Dataøvelse 3 Histogram og normalplott

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Dataøvelse 3 Histogram og normalplott"

Transkript

1 Matematisk institutt STAT200 Anvendt statistikk Universitetet i Bergen 18. februar 2004 Dataøvelse 3 Histogram og normalplott A. Formål med øvelsen Denne øvelsen skal vise hvordan man med SAS-systemet kan konstruere histogram og normalplott for gitte datasett. Sammen med andre resultater produsert av SAS kan disse figurene gi grunnlag for å avgjøre om det er realistisk å tro at observasjonene kan følge en normalfordeling. Øvelsen krever at man på egen hånd kan sette opp litt større SAS-program som består av flere steg. Oppsettet for hvert enkelt steg er relativt enkelt, og støter man på spesielle problemer, kan man utnytte manualen for SAS på Internett (jfr. punkt D i øvelse 2). Leter en etter opplysninger om en bestemt prosedyre, f. eks. proc rank, er det ofte lurt å starte med hjelpesiden med Overview for denne prosedyren. Deretter kan en se på Procedure Syntax og sider for de bestemte statements som er tillatt. Av prosedyrene som er aktuelle i denne øvelsen, ligger proc rank, proc plot og proc univariate under Base SAS Software, mens proc gchart og proc gplot befinner seg i modulen SAS/GRAPH. Ellers kan programmene som ble anvendt i de to første øvelsene, i mange tilfeller brukes som forbilder for denne øvelsen. Den generelle oppbygningen av SASprogram blir i stor grad diskutert i The Little SAS Book (LSB). Av de aktuelle prosedyrene behandles proc univariate på side 170 i LSB og proc plot på side 116. B. Histogrammer med proc gchart Vanlige histogrammer for numeriske variable kan lett settes opp med proc gchart i SAS. Denne prosedyren har innebygget muligheter for konstruksjon av flere forskjellige typer diagrammer. I Øvelse 1 brukte vi proc gchart til å sette opp et histogram med vertikale søyler, ved hjelp av beskjeden vbar. I denne oppgaven skal vi isteden lage histogrammer med horisontale søyler. Fordelen er at vi samtidig får en frekvensopptelling langs kanten av plottet. Slike Horizontal bar charts fås ved å ta med en egen setning HBAR variable/opsjoner; For variable setter man inn en liste med navn på variable som er aktuelle i det SAS-datasettet som behandles.

2 3.2 Opsjoner angir i SAS spesielle tilleggsopplysninger til setningene som inngår i et SAS-program. I dette tilfellet er det særlig aktuelt å utnytte en mulighet for å spesifisere klasseinndelingen som skal brukes for kontinuerlige variable. Man kan her skrive MIDPOINTS= etterfulgt av en oppramsning av verdiene som skal representere midtpunktene i intervallene som benyttes. Særlig nyttig er det at man her kan angi lister av verdier med spesifikasjoner av typen 10 TO 100 BY 5 Dette er en forkortet skrivemåte for oppramsningen 10, 15, 20, 25,..., 95, 100. C. Konstruksjon av spredningsdiagrammer med proc plot Mange observasjonssett vil bestå av flere variable der det er knyttet spesiell interesse til graden av samvariasjon mellom bestemte variabelpar. Anta f. eks. at variablene betegnes som X og Y. Enkle spredningsdiagrammer som viser observasjonspunktene representert ved X- og Y -koordinatene i et vanlig aksesystem kan fås med proc plot. Som vanlig skal kallet av prosedyren i SAS-programmet innledes med en setning der man kan oppgi hvilket datasett det dreier seg om. Man kan så angi hvilke variable som skal inngå med en egen setning PLOT Y X; (eller med andre aktuelle variabelnavn istedenfor Y og X). Man kan gjerne inkludere flere slike PLOT-setninger etter hverandre i samme kall av proc plot. Selve genereringen av plottene kan startes med setningen RUN. Hele prosedyren vil bli avsluttet dersom den etterfølges av en ny prosedyre i oppsettet. Hvis utførelsen av proc plot er det siste steget, kan det være en fordel å avslutte prosedyren med en egen setning QUIT. Denne prosedyren gir bare enkle plott, der observasjonene vanligvis representeres ved bokstaver A, B (hvis to observasjoner faller nesten oppå hverandre) osv. Det finnes også en tilsvarende grafikkprosedyre proc gplot som gir punkter avmerket med bestemte tegn. D. Normalplott i SAS Normalplott kan lettest konstrueres i SAS ved bruk av proc univariate, som samtidig gir mye annen verdifull informasjon om et datasett. Vil man gjøre bruk av denne muligheten, skal man som opsjon angi PLOT i samme setning som kaller opp selve prosedyren. SAS skriver i så fall bl. a. ut et diagram med med selve normalplottet representert ved stjerner, mens den teoretisk riktige rette linjen som tilsvarer en normalfordeling blir angitt ved plusstegn. Man bør likevel være klar over at de observerte verdiene (som i teorien ellers blir betegnet med x (j) ), er avsatt langs y-aksen i diagrammet, mens verdiene y (j) bestemt ut fra den inverse fordelingsfunksjonen i standardnormalfordelingen blir avsatt langs x-aksen.

3 3.3 Er det imidlertid relativt mange observasjoner i datasettet som studeres, vil dette enkle plottet i proc univariate lett bli overfylt, så det er vanskelig å avgjøre visuelt om punktene tilnærmet ligger på en rett linje. I mange situasjoner vil det derfor være mer tilfredsstillende å konstruere normalplott på en annen måte, der man først foretar utregningen av de spesielle normalscorene y (j) for seg. Dette kan foregå ved proc rank. Denne prosedyren er i SAS primært ment for helt andre formål, men med opsjonene NORMAL=BLOM, NORMAL=TUKEY eller NORMAL=VW, vil den gjennomgå datasettet og regne ut normalscorene y (j) etter den oppgitte metoden. (Valget av metode har her svært liten praktisk betydning, med mindre datasettet er meget lite.) De nye verdiene vil vanligvis bli plassert i et nytt SAS-datasett. Det enkleste er å oppgi som vanlig med en opsjon DATA= hvilket datasett beregningene skal ta utgangspunkt i. Dessuten kan man her med en opsjon OUT= (etterfulgt av navnet på et nytt SAS-datasett) angi hvor resultatene skal lagres. Denne opsjonen skal tas med i den samme første setningen som kaller opp proc rank, på samme måte som opsjonen DATA=. Senere setninger (atskilt med komma) som hører med til samme prosedyre, kan angi hvilke variable utregningene skal utføres for (med VAR), og hvilke navn som skal knyttes til de beregnede normalscorene y (j) (med RANKS). Variabelrekkefølgen må passe sammen i de to oppramsningene etter VAR og RANKS. De opprinnelige variablene spesifisert etter VAR blir også lagret i det nye datasettet. Når man først har beregnet normalscore y (j) sammen med x (j) -verdiene, kan man lett utnytte proc plot til å skrive ut det egentlige normalplottet. Normalscorene kan også være nyttige for helt andre formål, f. eks. ved forsøk på å transformere observasjonene så datasettet tvinges til å bli normalfordelt. E. Testing av normalitet I proc univariate tilbyr SAS fire signifikanstester tilsvarende en nullhypotese som går ut på at et datasett av uavhengige observasjoner følger en normalfordeling. Testresultatene blir skrevet ut med opsjonen NORMAL i kallet på prosedyren. SAS viser verdien av testobservatoren og P -verdien for disse metodene: Shapiro-Wilks test, Kologorov-Smirnovs test, Cramer-von Mises test og Anderson- Darlings test. F. Beskrivelse av den praktiske situasjonen som skal studeres Vi har målt størrelsen av en rekke ertebelger produsert på planter tilhørende et bestemt erteslag. På filen belger.dat ligger det verdier som viser lengden og vekten av hver belg. Tallene er plassert slik på hver datalinje: I posisjonene 3 til 6 er belglengden angitt i cm med desimalpunktum, og i posisjonene 8 til 11 er vekten av belgen i gram oppgitt høyrejustert som heltall. Noen av datalinjene er merket i første posisjon med en stjerne, men dette tegnet skal eventuelt ignoreres. Manglende verdier for bestemte belger er kodet med 99.0 for belglengde og 9999

4 3.4 for belgvekt. Vi vil nå vurdere om variablene belglengde og belgvekt kan anses som normalfordelt. G. Øvelsesopplegg Det følgende opplegget bør leses gjennom på forhånd, før den praktiske kjøringen på PC. Oppsettene som skal brukes som SAS-program, bør skrives ned på papir så det er noenlunde klart hva som skal foregå. 1. Hent ned filen datafilen belger.dat fra katalogen d3 på det vanlige stedet på Internett. Start SAS. Les så denne filen inn i Editor-vinduet. Selv om dette ikke er noe SAS-program, kan vi likevel bruke vinduet for vanlig redigering. Titt på organiseringen av datasettet, med bruk av spesielle koder for manglende verdier. 2. Åpn så et nytt Editor-vindu. (Velg Enhanced Editor i menyen for View.) Her skal det nå skrives inn et SAS-program som for det første setter riktig tittel på hele kjøringen. Så skal det følge et data-steg som produserer et nytt SASdatasett på grunnlag av filen belger.dat. Angi hvilke variable som skal leses inn, med angivelse av posisjonene på linjene (jfr. datainnlesningen i Øvelse 2). Velg selv rimelige variabelnavn. Foreta riktig rekoding til manglende verdier for de to variablene (jfr. også oppsettet i Øvelse 2). Kjør dette SAS-programmet. 3. Hvis data-steget har gått igjennom uten feil, kan vi se på verdiene i det nye SAS-datasettet. Finn datasettet ved hjelp av Explorer-vinduet og se på verdiene i VIEWTABLE. Kontroller at de riktige tallene er satt inn i forhold det som sto i den opprinnelige filen. Lukk så VIEWTABLE. 4. Åpn enda et nytt Editor-vindu. Her skal det settes inn et SAS-program som først skal plotte sammenhørende belglengder og belgvekter i et spredningsdiagram. Så skal begge de aktuelle variablene behandles i proc univariate. Pass på å få med resultatene for normaltestene. Deretter skal det settes opp histogrammer (med horisontale søyler) for begge variablene. Sørg for at histogrammene får rimelige klasseinndelinger. I denne forbindelsen blir det oppgitt at belglengden varierer fra 4.5 til 7.3, mens belgvektene varierer fra 15 til 64. Kjør SAS-programmet. 5. I et nytt Editor-vindu skal man nå skrive inn et SAS-program som genererer normalscore for belglengder og belgvekter i et eget SAS-datasett. Så skal SAS sette opp de to tilsvarende normalplottene. Anvend også proc univariate på normalscorene for belglengdene for en ekstra kontroll av utregningene. Utfør dette SAS-programmet. 6. Titt ved hjelp av VIEWTABLE på datasettet med normalscore for å kontrollere at verdiene virker rimelige. Hvis alt ser riktig ut, kan utskriften fra Logvinduet, fra Output-vinduet og fra de to histogrammene (i grafikkvinduet) sendes til skriveren. Avslutt deretter SAS.

5 3.5 H. Spørsmål som skal besvares ved innleveringen Avgjør på grunnlag av utskriften om det kan være rimelig å beskrive fordelingene for belglengde eller belgvekt ved normalfordelinger. Utnytt i tillegg til diagrammene også forskjellige tallmessige resultater produsert av SAS.

Dataøvelse 4 Kjikvadratfordeling

Dataøvelse 4 Kjikvadratfordeling Matematisk institutt STAT200 Anvendt statistikk Universitetet i Bergen 3. mars 2004 Dataøvelse 4 Kjikvadratfordeling A. Formål med øvelsen Øvelsen skal vise hvordan SAS-systemet kan brukes til å generere

Detaljer

Dataøvelse 2 Utregning av enkle observatorer

Dataøvelse 2 Utregning av enkle observatorer Matematisk institutt STAT 200 Anvendt statistikk Universitetet i Bergen 11. februar 2004 Dataøvelse 2 Utregning av enkle observatorer A. Formål med øvelsen Denne øvelsen skal dels vise hvordan man kan

Detaljer

Dataøvelse 1 Poissonmodeller

Dataøvelse 1 Poissonmodeller Matematisk institutt STAT200 Anvendt statistikk Universitetet i Bergen 28. januar 2004 Dataøvelse 1 Poissonmodeller A. Formål med øvelsen I første dataøvelse skal en ved hjelp av SAS avgjøre om bestemte

Detaljer

Dataøvelse 8 Toveis variansanalyse

Dataøvelse 8 Toveis variansanalyse Matematisk institutt STAT200 Anvendt statistikk Universitetet i Bergen 14. april 2004 Dataøvelse 8 Toveis variansanalyse A. Formål med øvelsen Øvelsen skal vise litt mer avansert bruk av metodene som er

Detaljer

EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK

EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 12 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK Onsdag

Detaljer

Et lite notat om og rundt normalfordelingen.

Et lite notat om og rundt normalfordelingen. Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Observasjoner Histogram Viser fordelingen av faktiske observerte

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK 1000 Innføring i anvendt statistikk. Eksamensdag: Torsdag 1. juni 2006. Tid for eksamen: 09.00 12.00. Oppgavesettet er på

Detaljer

i x i

i x i TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 11, blokk II Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale

Detaljer

Forelesning 3. april, 2017

Forelesning 3. april, 2017 Forelesning 3. april, 2017 APPENDIX TIL KAP. 6 Sentralgrenseteoremet AVSNITT 6.3 Anvendelser av sentralgrenseteoremet Histogrammer S-kurver Q-Q-plot Diverse eksempler MGF for følger av uavhengige identisk

Detaljer

Kort overblikk over kurset sålangt

Kort overblikk over kurset sålangt Kort overblikk over kurset sålangt Kapittel 1: Deskriptiv statististikk for en variabel Kapittel 2: Deskriptiv statistikk for samvariasjon mellom to variable (regresjon) Kapittel 3: Metoder for å innhente

Detaljer

Eksempel på data: Karakterer i «Stat class» Introduksjon

Eksempel på data: Karakterer i «Stat class» Introduksjon Eksempel på data: Karakterer i «Stat class» Introduksjon Viktige begreper for å beskrive data: Enheter som er objektene i datasettet «label» som av og til brukes for å skille enhetene En variabel er en

Detaljer

Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver?

Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Boka (Ch 1.4) motiverer dette ved å gå fra histogrammer til tetthetskurver.

Detaljer

Et lite notat om og rundt normalfordelingen.

Et lite notat om og rundt normalfordelingen. Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Observasjoner Histogram Viser fordelingen av faktiske observerte

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Øvelsesoppgave i: ECON30 Dato for utlevering: 7.03.04 Dato for innlevering: 07.04.04 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Innleveringssted: Ekspedisjonen, etasje innen kl 5:00 Øvrig informasjon: Denne

Detaljer

STK1000 Uke 36, Studentene forventes å lese Ch 1.4 ( ) i læreboka (MMC). Tetthetskurver. Eksempel: Drivstofforbruk hos 32 biler

STK1000 Uke 36, Studentene forventes å lese Ch 1.4 ( ) i læreboka (MMC). Tetthetskurver. Eksempel: Drivstofforbruk hos 32 biler STK1000 Uke 36, 2016. Studentene forventes å lese Ch 1.4 (+ 3.1-3.3 + 3.5) i læreboka (MMC). Tetthetskurver Eksempel: Drivstofforbruk hos 32 biler Fra histogram til tetthetskurver Anta at vi har kontinuerlige

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 11 Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale begreper

Detaljer

Drosjesentralen. I-120: Obligatorisk oppgave 2, 2000

Drosjesentralen. I-120: Obligatorisk oppgave 2, 2000 Drosjesentralen I-120: Obligatorisk oppgave 2, 2000 Frist Mandag 20. November 2000 kl.10:00, i skuff merket I120 på UA. Krav Se seksjon 4 for kravene til innlevering. Merk krav om generisk løsning for

Detaljer

Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab

Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab For grunnleggende bruk av Matlab vises til slides fra basisintroduksjon til Matlab som finnes på kursets hjemmeside. I denne øvingen skal vi analysere

Detaljer

Andre sett med obligatoriske oppgaver i STK1110 høsten 2010

Andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Dette er det andre settet med obligatoriske oppgaver i STK1110 høsten 2010. Oppgavesettet består av fire oppgaver. Det er valgfritt om du vil

Detaljer

Eksamensoppgave i TMA4245 Statistikk

Eksamensoppgave i TMA4245 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato:??. august 2014 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

MATLAB for STK1100. Matematisk institutt Univeristetet i Oslo Januar Enkel generering av stokastiske variabler

MATLAB for STK1100. Matematisk institutt Univeristetet i Oslo Januar Enkel generering av stokastiske variabler MATLAB for STK1100 Matematisk institutt Univeristetet i Oslo Januar 2014 1 Enkel generering av stokastiske variabler MATLAB har et stort antall funksjoner for å generere tilfeldige tall. Skriv help stats

Detaljer

STK1000 Obligatorisk oppgave 1 av 2

STK1000 Obligatorisk oppgave 1 av 2 6. september 2017 STK1000 Obligatorisk oppgave 1 av 2 Innleveringsfrist Torsdag 21. september 2017, klokken 14:30 i Devilry (https://devilry.ifi.uio.no). Instruksjoner Du velger selv om du skriver besvarelsen

Detaljer

Inf109 Programmering for realister Uke 5. I denne leksjonen skal vi se på hvordan vi kan lage våre egne vinduer og hvordan vi bruker disse.

Inf109 Programmering for realister Uke 5. I denne leksjonen skal vi se på hvordan vi kan lage våre egne vinduer og hvordan vi bruker disse. Inf109 Programmering for realister Uke 5 I denne leksjonen skal vi se på hvordan vi kan lage våre egne vinduer og hvordan vi bruker disse. Før du starter må du kopiere filen graphics.py fra http://www.ii.uib.no/~matthew/inf1092014

Detaljer

Seksjon 1.3 Tetthetskurver og normalfordelingen

Seksjon 1.3 Tetthetskurver og normalfordelingen Seksjon 1.3 Tetthetskurver og normalfordelingen Har sett på ulike metoder for å plotte eller oppsummere data Vil nå starte på hvordan beskrive data ved modeller Hovedmetode er tetthetskurver Tetthetskurver

Detaljer

En kort innføring i Lotte-Typehushold

En kort innføring i Lotte-Typehushold En kort innføring i Lotte-Typehushold Det forutsettes at du har kjennskap til ordinær Lotte dvs. Lotte-Trygd og Lotte-Skatt. Dvs. du må vite hva en skatteregel er og en skatterutine er og hvor du kan finne

Detaljer

MATLABs brukergrensesnitt

MATLABs brukergrensesnitt Kapittel 3 MATLABs brukergrensesnitt 3.1 Brukergrensesnittets vinduer Ved oppstart av MATLAB åpnes MATLAB-vinduet, se figur 1.1. MATLAB-vinduet inneholder forskjellige (under-)vinduer. De ulike vinduene

Detaljer

Om plotting. Knut Mørken. 31. oktober 2003

Om plotting. Knut Mørken. 31. oktober 2003 Om plotting Knut Mørken 31. oktober 2003 1 Innledning Dette lille notatet tar for seg primitiv plotting av funksjoner og visualisering av Newtons metode ved hjelp av Java-klassen PlotDisplayer. Merk at

Detaljer

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår Løsningsforslag ECON 130 Obligatorisk semesteroppgave 017 vår Andreas Myhre Oppgave 1 1. (i) Siden X og Z er uavhengige, vil den simultane fordelingen mellom X og Z kunne skrives som: f(x, z) = P(X = x

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Øvelsesoppgave i: ECON2130 Statistikk 1 Dato for utlevering: Mandag 22. mars 2010 Dato for innlevering: Fredag 9. april 2010 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Innleveringssted: Ved siden av SV-info-senter

Detaljer

Kanter, kanter, mange mangekanter

Kanter, kanter, mange mangekanter Kanter, kanter, mange mangekanter Nybegynner Processing PDF Introduksjon: Her skal vi se på litt mer avansert opptegning og bevegelse. Vi skal ta utgangspunkt i oppgaven om den sprettende ballen, men bytte

Detaljer

Snøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk

Snøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk Snøtetthet Notat for TMA424/TMA4245 Statistikk Institutt for matematiske fag, NTNU 5. august 22 I forbindelse med varsling av om, klimaforskning og særlig kraftproduksjon er det viktig å kunne anslå hvor

Detaljer

MAT-INF 1100: Obligatorisk oppgave 1

MAT-INF 1100: Obligatorisk oppgave 1 22. september, 2016 MAT-INF 1100: Obligatorisk oppgave 1 Innleveringsfrist: 6/10-2016, kl. 14:30 i Devilry Obligatoriske oppgaver («obliger») er en sentral del av MAT-INF1100 og er utmerket trening i å

Detaljer

OPPGAVEHEFTE I STK1000 TIL KAPITTEL Regneoppgaver til kapittel 7. X 1,i, X 2 = 1 n 2. D = X 1 X 2. På onsdagsforelesningen påstod jeg at da må

OPPGAVEHEFTE I STK1000 TIL KAPITTEL Regneoppgaver til kapittel 7. X 1,i, X 2 = 1 n 2. D = X 1 X 2. På onsdagsforelesningen påstod jeg at da må OPPGAVEHEFTE I STK000 TIL KAPITTEL 7 Regneoppgaver til kapittel 7 Oppgave Anta at man har resultatet av et randomisert forsøk med to grupper, og observerer fra gruppe, mens man observerer X,, X,2,, X,n

Detaljer

HamboHus 5.4 Rev. 1, 8. september 2005 A. Cordray

HamboHus 5.4 Rev. 1, 8. september 2005 A. Cordray HamboHus Technical Note Nr 10: Terreng HamboHus 5.4 Rev. 1, 8. september 2005 A. Cordray I HamboHus 5.4 er implementasjonen av terreng utvidet og forbedret. Det er lettere å lage terrengpunkter, og mye

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK2120 Statistiske metoder og dataanalyse 2. Eksamensdag: Fredag 7. juni 2013. Tid for eksamen: 14.30 18.30. Oppgavesettet er

Detaljer

TMA4240 Statistikk Høst 2012

TMA4240 Statistikk Høst 2012 TMA424 Statistikk Høst 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving blokk II Oppgave 1 Oppgave 11.3 fra læreboka. Oppgave 2 Oppgave 11.19 fra læreboka. Oppgave

Detaljer

Statistikk og dataanalyse

Statistikk og dataanalyse Njål Foldnes, Steffen Grønneberg og Gudmund Horn Hermansen Statistikk og dataanalyse En moderne innføring Kapitteloversikt del 1 INTRODUKSJON TIL STATISTIKK Kapittel 1 Populasjon og utvalg 19 Kapittel

Detaljer

Seksjon 1.3 Tetthetskurver og normalfordelingen

Seksjon 1.3 Tetthetskurver og normalfordelingen Seksjon 1.3 Tetthetskurver og normalfordelingen Har sett på ulike metoder for å plotte eller oppsummere data ved tall Vil nå starte på hvordan beskrive data ved modeller Hovedmetode er tetthetskurver Tetthetskurver

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Deleksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 13. oktober 2010. Tid for eksamen: 15:00 17:00. Oppgavesettet

Detaljer

6.2 Signifikanstester

6.2 Signifikanstester 6.2 Signifikanstester Konfidensintervaller er nyttige når vi ønsker å estimere en populasjonsparameter Signifikanstester er nyttige dersom vi ønsker å teste en hypotese om en parameter i en populasjon

Detaljer

EKSAMEN I FAG TMA4255 FORSØKSPLANLEGGING OG ANVENDTE STATISTISKE METODER

EKSAMEN I FAG TMA4255 FORSØKSPLANLEGGING OG ANVENDTE STATISTISKE METODER Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 BOKMÅL EKSAMEN I FAG TMA4255 FORSØKSPLANLEGGING OG ANVENDTE

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK 1000 Innføring i anvendt statistikk. Eksamensdag: Mandag 4. desember 2006. Tid for eksamen: 14.30 17.30. Oppgavesettet er

Detaljer

Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab

Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab For grunnleggende introduksjon til Matlab, se kursets hjemmeside https://wiki.math.ntnu.no/tma4240/2015h/matlab. I denne øvingen skal vi analysere to

Detaljer

Eksamensoppgave i TMA4255 Anvendt statistikk

Eksamensoppgave i TMA4255 Anvendt statistikk Institutt for matematiske fag Eksamensoppgave i TMA4255 Anvendt statistikk Faglig kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: 16. mai 2015 Eksamenstid (fra til): 09:00-13:00

Detaljer

DATAUTFORSKNING I EG, EG 7.1 OG EGENDEFINERTE FUNKSJONER SAS FANS I STAVANGER 4. MARS 2014, MARIT FISKAAEN

DATAUTFORSKNING I EG, EG 7.1 OG EGENDEFINERTE FUNKSJONER SAS FANS I STAVANGER 4. MARS 2014, MARIT FISKAAEN DATAUTFORSKNING I EG, EG 7.1 OG EGENDEFINERTE FUNKSJONER SAS FANS I STAVANGER 4. MARS 2014, MARIT FISKAAEN 2 INNLEDNING TEMA I SAS Enterprise Guide versjon 5.1 (februar 2012) kom det et nytt datautforskingsverktøy,

Detaljer

TDT4110 Informasjonsteknologi, grunnkurs Uke 35 Introduksjon til programmering i Python

TDT4110 Informasjonsteknologi, grunnkurs Uke 35 Introduksjon til programmering i Python TDT4110 Informasjonsteknologi, grunnkurs Uke 35 Introduksjon til programmering i Python Professor Guttorm Sindre Institutt for datateknikk og informasjonsvitenskap Læringsmål og pensum Mål Vite hva et

Detaljer

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger Intro til hypotesetesting Analyse av kontinuerlige data 21. april 2005 Tron Anders Moger Seksjon for medisinsk statistikk, UIO 1 Repetisjon fra i går: Normalfordelingen Variasjon i målinger kan ofte beskrives

Detaljer

STK1000 Obligatorisk oppgave 2 av 2

STK1000 Obligatorisk oppgave 2 av 2 STK1000 Obligatorisk oppgave 2 av 2 Innleveringsfrist Torsdag 16. november 2017, klokken 14:30 i Devilry (https://devilry.ifi.uio.no). Instruksjoner Du velger selv om du skriver besvarelsen for hånd og

Detaljer

Høgskolen i Gjøviks notatserie, 2001 nr 5

Høgskolen i Gjøviks notatserie, 2001 nr 5 Høgskolen i Gjøviks notatserie, 2001 nr 5 5 Java-applet s for faget Statistikk Tor Slind Avdeling for Teknologi Gjøvik 2001 ISSN 1501-3162 Sammendrag Dette notatet beskriver 5 JAVA-applets som demonstrerer

Detaljer

Medisinsk statistikk Del I høsten 2009:

Medisinsk statistikk Del I høsten 2009: Medisinsk statistikk Del I høsten 2009: Kontinuerlige sannsynlighetsfordelinger Pål Romundstad Beregning av sannsynlighet i en binomisk forsøksrekke generelt Sannsynligheten for at suksess intreffer X

Detaljer

Til bruk i metodeundervisningen ved Høyskolen i Oslo

Til bruk i metodeundervisningen ved Høyskolen i Oslo MINIMANUAL FOR SPSS Til bruk i metodeundervisningen ved Høyskolen i Oslo Denne minimanualen viser hvordan analyser i metodeundervisningen på masternivå (master i sosialt arbeid, master i familiebehandling

Detaljer

Kapittel 1: Data og fordelinger

Kapittel 1: Data og fordelinger STK Innføring i anvendt statistikk Mandag 8. august 8 Ingrid K. lad I løpet av dette kurset skal dere bli fortrolig med statistisk tenkemåte forstå teori og metoder som ligger bak knappene/menyene i vanlige

Detaljer

Sprettende ball Introduksjon Processing PDF

Sprettende ball Introduksjon Processing PDF Sprettende ball Introduksjon Processing PDF Introduksjon: I denne modulen skal vi lære et programmeringsspråk som heter Processing. Det ble laget for å gjøre programmering lett for designere og andre som

Detaljer

Andre obligatoriske oppgave i STK1000 H2016: Innlevering: Besvarelsen leveres på instituttkontoret ved Matematisk institutt i 7.

Andre obligatoriske oppgave i STK1000 H2016: Innlevering: Besvarelsen leveres på instituttkontoret ved Matematisk institutt i 7. Andre obligatoriske oppgave i STK1000 H2016: Oppgavesettet har fire oppgaver. Oppgave 1 består av oppgaver fra boka. Disse ligner på ukesoppgavene for uke 43 og 44, og gir nyttig øvelse for eksamen og

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Microsoft Excel Innhold 1 Om Excel 4 2 Regning 4 2.1 Tallregning................................... 4 2.2

Detaljer

GeoGebraøvelser i geometri

GeoGebraøvelser i geometri GeoGebraøvelser i geometri av Peer Andersen Peer Andersen 2014 Innhold Innledning... 3 Øvelse 1. Figurer i GeoGebra... 4 Øvelse 2. Noen funksjoner i GeoGebra... 8 Øvelse 3. Omskrevet sirkelen til en trekant...

Detaljer

Tabell 1: Beskrivende statistikker for dataene

Tabell 1: Beskrivende statistikker for dataene Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7, blokk II Løsningsskisse Oppgave 1 a) Utfør en beskrivende analyse av datasettet % Data for Trondheim: TRD_mean=mean(TRD);

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 9 Løsningsskisse Oppgave 1 a) Vi lar her Y være antall fugler som kolliderer med vindmølla i løpet av den gitte

Detaljer

MA155 Statistikk TI-nspire cx Kalkulator Guide

MA155 Statistikk TI-nspire cx Kalkulator Guide MA155 Statistikk TI-nspire cx Kalkulator Guide Magnus T. Ekløff, Kristoffer S. Tronstad, Henrik G. Fauske, Omer A. Zec Våren 2016 1 Innhold 1 Basics... 4 2 1.1 Dokumenter... 4 1.1.1 Regneark... 4 1.1.2

Detaljer

Hjemmeeksamen 2 i INF3110/4110

Hjemmeeksamen 2 i INF3110/4110 Hjemmeeksamen 2 i INF3110/4110 Innleveringsfrist: onsdag 19. november kl. 1400 Innlevering Besvarelsen av oppgave 2,3,4 og 5 skal leveres skriftlig på papir i IFI-ekspedisjonen. Merk denne med navn, kurskode,

Detaljer

TMA4245 Statistikk Høst 2016

TMA4245 Statistikk Høst 2016 TMA5 Statistikk Høst 6 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving Løsningsskisse Oppgave a) Den tilfeldige variabelen X er kontinuerlig fordelt med sannsynlighetstetthet

Detaljer

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Bokmål Faglig kontakt under eksamen: Bo Lindqvist, tlf. 97589418 EKSAMEN ST00 STATISTIKK FOR SAMFUNNSVITERE Torsdag

Detaljer

Inferens i fordelinger

Inferens i fordelinger Inferens i fordelinger Modifiserer antagelsen om at standardavviket i populasjonen σ er kjent Mer kompleks systematisk del ( her forventningen i populasjonen). Skal se på en situasjon der populasjonsfordelingen

Detaljer

Oppgaver til Studentveiledning I MET 3431 Statistikk

Oppgaver til Studentveiledning I MET 3431 Statistikk Oppgaver til Studentveiledning I MET 3431 Statistikk 20. mars 2012 kl 17.15-20.15 i B2 Handelshøyskolen BI 2 Oppgaver 1. Konfidensintervaller Vi ser på inntekten til en tilfeldig valgt person (i tusen

Detaljer

Eksamensoppgave i TMA4255 Anvendt statistikk

Eksamensoppgave i TMA4255 Anvendt statistikk Institutt for matematiske fag Eksamensoppgave i TMA4255 Anvendt statistikk Faglig kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: August 2016 Eksamenstid (fra til): Hjelpemiddelkode/Tillatte

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON2130 - Statistikk 1 Eksamensdag: 19.06.2014 Tid for eksamen: kl. 09:00 12:00 Oppgavesettet er på 4 sider UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Tillatte hjelpemidler: Alle trykte

Detaljer

Et lite oppdrag i bakgrunnen

Et lite oppdrag i bakgrunnen Et lite oppdrag i bakgrunnen Under pultene på bakerste rad er det klistret post-it lapper med to tall skrevet på Regn ut summen av to nederste tall, skriv denne summen under de andre tallene, og send lappen

Detaljer

Eksamensoppgave i TMA4275 Levetidsanalyse

Eksamensoppgave i TMA4275 Levetidsanalyse Institutt for matematiske fag Eksamensoppgave i TMA4275 Levetidsanalyse Faglig kontakt under eksamen: Bo Lindqvist Tlf: 975 89 418 Eksamensdato: Lørdag 31. mai 2014 Eksamenstid (fra til): 09:00-13:00 Hjelpemiddelkode/Tillatte

Detaljer

INSTALLASJONSVEILEDNING OPPDATERING TIL VERSJON Mamut datax Software DETALJERT STEG-FOR-STEG VEILEDNING FOR HVORDAN

INSTALLASJONSVEILEDNING OPPDATERING TIL VERSJON Mamut datax Software DETALJERT STEG-FOR-STEG VEILEDNING FOR HVORDAN Mamut datax Software INSTALLASJONSVEILEDNING OPPDATERING TIL VERSJON 4.1.1300 DETALJERT STEG-FOR-STEG VEILEDNING FOR HVORDAN OPPDATERE DIN VERSJON AV MAMUT DATAX SOFTWARE Mamut Kunnskapsserie, nr. 2-2004

Detaljer

Texas Instruments TI-84

Texas Instruments TI-84 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Texas Instruments TI-84 Innhold 1 Om lommeregneren 4 2 Regning 4 2.1 Tallregning...................................

Detaljer

TMA4245 Statistikk. Innlevering 3. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

TMA4245 Statistikk. Innlevering 3. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Vår 2017 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 3 Dette er den første av to innleveringer i blokk 2 Denne øvingen skal oppsummere pensum

Detaljer

1 Grafisk framstilling av datamateriale

1 Grafisk framstilling av datamateriale 1 Grafisk framstilling av datamateriale Dette notatet er laget med tanke på åfå til en rask gjennomgang av denne delen av pensum. Determentforå ha nedskrevet det som forholdsvis rakt blir sagt i forelesning,

Detaljer

Løsningsforslag til obligatorisk oppgave i ECON2130 våren 2014 av Jonas Schenkel.

Løsningsforslag til obligatorisk oppgave i ECON2130 våren 2014 av Jonas Schenkel. Løsningsforslag til obligatorisk oppgave i ECON2130 våren 2014 av Jonas Schenkel. Det er i flere av oppgavene flere fremgangsmåter. Om din måte var riktig burde komme frem i rettingen. A Både X og Y tilfredsstiller

Detaljer

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

8 Likninger med to ukjente rette linjer

8 Likninger med to ukjente rette linjer 8 Likninger med to ukjente rette linjer 8. Likninger med to ukjente Per vil teste kameratens matematiske kunnskaper. Han forteller at han har ni mnter med en samlet verdi på 40 kroner i lommeboken sin.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 7. oktober 2009. Tid for eksamen: 15:00 17:00. Oppgavesettet er på

Detaljer

INF109 - Uke 1a

INF109 - Uke 1a INF109 - Uke 1a 19.01.16 NOTE: Download the latest version of python: 3.5.1. 1 Introduksjon 1.1 Goodbye world! For å komme i gang, start IDLE fra Start Programs Python3.5.1 IDLE. (Varierer litt fra datamaskin

Detaljer

INTRODUKSJON TIL MAPLE

INTRODUKSJON TIL MAPLE INTRODUKSJON TIL MAPLE Trygve Eftestøl Rev. 15.07.2004, Tom Ryen BID140 Datateknikk, høsten 2004 Høgskolen i Stavanger, Teknisk- og naturvitenskaplig fakultet Innledning Maple er et verktøy for matematiske

Detaljer

Tegnbaserte skjermer via Telnet

Tegnbaserte skjermer via Telnet Tegnbaserte skjermer via Telnet Brukerhåndbok Oppdatert: 2004-12-28 2004-12-28: Nye skjermbilder og små justeringer. Dette dokumentet har tidligere vært navngitt som: "BIBSYS-grensesnittet: Tegnbaserte

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Microsoft Excel Innhold 1 Om Excel 4 2 Regning 4 2.1 Tallregning................................... 4 2.2

Detaljer

ECON2130 Kommentarer til oblig

ECON2130 Kommentarer til oblig ECON2130 Kommentarer til oblig Her har jeg skrevet ganske utfyllende kommentarer til en del oppgaver som mange slet med. Har noen steder gått en del utover det som det strengt tatt ble spurt om i oppgaven,

Detaljer

år i 1 2 3 4 5 6 7 8 9 alder x i 37 38 39 40 41 42 43 44 45 tid y i 45.54 41.38 42.50 38.80 41.26 37.20 38.19 38.05 37.45 i=1 (x i x) 2 = 60, 9

år i 1 2 3 4 5 6 7 8 9 alder x i 37 38 39 40 41 42 43 44 45 tid y i 45.54 41.38 42.50 38.80 41.26 37.20 38.19 38.05 37.45 i=1 (x i x) 2 = 60, 9 TMA424 Statistikk Vår 214 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 11, blokk II Oppgave 1 Matlabkoden linearreg.m, tilgjengelig fra emnets hjemmeside, utfører

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806

Detaljer

BEGYNNERKURS I SPSS. Anne Schad Bergsaker 24. november 2017

BEGYNNERKURS I SPSS. Anne Schad Bergsaker 24. november 2017 BEGYNNERKURS I SPSS Anne Schad Bergsaker 24. november 2017 FORRIGE UKE Blitt kjent med de ulike vinduene i SPSS Skrive inn data Import av datafiler Sette samme og dele opp filer og datasett Velge/velge

Detaljer

Hvordan lage en PDF. 1. CutePDF og tilleggsprogrammet lastes ned fra følgende side: http://www.cutepdf.com/products/cutepdf/writer.

Hvordan lage en PDF. 1. CutePDF og tilleggsprogrammet lastes ned fra følgende side: http://www.cutepdf.com/products/cutepdf/writer. Hvordan lage en PDF Alle mastergradsoppgaver skal nå innleveres elektronisk gjennom Munin på internett (http://www.ub.uit.no/munin/ ). Før den kan leveres inn gjennom Munin, må dokumentet konverteres til

Detaljer

ITGK - H2010, Matlab. Repetisjon

ITGK - H2010, Matlab. Repetisjon 1 ITGK - H2010, Matlab Repetisjon 2 Variabler og tabeller Variabler brukes til å ta vare på/lagre resultater Datamaskinen setter av plass i minne for hver variabel En flyttallsvariabel tar 8 bytes i minne

Detaljer

INSTALLASJONSVEILEDNING OPPDATERING TIL VERSJON 5. Mamut Installasjonsveiledning DETALJERT STEG-FOR-STEG VEILEDNING I HVORDAN

INSTALLASJONSVEILEDNING OPPDATERING TIL VERSJON 5. Mamut Installasjonsveiledning DETALJERT STEG-FOR-STEG VEILEDNING I HVORDAN Mamut Installasjonsveiledning INSTALLASJONSVEILEDNING OPPDATERING TIL VERSJON 5 DETALJERT STEG-FOR-STEG VEILEDNING I HVORDAN OPPDATERE DITT DATAX-PROGRAM Mamut Kunnskapsserie, nr. 9-2005 2 SJEKKLISTE SJEKKLISTE

Detaljer

Brukerveiledning for ArkN4

Brukerveiledning for ArkN4 Brukerveiledning for ArkN4 Brukerveiledningen er delt inn i 3 deler: 1. Konfigurasjon av ArkN4 2. Kjøre ArkN4 3. Opprette ny database Eksemplene i dette kapitlet viser hvordan man velger de forskjellige

Detaljer

Shellscripting I. Innhold

Shellscripting I. Innhold Avdeling for informatikk og e-læring, Høgskolen i Sør-Trøndelag Shellscripting I Tor Halsan 19.08.2010 Lærestoffet er utviklet for faget LN199D Scripting av Servere Resymé: Leksjonen er første innføring

Detaljer

Introduksjon. Viktige begreper for å beskrive data: Enheter som er objektene i datasettet. «label» som av og til brukes for å skille enhetene

Introduksjon. Viktige begreper for å beskrive data: Enheter som er objektene i datasettet. «label» som av og til brukes for å skille enhetene Introduksjon Viktige begreper for å beskrive data: Enheter som er objektene i datasettet «label» som av og til brukes for å skille enhetene En variabel er en karakteristikk av hver enhet Variablene angis

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1120 Statistiske metoder og dataanalyse 2. Eksamensdag: Mandag 30. mai 2005. Tid for eksamen: 14.30 17.30. Oppgavesettet er

Detaljer

Fig1. Den konvekse innhyllinga av 100 tilfeldige punkter i planet (de samme som nyttes i oppgaven.)

Fig1. Den konvekse innhyllinga av 100 tilfeldige punkter i planet (de samme som nyttes i oppgaven.) Oblig3 i INF2440 våren 2015-ver3. Den konvekse innhyllinga til en punktmengde - et rekursivt geometrisk problem. Innleveringsfrist fredag 27. mars kl. 23.59 En punktmengde P i planet består av n forskjellige

Detaljer

Kom forberedt til tirsdag. INF1000 Tips til obligatorisk oppgave 4. Noen generelle tips. Oblig4: Komme igang

Kom forberedt til tirsdag. INF1000 Tips til obligatorisk oppgave 4. Noen generelle tips. Oblig4: Komme igang Kom forberedt til tirsdag INF1000 Tips til obligatorisk oppgave 4 Kikk på prøveeksamen fra 2004 http://www.uio.no/studier/emner/matnat/ifi/inf1000/h 07/undervisningsmateriale/proveeksamen-H2004.pdf Tittel:

Detaljer

TMA4105 Matematikk 2 Vår 2008

TMA4105 Matematikk 2 Vår 2008 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4105 Matematikk 2 Vår 2008 Øving 1 Navn/kursparallell skrives her (ved gruppearbeid er det viktig at alle fyller ut): 1.

Detaljer

Gruvedrift. Institutt for matematiske fag, NTNU. Notat for TMA4240/TMA4245 Statistikk

Gruvedrift. Institutt for matematiske fag, NTNU. Notat for TMA4240/TMA4245 Statistikk Gruvedrift Notat for TMA/TMA Statistikk Institutt for matematiske fag, NTNU I forbindelse med planlegging av gruvedrift i et område er det mange hensyn som må tas når en skal vurdere om prosjektet er lønnsomt.

Detaljer

Betinget eksekvering og logiske tester i shell

Betinget eksekvering og logiske tester i shell Betinget eksekvering og logiske tester i shell Betinget eksekvering *? Programmet utfører operasjon(er) bare hvis en logisk betingelse er sann Bash tilbyr to kontrollstrukturer for å kunne gjøre betinget

Detaljer

EGENDEFINERTE FUNKSJONER I SAS OG LITT OM OPEN SOURCE INTEGRASJON SAS FANS I STAVANGER 21.10.2015, MARIT FISKAAEN (SAS INSTITUTE)

EGENDEFINERTE FUNKSJONER I SAS OG LITT OM OPEN SOURCE INTEGRASJON SAS FANS I STAVANGER 21.10.2015, MARIT FISKAAEN (SAS INSTITUTE) EGENDEFINERTE FUNKSJONER I SAS OG LITT OM OPEN SOURCE INTEGRASJON SAS FANS I STAVANGER 21.10.2015, MARIT FISKAAEN (SAS INSTITUTE) EGENDEFINERTE FUNKSJONER INNLEDNING 2 På FANS 4. mars 2015 ble det vist

Detaljer

Fagplan i matematikk for 9. trinn 2014/15. Faglærer: Terje Tønnessen

Fagplan i matematikk for 9. trinn 2014/15. Faglærer: Terje Tønnessen Fagplan i matematikk for 9. trinn 2014/15. Faglærer: Terje Tønnessen Standarder (gjennom hele semesteret) : - Å kunne uttrykke seg muntlig. Å forstå og kunne bruke det matematiske språket, implementeres

Detaljer

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.20).

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.20). Econ 130 HG mars 017 Supplement til forelesningen 7. februar Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.0). Regel 5.19 sier at summer, Y X1 X X

Detaljer