektene. De to andre læreverkene har tre av fem aspekter i sine oppgaver. Det er allikevel en skjev fordeling mellom antall oppgaver til hvert aspekt og vi ser at bøkene har flest oppgaver der brøk fungerer som del av en helhet. Brøk som del av en helhet Brøk som tallstørrelse Brøk som kvotient Brøk som forhold mellom tall Brøk som operator Multi 4B 38 oppgaver 6 oppgaver 3 oppgaver Multi 7B 18 oppgaver 4 oppgaver 3 oppgaver 1 oppgave 6 oppgaver Matemagisk 4B 27 oppgaver 20 oppgaver 12 oppgaver 16

20 HVILKE IMPLIKASJONER HAR BRUKEN AV ULIKE ASPEKTER AV BRØK FOR ELEVENES FORSTÅELSE AV BRØK? Problemstillingen gikk ut på hvilke aspekter av brøk som forekommer i undervisning og læreverk, samt hvilke implikasjoner denne bruken har å si for elevers brøkforståelse. Ved å gjøre undersøkelser i klasserommet og i matematikklæreverk, er det klart at vi finner ulike aspekter av brøk. I både observasjonen av timen til Ninni og Astrid finner vi bruk av de fem nevnte brøkaspektene. Allikevel er det tilsynelatende en skjev fordeling mellom bruken av de ulike aspektene, samt bevisstheten hos lærerne når de velger brøkoppgaver. I de undersøkte læreverkene finner vi også en skjev fordeling av aspektene. Hva har dette å si for elevene? LÆRERENS UNDERVISNING For Ninni er det lite å kunne kritisere henne for undervisningen, da hun overlot timen til læreverket Multi 7B. Elevene fikk jobbet med et variert utvalgt av brøkaspekter. Også Astrid i 4.klassen, brukte flere aspekter i timen sin. Allikevel kan man si at Ninni kanskje ikke var helt klar over hvilke aspekter elevene jobbet med, på grunnlag av samtalen før timen, og at hun derfor ikke kunne ha hatt et kritisk blikk på hvilke oppgavetyper elevene jobbet med den timen. Det kan være hun la andre kriterier til grunn, da hun tenkte oppgavene var greie å jobbe med, eller at hun stoler på læreverket. På denne måten kan det kanskje være at Ninni blir læreverkets trell, der man binder seg til læreverket og ikke går vekk fra boken, for å lage egne oppgaver og undervisningsopplegg. Astrid virker forvirret over oppgavene fra nettressursen til Multi, der brøken fungerte som operator. Hun var usikker på elevenes svar, og hennes usikkerhet kan tyde på at hun ikke hadde et stødig forhold til brøk som operator. Astrid valgte også å ta i bruk brøk som del av en helhet da hun selv skulle lage noen brøkoppgaver på slutten av timen. Både Ninni og Astrid har kanskje den oppfatningen av at brøk som del av en helhet en et enkelt og godt utgangspunkt når man driver brøkopplæring. Ninni fortalte dette før den observerte timen. Astrid valgte å bruke en arealmodell i sin time for å snakke om deler av en helhet, samt å bruke en pizza da hun skulle nærmere forklare elevene en oppgave i timen. I følge Dickson et al. (1984) er jo nettopp denne tilnærmingen, med brøk som del av en helhet, et godt utgangspunkt, da det er dette aspektet flest elever synes er det enkleste av de fem brøkaspektene å forstå. Også Solem et al. (2010) mener dette er et godt utgangspunkt for det første møtet med brøk i den første matematikkopplæringen. 17

Vetenskapliga teorier och beprövad erfarenhet

Vetenskapliga teorier och beprövad erfarenhet Vetenskapliga teorier och beprövad erfarenhet Pixel er forskningsbasert på flere nivåer. En omfattende beskrivelse av vårt syn på matematikk, læring og undervisning finnes i boken "Tal och Tanke" skrevet

Detaljer

«Det kan jeg ikke regne ut, for det har vi ikke lært enda» en case-studie av elevers forståelse av brøk i og utenfor kontekst.

«Det kan jeg ikke regne ut, for det har vi ikke lært enda» en case-studie av elevers forståelse av brøk i og utenfor kontekst. «Det kan jeg ikke regne ut, for det har vi ikke lært enda» en case-studie av elevers forståelse av brøk i og utenfor kontekst av Mari Nymoen Eikre 628 Veileder: Bodil Kleve, Matematikk Bacheloroppgave

Detaljer

Multiplikasjon og divisjon av brøk

Multiplikasjon og divisjon av brøk Geir Martinussen, Bjørn Smestad Multiplikasjon og divisjon av brøk I denne artikkelen vil vi behandle multiplikasjon og divisjon av brøk, med særlig vekt på hvilke kontekster vi kan bruke og hvordan vi

Detaljer

Brøk Vi på vindusrekka

Brøk Vi på vindusrekka Brøk Vi på vindusrekka Brøken... 2 Teller og nevner... 3 Uekte brøk... 5 Blanda tall... 6 Desimalbrøk... 8 Pluss/minus... 9 Multiplikasjon... 11 Likeverdige brøker... 12 Utviding... 13 Forkorting... 14

Detaljer

Forfatterne bak Multi: Multi i praksis. 5.-7.trinn. En bred matematisk kompetanse. Oppbyggingen av Multi. Grunntanken bak Multi

Forfatterne bak Multi: Multi i praksis. 5.-7.trinn. En bred matematisk kompetanse. Oppbyggingen av Multi. Grunntanken bak Multi Forfatterne bak Multi: Multi i praksis 5.-7.trinn Bjørnar Alseth Universitetet i Oslo Henrik Kirkegaard, Flisnes skole, Ålesund Mona Røsseland, Matematikksenteret Gunnar Nordberg, Høgskolen i Oslo Grunntanken

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk Inspirasjon og motivasjon for matematikk Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? Bjørnar Alseth Høgskolen i Oslo Styremedlem i Lamis Lærebokforfatter; MULTI Mona Røsseland

Detaljer

Addisjon og subtraksjon av brøker finne fellesnevner

Addisjon og subtraksjon av brøker finne fellesnevner side 1 Detaljert eksempel om Addisjon og subtraksjon av brøker finne fellesnevner Dette er et forslag til undervisningsopplegg der elevene skal finne fellesnevner ved hjelp av addisjon og subtraksjon av

Detaljer

Velkommen til presentasjon av Multi!

Velkommen til presentasjon av Multi! Velkommen til presentasjon av Multi! Bjørnar Alseth Høgskolen i Oslo Henrik Kirkegaard, Flisnes skole, Ålesund Mona Røsseland, Matematikksenteret Gunnar Nordberg, Høgskolen i Oslo Dagsoversikt Ny læreplan,

Detaljer

ADDISJON FRA A TIL Å

ADDISJON FRA A TIL Å ADDISJON FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til addisjon 2 2 Grunnleggende om addisjon 3 3 Ulike tenkemåter 4 4 Hjelpemidler i addisjoner 9 4.1 Bruk av tegninger

Detaljer

Brøk, prosent og desimaltall. Proporsjonalitet og forholdstall i praktiske situasjoner. matematikkhuset. Divisjon med tall mindre enn 1

Brøk, prosent og desimaltall. Proporsjonalitet og forholdstall i praktiske situasjoner. matematikkhuset. Divisjon med tall mindre enn 1 Dag 1: 09.00-10.00 Test er best? Hva, hvorfor, hvordan vi tester og kartlegger med mål om å forbedre elevens forståelse, anvendelse og ferdigheter 10.00-10.15 Pause 10.15-12.00 Alle teller - ikke bare

Detaljer

Forfatterne bak Multi:

Forfatterne bak Multi: Multi i praksis Tilpasset opplæring Program for dagen 12.00 13.30: Tankene bak Multi Varierte uttrykksformer gir differensiering og god læring 13.30 14.10: Mat 14.10 15.00: Varierte uttrykksformer gir

Detaljer

Kompetanse for kvalitet, matematikk 1 (KFK MAT1) Ansvarlig fakultet Fakultet for humaniora og utdanningsvitenskap

Kompetanse for kvalitet, matematikk 1 (KFK MAT1) Ansvarlig fakultet Fakultet for humaniora og utdanningsvitenskap Kompetanse for kvalitet, matematikk 1 (KFK MAT1) Ansvarlig fakultet Fakultet for humaniora og utdanningsvitenskap Studiepoeng: 30 (15+15). Separat eksamen høst 2014 (muntlig) og vår 2015 (skriftlig). INNLEDNING

Detaljer

Presentasjon av Multi

Presentasjon av Multi Presentasjon av Multi Mellomtrinnet Eksempler på Multi i praktisk bruk Faglig fokus og tydelige læringsmål Nettstedet Tilpasset opplæring Ulike oppgavetyper og aktivitetsformer Faglig fokus og tydelige

Detaljer

Regning i alle fag. Hva er å kunne regne? Prinsipper for god regneopplæring. 1.Sett klare mål, og form undervisningen deretter

Regning i alle fag. Hva er å kunne regne? Prinsipper for god regneopplæring. 1.Sett klare mål, og form undervisningen deretter Regning i alle fag Hva er å kunne regne? Å kunne regne er å bruke matematikk på en rekke livsområder. Å kunne regne innebærer å resonnere og bruke matematiske begreper, fremgangsmåter, fakta og verktøy

Detaljer

Felles klasseundervisning og tilpasset opplæring kan det forenes?

Felles klasseundervisning og tilpasset opplæring kan det forenes? Felles klasseundervisning og tilpasset opplæring kan det forenes? 1.-4.trinn Innhold Hvordan skal vi klare å få alle elevene til å oppleve mestring og samtidig bli utfordret nok og få mulighet til å strekke

Detaljer

"Hva er god matematikkundervisning?

Hva er god matematikkundervisning? "Hva er god matematikkundervisning? Mona Røsseland Matematikksenteret (for tiden i studiepermisjon) Lærebokforfatter, MULTI 14-Sep-10 Innhold Hvordan skal vi få elevene våre til å bli varm i hodet i matematikken?

Detaljer

Forfatterne bak Multi!

Forfatterne bak Multi! Multi i praktisk bruk Forfatterne bak Multi! Tilpasset opplæring Forfatterteam: Bjørnar Alseth Universitetet i Oslo Henrik Kirkegaard, Flisnes skole, Ålesund Mona Røsseland, Matematikksenteret Gunnar Nordberg,

Detaljer

3 Største felles faktor og minste felles multiplum

3 Største felles faktor og minste felles multiplum 3 Største felles faktor og minste felles multiplum 3.1 Største felles faktor og minste felles multiplum. Metodiske aspekter Største felles faktor og minste felles multiplum er kjente matematiske uttrykk

Detaljer

Desimaltall FRA A TIL Å

Desimaltall FRA A TIL Å Desimaltall FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side Innledning til desimaltall D - 2 2 Grunnleggende om desimaltall D - 2 2. Tideler, hundredeler og tusendeler D - 6 3 Å regne

Detaljer

Inspirasjon og faglig påfyll. for matematikklærere på barnetrinnet

Inspirasjon og faglig påfyll. for matematikklærere på barnetrinnet Inspirasjon og faglig påfyll for matematikklærere på barnetrinnet Velkommen til den første Multiaden! Alle elever fortjener gode matematikklærere! Det betyr lærere som skaper engasjement, som gir en variert

Detaljer

Fatte Matte - både som barn og voksen Olav Nygaard, Høgskolen i Agder

Fatte Matte - både som barn og voksen Olav Nygaard, Høgskolen i Agder Olav Nygaard, Høgskolen i Agder Introduksjon En kan spørre seg om det å lese eller høre om andres læring kan bidra på en gunstig måte til egen læring. Kan en lære om brøk ved å leke at en er en annen person

Detaljer

De fire regningsartene

De fire regningsartene De fire regningsartene Det går ikke an å si at elevene først skal ha forstått posisjonssystemet, og deretter kan de begynne med addisjon og subtraksjon. Dette må utvikles gradvis og om hverandre. Elevene

Detaljer

Løft matematikkundervisningen. med Multi 1.-4.trinn 24.11.2010. Oversikt. Dette er Multi! Kjernekomponenter. Grunntanken bak Multi

Løft matematikkundervisningen. med Multi 1.-4.trinn 24.11.2010. Oversikt. Dette er Multi! Kjernekomponenter. Grunntanken bak Multi Løft matematikkundervisningen med Multi 1.-4.trinn Oversikt Grunntanken bak Multi Hva er nytt i revisjonen? Vurdering i Multi Mona Røsseland Dette er Multi! Kjernekomponenter Grunntanken bak Multi Elevbok,

Detaljer

Multiplikation och division av bråk

Multiplikation och division av bråk Geir Martinussen & Bjørn Smestad Multiplikation och division av bråk Räkneoperationer med bråk kan visualiseras för att ge stöd åt resonemang som annars kan upplevas som abstrakta. I denna artikel visar

Detaljer

Løft matematikkundervisningen. med Multi 01.05.2010. Gruppere ulike mengder. Telling. Lineær modell

Løft matematikkundervisningen. med Multi 01.05.2010. Gruppere ulike mengder. Telling. Lineær modell Løft matematikkundervisningen med Multi 1. 1.trinnsboka har vært for lite utfordrende for mange elever. Revidert Multi 1 består nå av to grunnbøker Elevene får med dette bedre tid til å utvikle grunnleggende

Detaljer

Det finnes mange måter og mange hjelpemidler til å illustrere brøk. Ofte brukes sirkelen som symbol på en hel.

Det finnes mange måter og mange hjelpemidler til å illustrere brøk. Ofte brukes sirkelen som symbol på en hel. Brøk Hvis vi spør voksne mennesker som ikke har spesiell interesse for matematikk om hva de syntes var vanskelig i matematikk på skolen, får vi ofte svaret: Brøk. Vår påstand er at hvis innføring av brøk

Detaljer

Erfaringer med Lesson Study i GLU. GLU-konferansen, 19. mars 2015 Universitetet i Stavanger Professor Raymond Bjuland

Erfaringer med Lesson Study i GLU. GLU-konferansen, 19. mars 2015 Universitetet i Stavanger Professor Raymond Bjuland Erfaringer med Lesson Study i GLU GLU-konferansen, 19. mars 2015 Universitetet i Stavanger Professor Raymond Bjuland Bakgrunn Overordnet mål for Norsk Grunnskolelærerutdanning (1-7 og 5-10), kvalifisere

Detaljer

Den gode matematikkundervisning

Den gode matematikkundervisning Den gode matematikkundervisning Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? - hva er det? Mona Røsseland Nasjonalt senter for matematikk i opplæringen Leder i LAMIS Lærebokforfatter;

Detaljer

Fagplan, 4. trinn, Matematikk

Fagplan, 4. trinn, Matematikk Fagplan, 4. trinn, Matematikk Måned Kompetansemål - K06 Læringsmål / delmål Kjennetegn på måloppnåelse / kriterier Mål for opplæringen er at eleven skal kunne: August UKE 33, 34 OG 35. September UKE 36-39

Detaljer

Refleksjoner omkring hverdagsmatematikk

Refleksjoner omkring hverdagsmatematikk Reidar Mosvold Refleksjoner omkring hverdagsmatematikk Matematikk i dagliglivet kom inn som eget emne i norske læreplaner med L97. En undersøkelse av tidligere læreplaner viser at en praktisk tilknytning

Detaljer

Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig

Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig Sensurveiledning Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1 Semester: VÅR År: 2016 Eksamenstype: Skriftlig Oppgave 1 Figuren viser hvordan en nettside forklarer en metode for addisjon og

Detaljer

Posisjonsystemet FRA A TIL Å

Posisjonsystemet FRA A TIL Å Posisjonsystemet FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til posisjonsystemet P - 2 2 Grunnleggende om posisjonsystemet P - 2 3 Titallsystemet P - 3 4 Posisjonsystemet

Detaljer

"Matte er kjedelig, fordi det er så lett"

Matte er kjedelig, fordi det er så lett "Matte er kjedelig, fordi det er så lett" Mona Røsseland Matematikksenteret (for tiden i studiepermisjon) Lærebokforfatter, MULTI Innhold Hvordan gi utfordringer til alle elevene? Tilpasset undervisning

Detaljer

Regelhefte for: getsmart Begreper

Regelhefte for: getsmart Begreper Regelhefte for: getsmart Begreper Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Sjekk hjemmesiden for flere powerpoint-presentasjoner. Det vil

Detaljer

Hva er god matematikkundervisning?

Hva er god matematikkundervisning? Hva er god matematikkundervisning? Astrid Bondø Nasjonalt Senter for Matematikk i Opplæringen 22-Feb-08 Ny læreplan, nye utfordringer for undervisninga i matematikk? Hva vil det si å ha matematiske kompetanse?

Detaljer

God morgen! Alle Teller dag 4

God morgen! Alle Teller dag 4 God morgen Alle Teller dag 4 Gerd Åsta Bones & Mike Naylor www.matematikkbølgen.com Røde Gule Regning 5 5 5 + 5 = 10 3 7 3 + 7 = 10 4 6 4 + 6 = 10. Alle Teller Dag 4 Algoritme med base 10 Divisjon Brøk

Detaljer

Foreldrene betyr all verden

Foreldrene betyr all verden Foreldrene betyr all verden Gjett tre kort Mona Røsseland Nasjonalt senter for Matematikk i opplæringen, NTNU (i studiepermisjon) Lærebokforfatter; MULTI 15-Sep-09 15-Sep-09 2 Mastermind Hva påvirker elevenes

Detaljer

HELHETLIG PLAN I REGNING VED OLSVIK SKOLE.

HELHETLIG PLAN I REGNING VED OLSVIK SKOLE. HELHETLIG PLAN I REGNING VED OLSVIK SKOLE. Prinsipper og strategier ved Olsvik skole. FORORD Olsvik skole har utarbeidet en helhetlig plan i regning som viser hvilke mål og arbeidsmåter som er forventet

Detaljer

Invitasjon. En god start. - norsk, matematikk og engelsk 1. 2. trinn. Oslo Bergen Stavanger Trondheim Tønsberg Kristiansand Tromsø Fredrikstad

Invitasjon. En god start. - norsk, matematikk og engelsk 1. 2. trinn. Oslo Bergen Stavanger Trondheim Tønsberg Kristiansand Tromsø Fredrikstad En god start - norsk, matematikk og engelsk 1. 2. trinn Invitasjon Oslo Bergen Stavanger Trondheim Tønsberg Kristiansand Tromsø Fredrikstad NORSK Kursinnhold Reviderte læreplaner i norskfaget, med økt

Detaljer

"Hva er god. matematikkundervisning. Mål at alle matematikklærerne skal: Resultat i matematikk på kunnskapsnivåer, 8.trinn

Hva er god. matematikkundervisning. Mål at alle matematikklærerne skal: Resultat i matematikk på kunnskapsnivåer, 8.trinn "Hva er god matematikkundervisning? Mål at alle matematikklærerne skal: en felles forståelse for hva god matematikkundervisning er. Mona Røsseland Matematikksenteret (for tiden i studiepermisjon) Lærebokforfatter,

Detaljer

Å styrke leseforståelsen til flerspråklige elever på 3. trinn. Delt av Eli-Margrethe Uglem, student Lesing 2. Lesesenteret Universitetet i Stavanger

Å styrke leseforståelsen til flerspråklige elever på 3. trinn. Delt av Eli-Margrethe Uglem, student Lesing 2. Lesesenteret Universitetet i Stavanger Å styrke leseforståelsen til flerspråklige elever på 3. trinn Delt av Eli-Margrethe Uglem, student Lesing 2 Lesesenteret Universitetet i Stavanger Bakgrunn og mål Med utgangspunkt i at alle elever har

Detaljer

Hvordan kan IKT bidra til pedagogisk utvikling?

Hvordan kan IKT bidra til pedagogisk utvikling? Hvordan kan IKT bidra til pedagogisk utvikling? Stortingsmelding 30 (2003-2004) påpeker viktigheten av å bruke IKT som et faglig verktøy, og ser på det som en grunnleggende ferdighet på lik linje med det

Detaljer

DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK

DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK For elever fra 1. 5. trinn Del C: Notatark til kartleggingsleder Elev: Født: Skole: Klassetrinn: Kartleggingsleder: Andre til stede: Sted og dato for kartlegging:

Detaljer

Lokal læreplan i muntlige ferdigheter. Beate Børresen Høgskolen i Oslo

Lokal læreplan i muntlige ferdigheter. Beate Børresen Høgskolen i Oslo Lokal læreplan i muntlige ferdigheter Beate Børresen Høgskolen i Oslo Muntlige ferdigheter i K06 å lytte å snakke å fortelle å forstå å undersøke sammen med andre å vurdere det som blir sagt/gjøre seg

Detaljer

Tall: Hovedområdet tall og algebra handler om å utvikle tallforståing og innsikt i hvordan tall og tallbehandling inngår i

Tall: Hovedområdet tall og algebra handler om å utvikle tallforståing og innsikt i hvordan tall og tallbehandling inngår i Lærebok: Tusen Millioner, Gjerdrum Skovdahl Tallbok (rutebok i A5 format) Barn lærer matematikk gjennom spill, leik, utforsking aktiv samhandling. Språkets betydning er veldig viktig for å forstå matematikk.

Detaljer

Hovedemne Mål Innhold Arbeidsmåte Vurdering Pluss 7A Grunnbok kapittel 13 a s 4-17

Hovedemne Mål Innhold Arbeidsmåte Vurdering Pluss 7A Grunnbok kapittel 13 a s 4-17 Ekrehagen Skole Årsplan i matematikk 7. klasse 2008/2009 GENERELLE MÅL: Undervisningen vil ta sikte på å skape en undring hos den enkelte elev for livet i sin helhet og for de grunnleggende spørsmål som

Detaljer

www.fiboline.no 18.02.2012 Gjett tre kort Mastermind www.fiboline.no Resultat i matematikk på kunnskapsnivåer, 8.trinn Utstyr En kortstokk

www.fiboline.no 18.02.2012 Gjett tre kort Mastermind www.fiboline.no Resultat i matematikk på kunnskapsnivåer, 8.trinn Utstyr En kortstokk Foreldrene betyr all verden! Mona Røsseland Lærebokforfatter, MULTI www.fiboline.no Utstyr En kortstokk Gjett tre kort Regler Et spill for 2 3 spillere eller for en stor gruppe En person trekker tre kort

Detaljer

OPPGAVE 1: ELEVAKTIVE ARBEIDSMÅTER I NATURFAGENE

OPPGAVE 1: ELEVAKTIVE ARBEIDSMÅTER I NATURFAGENE OPPGAVE 1: ELEVAKTIVE ARBEIDSMÅTER I NATURFAGENE Innledning I de 9. klassene hvor jeg var i praksis, måtte elevene levere inn formell rapport etter nesten hver elevøvelse. En konsekvens av dette kan etter

Detaljer

INNHOLD. Emne 4 Matematikken rundt oss... 120. Emne 3 Brøk, prosent og promille... 6. Faktasider...101 Repetisjonsoppgaver...106 Avtaltoppgaver...

INNHOLD. Emne 4 Matematikken rundt oss... 120. Emne 3 Brøk, prosent og promille... 6. Faktasider...101 Repetisjonsoppgaver...106 Avtaltoppgaver... Black plate (4,) INNHOLD Emne Brøk, prosent og promille... 6 Brøk... 8 Navn på brøker... 8 Likeverdige brøker... Utvide og forkorte brøker... 4 Addisjon og subtraksjon av brøker med like nevnere... 8 Å

Detaljer

Hva er matematisk kompetanse?

Hva er matematisk kompetanse? Hva er matematisk kompetanse? Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS (landslaget for matematikk i skolen) Lærebokforfatter, MULTI 3-Feb-07 Dagsoversikt Hvordan styrke

Detaljer

Delemneplan for undervisningskunnskap i brøk og desimaltall

Delemneplan for undervisningskunnskap i brøk og desimaltall Delemneplan for undervisningskunnskap i brøk og desimaltall Emnet omfatter matematikkdidaktiske og matematikkfaglige tema innen brøk og desimaltall som er viktige for alle som skal undervise i matematikk

Detaljer

Interaktiv tavle i klasserommet. En mulig vei for et didaktisk design

Interaktiv tavle i klasserommet. En mulig vei for et didaktisk design Interaktiv tavle i klasserommet. En mulig vei for et didaktisk design Førstelektor Tor Arne Wølner, Tor Arne Wølner Høgskolen i Vestfold 1 Den besværlig tavlen Fra min tavle til vår tavle Tor Arne Wølner

Detaljer

Brøkundervisning på barnetrinnet - aspekter av en lærers matematikkunnskap

Brøkundervisning på barnetrinnet - aspekter av en lærers matematikkunnskap Bodil Kleve Førsteamanuensis, Avdeling for lærerutdanning og internasjonale studier, Høgskolen i Oslo Brøkundervisning på barnetrinnet - aspekter av en lærers matematikkunnskap Sammendrag Dette er en kasusstudie

Detaljer

1P Tall og algebra. Tall og algebra Vg1P (utdrag)

1P Tall og algebra. Tall og algebra Vg1P (utdrag) 1P Tall og algebra Modul 1: Regnerekkefølgen... 2 Modul 3: Brøkregning... 4 Modul 10: Prosentregning... 9 Bildeliste... 28 1 Modul 1: Regnerekkefølgen Du går i butikken og handler ett brød og to liter

Detaljer

Hvordan lykkes med tilpasset undervisning?

Hvordan lykkes med tilpasset undervisning? Hvordan lykkes med tilpasset undervisning? Mona Røsseland Doktorgradsstipendiat Universitetet i Agder www.fiboline.no Oversikt 10-11.30: Makronivå: Hva er god matematikkundervisning og hvordan legger det

Detaljer

Bacheloroppgave GLU 1-7

Bacheloroppgave GLU 1-7 Grunnleggende ferdigheter med vekt på å regne i alle fag av Kristine Kjærland Kandidatnummer 577 Veileder: Marianne Vinje, Pedagogikk og elevkunnskap Bacheloroppgave GLU 1-7 G1PEL3900 Institutt for grunnskole-

Detaljer

Moro med matematikk 5. - 7. trinn 90 minutter

Moro med matematikk 5. - 7. trinn 90 minutter Lærerveiledning Passer for: Varighet: Moro med matematikk 5. - 7. trinn 90 minutter Moro med matematikk er et skoleprogram i matematikk hvor elevene får jobbe variert med problemløsingsoppgaver, spill

Detaljer

Læreplanene for Kunnskapsløftet

Læreplanene for Kunnskapsløftet Læreplanene for Kunnskapsløftet Hvordan få samsvar mellom intensjon og praksis? Mona Røsseland Nasjonalt senter for matematikk i opplæringen Leder i Lamis Lærebokforfatter; MULTI 21-Mar-06 Intensjoner

Detaljer

ÅRSPLAN I MATEMATIKK FOR 4. TRINN HØSTEN

ÅRSPLAN I MATEMATIKK FOR 4. TRINN HØSTEN 34 35 36 37 38 39 40 42 43 44 45 ÅRSPLAN I MATEMATIKK FOR 4. TRINN HØSTEN 2014 Læreverk: Multi Faglærer: Astrid Løland Fløgstad MÅL (K06) TEMA ARBEIDSFORM VURDERING lese avlassere og beskrive posisjoner

Detaljer

Regning som grunnleggende ferdighet Ny GIV! Møre og Romsdal

Regning som grunnleggende ferdighet Ny GIV! Møre og Romsdal Regning som grunnleggende ferdighet Ny GIV! Møre og Romsdal Hefte med praktiske eksempler Tone Elisabeth Bakken Molde, 29.januar 2013 Ønsker du beskrivelse av og informasjon om flere metoder, - ta kontakt!

Detaljer

Forskningsrapport. Hvordan er karakterene og miljøet på en aldersblandet ungdomsskole i forhold til en aldersdelt ungdomsskole?

Forskningsrapport. Hvordan er karakterene og miljøet på en aldersblandet ungdomsskole i forhold til en aldersdelt ungdomsskole? Forskningsrapport Hvordan er karakterene og miljøet på en aldersblandet ungdomsskole i forhold til en aldersdelt ungdomsskole? Navn og fødselsdato: Ida Bosch 30.04.94 Hanne Mathisen 23.12.94 Problemstilling:

Detaljer

GODE ALGORITMER. Mekanisk regneferdighet. Forskningens konklusjon. Hva kreves i læreplanen? Var alt bedre før? 17.09.2012

GODE ALGORITMER. Mekanisk regneferdighet. Forskningens konklusjon. Hva kreves i læreplanen? Var alt bedre før? 17.09.2012 Mekanisk regneferdighet GODE ALGORITMER IKKE SØRGELIG SUBTRAKSJON OG DYSTER DIVISJON Bjørnar Alseth Multi i Vest 2012 Forskningens konklusjon Hva kreves i læreplanen? Forskerne er enige om 1. Vi må ikke

Detaljer

Utvikling av kreativ og robust matematikklærerkompetanse

Utvikling av kreativ og robust matematikklærerkompetanse Utvikling av kreativ og robust matematikklærerkompetanse Ole Enge og Anita Valenta, Høgskolen i Sør-Trøndelag, avdeling for lærer- og tolkeutdanning NOFA2, Middelfart 13-15.mai Utfordringen Vi har studenter

Detaljer

Læringsfellesskap i matematikk utvikling og forskning i samarbeid.

Læringsfellesskap i matematikk utvikling og forskning i samarbeid. Anne Berit Fuglestad og Barbara Jaworski Anne.B.Fuglestad@hia.no Barbara.Jaworski@hia.no Høgskolen i Agder Læringsfellesskap i matematikk utvikling og forskning i samarbeid. En onsdag ettermiddag kommer

Detaljer

Perlesnor og tom tallinje

Perlesnor og tom tallinje Hanne Hafnor Dahl, May Else Nohr Perlesnor og tom tallinje En perlesnor er en konkret representasjon av tallrekka. Den kan bestå av 10, 20 eller 100 perler, alt etter hvilket tallområdet elevene arbeider

Detaljer

Læreres forestillinger om god matematikkundervisning hva med forestillingene i praksis?

Læreres forestillinger om god matematikkundervisning hva med forestillingene i praksis? Læreres forestillinger om god matematikkundervisning hva med forestillingene i praksis? Bodil Kleve Høgskolen i Oslo Høgskolen i Oslo forestillinger om god matematikkundervisning (1)! The TIMSS video study

Detaljer

Sinus 1P Y > Tall og mengde

Sinus 1P Y > Tall og mengde 1 Book Sinus 1P-Y.indb Sinus 1P Y > Tall og mengde 2014-07-2 14:47:09 Tall og mengde MÅL for opp læ rin gen er at ele ven skal kun ne gjøre overslag over svar, regne praktiske oppgaver, med og uten digitale

Detaljer

Forfatterne bak Multi:

Forfatterne bak Multi: Multi i praksis Tilpasset opplæring Forfatterne bak Multi: Bjørnar Alseth Universitetet i Oslo Henrik Kirkegaard, Flisnes skole, Ålesund Mona Røsseland, Matematikksenteret Gunnar Nordberg, Høgskolen i

Detaljer

Studieplan for. Regning som grunnleggende ferdighet

Studieplan for. Regning som grunnleggende ferdighet VERSJON 16.06.2014 Studieplan for Regning som grunnleggende ferdighet 30 studiepoeng Studieplanen er godkjent/revidert: 00.00.00 Studiet er etablert av Høgskolestyret: 00.00.00 A. Overordnet beskrivelse

Detaljer

Brøker med samme verdi

Brøker med samme verdi Kapittel 7 Brøk Mål for det du skal lære: regne om mellom blandet tall og uekte brøk forkorte og utvide brøker, finne fellesnevner regne om mellom brøk og desimaltall ordne brøker etter størrelse og plassere

Detaljer

Bruk av terninger i statistikkundervisning for å øke forståelsen for enkelte terskelbegrep

Bruk av terninger i statistikkundervisning for å øke forståelsen for enkelte terskelbegrep Bruk av terninger i statistikkundervisning for å øke forståelsen for enkelte terskelbegrep Med praktiske eksempler fra basisundervisning for tannlegestudenter Obligatorisk oppgave i basismodulen i pedagogikk

Detaljer

Spill om kort 1) Førstemann som har samlet inn et avtalt antall kort (f.eks 10 stk) uansett tema og vanskegrad, har vunnet.

Spill om kort 1) Førstemann som har samlet inn et avtalt antall kort (f.eks 10 stk) uansett tema og vanskegrad, har vunnet. Spillevarianter Basis spillevarianter er presentert i elevboka, Tema B tall side 54. Her finner du også spillebrettet. I elevboka er spillet knyttet til desimaltall, men ved bruk av spillekortene kan man

Detaljer

Hvilke faktorer påvirker elevers læring?

Hvilke faktorer påvirker elevers læring? Hvilke faktorer påvirker elevers læring? Mona Røsseland Doktorstipendiat Universitetet i Agder Internasjonale sammenligninger TIMSS: Trends in Mathematics and Science Study - (hvert fjerde år med elever

Detaljer

Argumentasjon og regnestrategier

Argumentasjon og regnestrategier Ole Enge, Anita Valenta Argumentasjon og regnestrategier Undersøkelser (se for eksempel Boaler, 2008) viser at det er en stor forskjell på hvilke oppfatninger matematikere og folk flest har om matematikk.

Detaljer

Gjett hva lærer n tenker på: Betydningen av faglig snakk for et utforskende læringsmiljø

Gjett hva lærer n tenker på: Betydningen av faglig snakk for et utforskende læringsmiljø FAGLIG SNAKK OG UTFORSK- ENDE LÆRINGSMILJØ Gjett hva lærer n tenker på: Betydningen av faglig snakk for et utforskende læringsmiljø Hvordan kan du som lærer styre den faglige samtalen for å motivere elevene

Detaljer

Emneplan 2014-2015. Matematikk 2 for 1.-10. trinn. Videreutdanning for lærere. HBV - Fakultet for humaniora og utdanningsvitenskap, studiested Drammen

Emneplan 2014-2015. Matematikk 2 for 1.-10. trinn. Videreutdanning for lærere. HBV - Fakultet for humaniora og utdanningsvitenskap, studiested Drammen Emneplan 2014-2015 Matematikk 2 for 1.-10. trinn Videreutdanning for lærere HBV - Fakultet for humaniora og, studiested Drammen Høgskolen i Buskerud og Vestfold Postboks 7053 3007 Drammen Side 2/6 KFK-MAT2

Detaljer

Bacheloroppgave i GLU 11 5-10 G5BAC3900

Bacheloroppgave i GLU 11 5-10 G5BAC3900 TIMSS 2011 og svake resultater i algebra på 8. trinn av Arne Hannisdal 612 Veileder: Lars Reinholdtsen, matematikk Bacheloroppgave i GLU 11 5-10 G5BAC3900 Institutt for grunnskole- og faglærerutdanning

Detaljer

NyGIV Regning som grunnleggende ferdighet Akershus

NyGIV Regning som grunnleggende ferdighet Akershus NyGIV Regning som grunnleggende ferdighet Akershus Hefte med praktiske eksempler Tone Elisabeth Bakken 16.januar 014 Ønsker du beskrivelse av og informasjon om flere metoder, - ta kontakt! tone.bakken@ohg.vg.no

Detaljer

Vurdering for og av læring

Vurdering for og av læring Vurdering for og av læring Skolens nye trendord? Svein H. Torkildsen, NSMO Dagens program Arbeidet legges opp rundt 1. læreplanens kompetansemål 2. arbeidsmåter i faget 3. læreboka og pedagogens arbeid

Detaljer

Matematisk julekalender for 8.-10. trinn, 2013

Matematisk julekalender for 8.-10. trinn, 2013 Matematisk julekalender for 8.-10. trinn, 2013 Årets julekalender for 8.-10. trinn består av 9 enkeltstående oppgaver som kan løses uavhengig av hverandre. Alle oppgavene har flere svaralternativer, hvorav

Detaljer

Algebra for alle. Gunnar Nordberg

Algebra for alle. Gunnar Nordberg Algebra for alle Gunnar Nordberg 1 Om dette verkstedet Fra konkreter til tall Fra tall til variabler(bokstaver) Kan algebraen bli meningsfull Å undervise i algebraisk forståelse Ideer til gode oppgaver

Detaljer

Halvårsplan/årsplan i Matematikk for 2. trinn 2015/2016 Tema Læringsmål Grunnleggende ferdigheter

Halvårsplan/årsplan i Matematikk for 2. trinn 2015/2016 Tema Læringsmål Grunnleggende ferdigheter Uke/ perio de Kompetansemål KL- 06 33-39 TALL bygge mengder opp til 10, tiergrupper. Bruke tallinjen til beregning og til å vise tallstørelser. Halvårsplan/årsplan i Matematikk for 2. trinn 2015/2016 Tema

Detaljer

Kapittel 1: Studieteknikk Tankene bak kapitlet

Kapittel 1: Studieteknikk Tankene bak kapitlet Kapittel 1: Studieteknikk Tankene bak kapitlet Vi tror det er svært viktig å bruke noe tid på kapitlet om studieteknikk. Det legger grunnlaget for god læring både i norsk og andre fag resten av året. I

Detaljer

2012-2013. Generelt for alle emner: Muntlig og skriftlig tilbakemelding og fremovermelding på arbeid i bøkene.

2012-2013. Generelt for alle emner: Muntlig og skriftlig tilbakemelding og fremovermelding på arbeid i bøkene. Kyrkjekrinsen skole Plan for perioden: 2012-2013 Fag: Matematikk År: 2012/2013 Klasse:1. trinn Lærer: Mari Saxegaard og Anne Karin Vestrheim Uke Årshjul Hovedtema Kompetanse mål Delmål / Konkretisering

Detaljer

Praktisk-Pedagogisk utdanning

Praktisk-Pedagogisk utdanning Veiledningshefte Praktisk-Pedagogisk utdanning De ulike målområdene i rammeplanen for Praktisk-pedagogisk utdanning er å betrakte som innholdet i praksisopplæringen. Samlet sett skal praksisopplæringen

Detaljer

Ukebrevet BARNEHAGEN FELLES

Ukebrevet BARNEHAGEN FELLES Observasjonsuker i småskolen for skolestartere: Ukebrevet Uke 43 (19/10 25/10) BARNEHAGEN Uke 45 og 46 er observasjonsuker for de som søker skoleplass her fra neste skoleår. Se vedlegg for tider. Husk

Detaljer

Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den?

Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den? side 1 Detaljert eksempel om Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den? Dette er et forslag til undervisningsopplegg der utgangspunktet er sentrale problemstillinger

Detaljer

Studieplan for. Regning som grunnleggende ferdighet i alle fag

Studieplan for. Regning som grunnleggende ferdighet i alle fag Studieplan for Regning som grunnleggende ferdighet i alle fag 15+15 studiepoeng Studieplanen er godkjent: (07.03.14) A. Overordnet beskrivelse av studiet 1. Innledning Videreutdanningskurset i regning

Detaljer

Leker gutter mest med gutter og jenter mest med jenter? Et nysgjerrigpersprosjekt av 2. klasse, Hedemarken Friskole 2016

Leker gutter mest med gutter og jenter mest med jenter? Et nysgjerrigpersprosjekt av 2. klasse, Hedemarken Friskole 2016 Leker gutter mest med gutter og jenter mest med jenter? Et nysgjerrigpersprosjekt av 2. klasse, Hedemarken Friskole 2016 1 Forord 2. klasse ved Hedemarken friskole har hatt mange spennende og morsomme

Detaljer

Utfordringer og misoppfatninger knyttet til brøkbegrepet

Utfordringer og misoppfatninger knyttet til brøkbegrepet Utfordringer og misoppfatninger knyttet til brøkbegrepet av Nina Ruth 135 Veileder: William James Andrew Gray, matematikk Bacheloroppgave for GLU 1-7 G1PEL3900 Institutt for grunnskole- og faglærerutdanning

Detaljer

Å være eller ikke være deltager. i en matematisk diskurs

Å være eller ikke være deltager. i en matematisk diskurs Å være eller ikke være deltager i en matematisk diskurs - med fokus på elevers deltagelse i problemløsningsaktiviteter og deres fortellinger om matematikk Masteroppgave i grunnskoledidaktikk med fordypning

Detaljer

Årsplan Matematikk Skoleåret 2015/2016

Årsplan Matematikk Skoleåret 2015/2016 Årsplan Matematikk Skoleåret 2015/2016 Mål for faget Elevene elsker matematikk og gleder seg over hver time de skal ha i faget. Elevene skal kjenne tallsymbolene fra 0 til 20. Elevene skal beherske å skrive

Detaljer

Refleksjonsnotat 2 nye praksisformer: Nye praksisformer: Diskuter forholdet mellom organisasjon, teknologi og læring i en valgt virksomhet.

Refleksjonsnotat 2 nye praksisformer: Nye praksisformer: Diskuter forholdet mellom organisasjon, teknologi og læring i en valgt virksomhet. Refleksjonsnotat 2 nye praksisformer: Nye praksisformer: Diskuter forholdet mellom organisasjon, teknologi og læring i en valgt virksomhet. Navn: Kristina Halkidis Studentnr. 199078 Vårsemester 2015 Master

Detaljer

Felles klasseundervisning og tilpasset opplæring kan det forenes?

Felles klasseundervisning og tilpasset opplæring kan det forenes? Felles klasseundervisning og tilpasset opplæring kan det forenes? 5.-7.trinn Innhold Hvordan skal vi klare å få alle elevene til å oppleve mestring og samtidig bli utfordret nok og få mulighet til å strekke

Detaljer

Mattemoro! Går r det virkelig an å leke seg til ferdigheter i matematikk? Hva kjennertegner den. Oversikt. Spill til hjelp i automatiseringen av

Mattemoro! Går r det virkelig an å leke seg til ferdigheter i matematikk? Hva kjennertegner den. Oversikt. Spill til hjelp i automatiseringen av Mattemoro! Mona Røsseland, R som har tenkt å gjøre et forsøk! Går r det virkelig an å leke seg til ferdigheter i matematikk? Hva kjennertegner den gode lærer? l Entusiasme og engasjement. Kjennskap til

Detaljer

Underveisvurderingens paradoks

Underveisvurderingens paradoks Underveisvurderingens paradoks Foto: fotolia.com/nadezhda1906 av dordy wilson Lærere og elever er blitt intervjuet og observert med hensyn til hvordan underveisvurdering blir gitt i praksis og hva slags

Detaljer

KRITISK BLIKK PÅ NOEN SKOLEBØKER I MATEMATIKK.

KRITISK BLIKK PÅ NOEN SKOLEBØKER I MATEMATIKK. KRITISK BLIKK PÅ NOEN SKOLEBØKER I MATEMATIKK. Som foreleser/øvingslærer for diverse grunnkurs i matematikk ved realfagstudiet på NTNU har jeg prøvd å skaffe meg en viss oversikt over de nye studentenes

Detaljer

Matematikkonferanse med inspirasjon og faglig påfyll

Matematikkonferanse med inspirasjon og faglig påfyll 2012 Matematikkonferanse med inspirasjon og faglig påfyll for lærere på barnetrinnet 13. 14.september 2012 Quality Hotel Edvard Grieg, Bergen Velkommen til Multi i Vest! Læreren er den viktigste faktoren

Detaljer

Med Evernote opplever du raskt noen digitale funksjoner som monner Lær deg noe av det grunnleggende i bildebehandling

Med Evernote opplever du raskt noen digitale funksjoner som monner Lær deg noe av det grunnleggende i bildebehandling Denne fila er laget for å gi en antydning om den tilnærmingen som er brukt i boka. Med et noe beskjedent blikk på noen av illustrasjonene, tror vi dette kan gi deg et greit innblikk i hvordan boka er bygd

Detaljer