Solur. Sola, dagen og året

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Solur. Sola, dagen og året"

Transkript

1 Solur Sola, dagen og året

2 Innhold Grunnleggende astronomi Hva er et solur? Lage solur Bruke solur Solurprosjekter fra Fjell skole

3 Solur i skolen 2. årstrinn: observere solas bevegelse 7. årstrinn: forklare solas bevegelse Vgs: bruke trigonometriske funksjoner

4 Innledende aktivitet Du trenger 1 A4 ark 1 A5 ark Transportør Linjal Blyant/penn Saks Lim

5 Dette gjør du Legg arket på siden (landskapsformat) Skriv en N øverst midt på arket, dette er nord. Tegn en linje fra N-en parallelt med kortsidene Tegn linjer på A4 arket som vist på figuren, med vinkler fra tabellen Lag en rettvinklet trekant av A5 arket slik at en av vinklene er 60 grader Lag to støtter (rektangler som brettes) av resten av A5 arket Fest trekanten vinkelrett på A4 arket slik at 60 vinkelen er mot midten der alle linjene krysser, og 90 vinkelen er på linja mot nord. 60 N Fra tabellen Vinkler

6 Hva er et solur? Viser som kaster skygge Urskive med markering for avlesing av tiden

7 Solur i Norge I dag Noen offentlige solur Hageornamenter Tidligere Markering i vinduskarm Navn i landskapet I hagen/på bygg Reisesolur Middagsfjellet Nonsskaret Kan lage solur som virker 24 timer (nord i landet)

8 Grunnleggende astronomi

9 Holdepunkter på himmelkula Trenger dette når vi skal lage solur

10 Koordinater i horisontsystemet Vertikalsirkel - sirkel gjennom objektet og senit Altitude - høyde over horisonten N S Asimut - vinkelbue av horisont mellom sør nord og og vertikalsirkel

11 Koordinater i ekvatorsystemet Deklinasjonssirkel - sirkel gjennom objektet og polpunktet Deklinasjon - høyde i forhold til ekvator N Timevinkel - bue av ekvator mellom meridianen og deklinasjonssirkelen (endres gj. døgnet) Rektascensjon -bue av ekvator mellom vårjevndøgnspunktet og deklinasjonssirkelen (konstant)

12 Bevegelser på himmelkula

13 Stjernenes bevegelse Jordas østlige rotasjon N Ø V S - gir stjernene en vestlig bevegelse over himmelen, parallelt med himmelekvator

14 Stjernene i Tromsø Polpunkt Ø N S V

15 Solgangsdemodingser Du trenger Mønster for solgangsdemodingser Saks Kulepenn Linjal Splittbinders 2 binders Tape Lim N

16 Hvor står sola opp? Ø N S V I Tromsø: Hvor som helst på den østlige halvdelen av horisonten

17 I Bergen Ø N S V Mellom 53 nord og sør for øst.

18 Soloppgangen sett fra Ekvator Ø N S V

19 Solas bevegelse Som stjernene, men med varierende høyde i løpet av året Ø N S V

20 Sola i Tromsø Ø N S V

21 Når står sola i øst? Til litt forskjellige tider på morgenen, avhengig av tiden på året.

22 Ett problem for solurmakere Skyggen av en loddrett viser har ulik retning ved samme klokkeslett til ulike tider på året.

23 Trondheim

24 Ett problem for solurmakere Løsning: Viser parallell med jordaksen

25 Oppsummering

26 Solas koordinater Solas deklinasjon Høyde i forhold til himmelekvator Endres fra 23,5 ved sommersolverv til 23,5 ved vintersolverv Solas timevinkel Vinkel i forhold til meridianen, målt i timer parallelt med himmelekvator Tida fra sist den stod i sør 24t = 360

27 Solas koordinater Solas altitude Høyden i forhold til horisonten Solas asimut Vinkel i forhold til meridianen målt parallelt med horisonten

28 Oppsetting av solur Må vite hvor nord, sør, øst og vest er.

29 Hvordan finne sør/nord?

30 Metode 1 Pinne loddrett i bakken Merk av skyggen gjennom en periode rundt middag (eks kl Når er skyggen kortest? Hvilken vei går den da? N

31 Metode 2 Pinne loddrett i bakken, konsentriske sirkler rundt Merk av skyggen gjennom en periode rundt middag (eks kl 10-14) Finn midtpunktet mellom skjæringene med en sirkel Gjenta for flere sirkler N

32 Metode 3 og 4 Finn ut når sola står i sør fra Almanakk for Norge eller tilsvarende, og merk av sør ved dette tidspunktet (eller still inn soluret etter dette). Bruk kompass og magnetisk feilvisning for stedet. NB! Pass på om det er metallobjekter, generatorer eller strømledninger i nærheten

33 Solur

34 Enkleste type solur Ekvatorialt solur Viser parallell med jordaksen Urskive parallell med himmelekvator Timemarkering hver 15 Leser av på oversiden på sommeren, undersiden på vinteren.

35 Enkleste type solur N 12 Polpunktet 9 15 V 6 18 Ø Breddegrad 24 Horisontale og vertikale solur avledes av ekvatorialt solur.

36 Lage ekvatorialt solur Du trenger Mønster for ekvatorialt solur Saks Grillspyd av bambus el Lim

37 Armillarisk solur Solur av ringer Variant av ekvatorialt solur Typisk som hageornament

38 Vigelandsparken

39 Frogner hovedgård

40 Fjell skole

41 Lage armillarisk solur Du trenger Mønster fra Sola vår egen stjerne Saks Tråd

42 Horisontalt solur Viser parallell med jordaksen Horisontal urskive Timemarkering med variabel vinkelavstand.

43 Viser på horisontalt solur φ = stedets breddegrad 60,5 for Bergen N φ

44 Viser på horisontalt solur N

45 Timemarkeringer på horisontalt solur N

46 Timemarkeringer på horisontalt solur Projiserer ekvatoriell urskive ned på horisonten, parallelt med jordaksen Mot polpunktet N

47 Timemarkeringer på horisontalt solur Ekvatorial urskive Mot polpunktet b a φ Ekvatorial urskive Horisontal urskive b a H c α Horisontal urskive tanα = sinφ tan H

48 Timemarkeringer på horisontalt solur Breddegrad: 60 9 N Timevinkel Klokkeslett Timelinjevinkel α φ H α 18 vinkel mellom middagslinja og timelinja for aktuelt klokkeslett stedets breddegrad solas timevinkel for aktuelt klokkeslett (heltall ganger 15 for hele timer)

49 Longyearbyen og Hornsund

50 Andøya

51 Lage ettarkssolur Du trenger: Mønster for ettarkssolur for 60 N Saks Tape Lim

52 En annen type enkelt solur Polart solur Polpunktet Polpunktet Breddegrad h Η l l = h tan H

53 Polart solur Du trenger Mønster for polart solur A4 ark som underlag til soluret Saks Lim

54 Solur og tid Når står sola i sør? Tall for Tromsø fra Almanakk for Norge, omgjort fra sommertid til normaltid i perioden mars-oktober Ett problem til for solurmakere

55 Solas gang over himmelen Vestlig og østlig bevegelse

56 Solas vestlige bevegelse N Jorda roterer rundt en akse som går fra pol til pol Ø N S Dette gir sola en tilsynelatende vestlig bevegelse over himmelen V

57 Solas østlige bevegelse Jordas bevegelse i banen rundt sola N Ø S - gir sola en tilsynelatende østlig bevegelse over himmelen V

58 Jordaksens helling Jordaksens helling gjør at solas årlige østlige bevegelse ikke er like stor hele N året. Sommersolverv Ekliptikken Vårjevndøgn Ekvator

59 Jordbanens elliptiske form Jorda beveger seg raskest i banen når den er nær sola, rundt 4. januar, og langsomst når den er lengst fra sola, rundt 5. juli, noe som gjør at solas østlige bevegelse ikke er konstant jan juli

60 Tidsjevninga Solur senere enn middelsoltid, legg tiden til solurtiden Minutter 5 Jordaksens helling 0 Jordbanen Solur raskere enn middelsoltid, trekk tiden fra solurtiden Tidsjevninga (Equation of time) = middelsoltid - sann soltid

61 Løsning på tidsproblemet Tabell eller graf med tidsjevninga 21-2,2-14,3-15,2-6,7 3,2 6,3 21 1,5-3,5-1,2 7,4 13,7 11, ,7-14,5-15,1-6,4 3,5 6,2 20 1,3-3,6-0,9 7,7 13,8 10, ,2-14,7-14,9-6 3,7 6,2 19 1,1-3,6-0,7 8 13,9 10, ,6-14,9-14,7-5,5 3,9 6,1 18 0,9-3,7-0,5 8, , ,1-15,1-14,5-5,3 4, ,7-3,7-0,2 8,6 14,1 9, ,6-15,3-14,3-5 4,3 5,9 16 0,4-3,7-0,1 8,9 14,2 9, ,1-15,5-14,1-4,6 4,5 5,8 15 0,2-3,7 0,2 9,1 14,2 9, ,6-15,6-13,8-4,2 4,7 5, ,7 0,4 9,4 14,3 8, ,1-15,8-13,6-3,9 4,9 5,6 13-0,2-3,7 0,7 9,7 14,3 8, ,5-15,9-13,4-3,5 5,1 5,4 12-0,4-3,7 0, ,3 8, ,1-3,2 5,2 5,3 11-0,6-3,7 1,2 10,2 14,3 7, ,5-16,1-12,8-2,8 5,4 5,2 10-0,8-3,6 1,5 10,5 14,3 7, ,9-16,2-12,6-2,5 5, ,6 1,8 10,7 14,3 6, ,3-16,3-12,3-2,1 5,7 4,9 8-1,2-3,5 2, ,2 6, ,8-16, ,8 5,8 4,7 7-1,3-3,4 2,3 11,2 14,2 6, ,2-16,3-11,7-1,5 5,9 4,6 6-1,5-3,4 2,6 11,5 14,1 5, ,6-16,4-11,4-1,1 6 4,4 5-1,7-3,3 2,9 11,7 14 5, ,4-11,1-0,7 6,1 4,2 4-1,9-3,25 3,2 11,9 13,9 4, ,4-16,4-10,8-0,5 6, ,15 3,5 12,1 13,8 4, ,8-16,4-10,4-0,1 6,2 3,8 2-2,2-3 3,8 12,3 13,7 3, ,2-16,3-10,1 0,2 6,3 3,6 1-2,3-2,9 4,1 12,5 13,6 3,4 1 dag desember novenber oktober september august juli dag juni mai april mars februar januar dag Middelsoltid = Solurtid + tidsjevnning Tidsjevning i minutter

62 Fra solurtid til normaltid Middelsoltid = sann soltid + tidsjevning Normaltid = middelsoltid + justering for lengdegrad Sommertid: legg til en time

63 Når står sola i sør? Oslo: Trondheim: Tromsø: Fra Almanakk for Norge, Hver by, sin lokale sann soltid

64 Justering for lengdegrad Sola står i sør til ulike tider for steder i samme tidssone med ulik lengdegrad 1 = 4 minutter Utgangspunkt for norsk normaltid: 15 øst Øst for dette: legg til Vest for dette: trekk fra Tromsø:18 57' øst, legg til 16 min Bergen: 5 19 øst, trekk fra 39 min

65 Ett eksempel 24. oktober viser et solur i Bergen viser Tidsjevning 24. oktober: -15,7 min Middelsoltid: Lengdegrad: min Normaltid: Sommertid (tom ) : +1 time Klokketid: 13.51

66 Vertikale solur Ekvatorialt solur projisert på en vertikal flate Sydvendt enkel matematikk Skråstilt ikke riktig så enkelt

67 Timemarkeringer på vertikalt sydvendt solur Projiserer ekvatoriell urskive bort på veggen, parallelt med jordaksen Mot polpunktet N

68 Timemarkeringer på vertikalt sydvendt solur Mot polpunktet Vertikal urskive Vertikal urskive b φ a φ Ekvatorial urskive a b α c Η Ekvatorial urskive tanα = cosφ tan H

69 Timemarkeringer på vertikalt solur Breddegrad: 60 Timevinkel Klokkeslett Timelinjevinkel α φ H α vinkel mellom middagslinja og timelinja for aktuelt klokkeslett stedets breddegrad solas timevinkel for aktuelt klokkeslett (heltall ganger 15 forhele timer)

70 Fjell skole, Bergen

71 Sofus Lie auditorium på Blindern

72 Tjølling Kirke, Vestfold

73 Christi Krybbe skoler, Bergen

74 Sverres borg, Trondheim

75 Bærbare solur Ulike typer Sylindersolur (gjetersolur) Foldesolur

76 Sylindersolur (gjetersolur)

77 Lage foldesolur Du trenger Mønster for foldesolur Saks Tape Nål Tråd Liten perle Lim

78 Deklinasjonskurver Vintersolverv Jevndøgn Sommersolverv

79 Deklinasjonskurver Viser lengden av viserens skygge på bestemte dager Er avhengig av solas høyde over horisonten N N V a l L h l' α h' Ø L l A l' A α L = h sin A tan a sin α

80 Skal finne solas høyde Må bruke sfærisk trigonometri

81 Trigonometri Læren om trekanter Forbindes ofte de trigonometriske funksjonene med sinus, kosinus og tangens, og med regler som omfatter regning med disse. Sfærisk trigonometri: når trekantene befinner seg på en kule.

82 Sfærisk trigonometri Avstand måles i grader Summen av vinklene i en trekant er større enn 180

83 Himmelkula Polpunktet Senit φ H 90 -φ 180 -A 90 -δ 90 -a N a δ H A φ stedets breddegrad δ solas deklinasjon A solas asimut a solas altitude H solas timevinkel

84 Sfærisk trigonometri Cosinussetninga brukt på trekanten cos 90 a = ( ) cos ( 90 φ ) cos( 90 δ ) + sin( 90 φ ) sin( 90 δ ) cos H Bruker vanlige trigonometriske regneregler og får sin a = sinφ sin δ + cosφ cosδ cos H

85 Skal finne solas asimut Bruker sinussetninga for sfærisk trigonometri og får sin sin H sin = sin 90 ( 180 A) ( 90 a) ( δ ) Bruker vanlige trigonometriske regneregler og får sin A = sin H cos a cosδ

86 Lengden på skyggen Målt fra fotpunktet til horisontal viser er skyggens lengde L = (sin φ tan δ + h sin H cosφ cos H ) sin α

87 Solnedgang Kan også bruke høydeformelen til å finne ut når sola går ned: sin a = a = 0 sinφ sin δ + cos H = tanφ tan δ cosφ cosδ cos H

88 The Sundial Primer Nettside med 13 solur man kan lage selv (engelsk)

89 Mer om solur: Solursida:

90 Solurprosjekter fra Fjell skole

Solur har ord på seg å være unøyaktige,

Solur har ord på seg å være unøyaktige, I samverkan mellan Nämnaren och Tangenten ANNE BRUVOLD Lag et solur som virker Hur man bygger ett solur som visar korrekt tid är inte självklart. I artikeln kan man läsa om olika typer av solur, från de

Detaljer

Artikkel 7: Navigering til sjøs uten GPS

Artikkel 7: Navigering til sjøs uten GPS Artikkel 7: Navigering til sjøs uten GPS Hvordan kan navigatøren bestemme posisjonen uten GPS? I 1714 utlovet Det engelske parlament 20000 pund (en formidabel sum den gangen) som belønning for den som

Detaljer

Leksjon 5: Himmelens koordinater

Leksjon 5: Himmelens koordinater Leksjon 5: Himmelens koordinater 1.1 Montering av UiA teleskopet Bildet viser den nye ekvatoriale pilaren. Den er festet midlertidig på et horisontalt fundament med en bolt (til høyre) og en "bordklemme"

Detaljer

Litt av matematikken bak solur

Litt av matematikken bak solur Anne Bruvold Revidert oktoer 003 Bkgrunn Min interesse for solur le vekket d jeg i 000 skulle holde et lite foredrg om kjeglesnitt og under foreredelsen v dette kom over rtikler som kolet kjeglesnitt med

Detaljer

Litt av matematikken bak solur

Litt av matematikken bak solur Anne Bruvold Revidert mrs 005 Bkgrunn Min interesse for solur le vekket d jeg i 000 skulle holde et lite foredrg om kjeglesnitt og under foreredelsen v dette kom over rtikler som kolet kjeglesnitt med

Detaljer

Trigonometriske funksjoner (notat til MA0003)

Trigonometriske funksjoner (notat til MA0003) Trigonometriske funksjoner (notat til MA0003) 0. mars 2005 Radianer Gitt et punkt A på en sirkel med radius og sentrum O. La punktet P v flytte seg fra punktet A slik at det beveger seg langs en sirkelbue

Detaljer

ESERO AKTIVITET HVILKEN EFFEKT HAR SOLEN? Lærerveiledning og elevaktivitet. Klassetrinn 7-8

ESERO AKTIVITET HVILKEN EFFEKT HAR SOLEN? Lærerveiledning og elevaktivitet. Klassetrinn 7-8 ESERO AKTIVITET Klassetrinn 7-8 Lærerveiledning og elevaktivitet Oversikt Tid Læremål Nødvendige materialer 50 min. lære at Solen dreier seg rundt sin egen akse fra vest til øst (mot urviserne) oppdage

Detaljer

Kan en over 2000 år gammel metode gi gode mål for jordens omkrets?

Kan en over 2000 år gammel metode gi gode mål for jordens omkrets? SPISS Naturfaglige artikler av elever i videregående opplæring Kan en over 2000 år gammel metode gi gode mål for jordens omkrets? Forfatter: Martin Kjøllesdal Johnsrud, Bø Videregåande Skule Det er i dag

Detaljer

En kosmisk reise Forelesning 2. Om stjernehimmelen, koordinatsystemer og astronomi i antikken

En kosmisk reise Forelesning 2. Om stjernehimmelen, koordinatsystemer og astronomi i antikken En kosmisk reise Forelesning 2 Om stjernehimmelen, koordinatsystemer og astronomi i antikken De viktigste punktene i dag: Hvordan angi posisjon på himmelen Hvordan stjernehimmelen forandrer seg gjennom

Detaljer

Matematikk og kart et undervisningsopplegg for ungdomstrinnet og videregående skole

Matematikk og kart et undervisningsopplegg for ungdomstrinnet og videregående skole Helge Jellestad, Laksevåg videregående skole Matematikk og kart et undervisningsopplegg for ungdomstrinnet og videregående skole Kart er en grei tilnærming til trigonometri. Avstanden mellom koordinatene

Detaljer

De vik;gste punktene i dag:

De vik;gste punktene i dag: En kosmisk reise Forelesning 2 Om stjernehimmelen, koordinatsystemer og astronomi i an;kken De vik;gste punktene i dag: Hvordan angi posisjon på himmelen Hvordan stjernehimmelen forandrer seg gjennom gjennom

Detaljer

Eksamen i MA-104 Geometri 27. mai 2005

Eksamen i MA-104 Geometri 27. mai 2005 Eksamen i M-0 Geometri 7 mai 00 Oppgave Gitt en firkant med hjørner :(,0), :(7,), :(,) og :(,) enne firkanten er motivet i en symmetrisk figur a) Tegn figuren, når den skal være symmetrisk om origo og

Detaljer

1 Leksjon 2: Sol og måneformørkelse

1 Leksjon 2: Sol og måneformørkelse Innhold 1 LEKSJON 2: SOL OG MÅNEFORMØRKELSE... 1 1.1 SOLFORMØRKELSEN I MANAVGAT I TYRKIA 29. MARS 2006... 1 1.2 DELVIS SOLFORMØRKELSE I KRISTIANSAND 31. MAI 2003... 4 1.3 SOLFORMØRKELSE VED NYMÅNE MÅNEFORMØRKELSE

Detaljer

PARAMETERFRAMSTILLING FOR EN KULEFLATE

PARAMETERFRAMSTILLING FOR EN KULEFLATE 1 PARAMETERFRAMSTILLING FOR EN KULEFLATE Vi har tidligere sett hordan i kan lage en parameterframstilling for et plan ed å uttrykke koordinatene ed to parametere, f. eks s og t. Fra 1.2 et i at x = x0

Detaljer

Eksempel på løsning 2011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 2010 Bokmål

Eksempel på løsning 2011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 2010 Bokmål Eksempel på løsning 011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 010 Bokmål MAT1013 Matematikk 1T, Høst 010 Del 1 Uten hjelpemidler Kun vanlige skrivesaker, passer, linjal med centimetermål

Detaljer

Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Geometri i skolen Geometri etter 4.

Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Geometri i skolen Geometri etter 4. Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI 15-Apr-07 Geometri i skolen dreier seg blant annet om å analysere egenskaper ved to- og tredimensjonale

Detaljer

Beregning av bønnstider

Beregning av bønnstider Beregning av bønnstider GMSN Muslimer utfører fem bønner om dagen. Hver bønn er gitt en bestemt foreskrevet tid der den må utføres. Dette dokumentet beskriver kort disse tider, og forklarer hvordan de

Detaljer

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 3

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 3 Løsning av utvalgte øvingsoppgaver til Sigma R kapittel.a cos + + sin + = cos cos sin sin + sin cos + cos sin = cos sin + sin + cos = cos + = cos = cos b sin + = sin sin sin = sin = sin = sin =,7 =,7 +

Detaljer

Tema: Juleverksted. Aktiviteter: 2 typer julekurv Stjerne. Tidsbruk: 4 timer. Utstyr: Glanspapir Saks Linjal Passer Blyant. Anskaffelse av utstyr:

Tema: Juleverksted. Aktiviteter: 2 typer julekurv Stjerne. Tidsbruk: 4 timer. Utstyr: Glanspapir Saks Linjal Passer Blyant. Anskaffelse av utstyr: Tema: Juleverksted Aktiviteter: 2 typer julekurv Stjerne Tidsbruk: 4 timer Utstyr: Glanspapir Saks Linjal Passer Blyant Anskaffelse av utstyr: Beskrivelse: 1) Julekurver Lag to eksempler på julekurver

Detaljer

Geografisk navigasjon. Lengde- og breddegrader

Geografisk navigasjon. Lengde- og breddegrader Geografisk navigasjon Kartreferanse er en tallangivelse av en geografisk posisjon. Tallene kan legges inn i en datamaskin med digitalt kart, en GPS eller avmerkes på et papirkart. En slik tallmessig beskrivelse

Detaljer

SG: Spinn og fiktive krefter. Oppgaver

SG: Spinn og fiktive krefter. Oppgaver FYS-MEK1110 SG: Spinn og fiktive krefter 04.05.017 Oppgaver 1 GYROSKOP Du studerer bevegelsen til et gyroskop i auditoriet på Blindern og du måler at presesjonsbevegelsen har en vinkelhastighet på ω =

Detaljer

Notat om trigonometriske funksjoner

Notat om trigonometriske funksjoner Notat om trigonometriske funksjoner Dette notatet ble først skrevet for MA000 våren 005 av Ole Jacob Broch. Dette er en noe omarbeidet versjon skrevet høsten 0. Radianer Anta at en vinkel A er gitt, f.eks

Detaljer

Kapittel 20 GEOMETRI. Hvilke figurer har vi her? Kunne bonden brukt en oppdeling med færre figurer?

Kapittel 20 GEOMETRI. Hvilke figurer har vi her? Kunne bonden brukt en oppdeling med færre figurer? Kapittel 0 GEOMETRI Hvilke figurer har vi her? Kunne bonden brukt en oppdeling med færre figurer? Kapittel 0 GEOMETRI Rektangler b Areal = l b l m m = m m = 6 m Kvadrat s Areal = s s = s s m m = m = 9

Detaljer

GEOGEBRA (3.0) til R1-kurset

GEOGEBRA (3.0) til R1-kurset GEOGEBRA (3.0) til R1-kurset INNHOLD Side 1. Konstruksjon 2 1.1 Startvinduet 2 1.2 Markere punkter 3 1.3 Midtpunkt 4 1.4 Linje mellom punkter 5 1.5 Vinkelrett linje 6 1.6 Tegne en mangekant 6 1.7 Høyden

Detaljer

side 1 av 8 Fysikk 3FY (Alf Dypbukt) Rune, Jon Vegard, Øystein, Erlend, Marthe, Hallvard, Anne Berit, Lisbeth

side 1 av 8 Fysikk 3FY (Alf Dypbukt) Rune, Jon Vegard, Øystein, Erlend, Marthe, Hallvard, Anne Berit, Lisbeth side 1 av 8 Fysikk 3FY (Alf Dypbukt) Racerbilkjøring Mål: Regne ut alt vi kan ut i fra de målingene vi tar. Innledning: I denne rapporten har vi gjort diverse utregninger, basert på tall vi har fra et

Detaljer

6: Trigonometri. Formlikhet bør kanskje repeteres. Og Pytagoras læresetning. Se nettsidene! Oppgaver Innhold Dato

6: Trigonometri. Formlikhet bør kanskje repeteres. Og Pytagoras læresetning. Se nettsidene! Oppgaver Innhold Dato Plan for hele året: - Kapittel 7: Mars - Kapittel 8: Mars/april 6: Trigonometri - Repetisjon: April/mai - Økter, prøver, prosjekter: Mai - juni Ordet geometri betyr egentlig jord- (geos) måling (metri).

Detaljer

Jorda bruker omtrent 365 og en kvart dag på en runde rundt sola. Tilsammen blir disse fire fjerdedelene til en hel dag i løpet av 4 år.

Jorda bruker omtrent 365 og en kvart dag på en runde rundt sola. Tilsammen blir disse fire fjerdedelene til en hel dag i løpet av 4 år. "Hvem har rett?" - Jorda og verdensrommet 1. Om skuddår - I løpet av 9 år vil man oppleve 2 skuddårsdager. - I løpet av 7 år vil man oppleve 2 skuddårsdager. - I løpet av 2 år vil man oppleve 2 skuddårsdager.

Detaljer

Navigasjon i åpen sjø, D5LA

Navigasjon i åpen sjø, D5LA Navigasjon i åpen sjø, D5LA En lærebok om hvordan man navigerer når det ikke er land å se til noen kant. Det dekker pensum til sertifikatet D5LA (Fritidsskippersertifikat for ubegrenset fartsområde). Det

Detaljer

TRIGONOMETRI KRISTIN LÅGEIDE OG THEA-KAROLINE NOMERSTAD

TRIGONOMETRI KRISTIN LÅGEIDE OG THEA-KAROLINE NOMERSTAD TRIGONOMETRI KRISTIN LÅGEIDE OG THEA-KAROLINE NOMERSTAD Abstract. Oppgaven tar for seg utvalgte temaer innenfor trigonometri, og retter seg mot lærere som skal undervise i fagene 1T og R2. Date: May 7,

Detaljer

Regneoppgaver i GEOF110 Innføring i atmosfærens og havets dynamikk

Regneoppgaver i GEOF110 Innføring i atmosfærens og havets dynamikk Regneoppgaver i GEOF110 Innføring i atmosfærens og havets dynamikk Dato 17. januar 2014 Oppgavegjennomgang, i hovedsak, fredager kl. 1015-1200 i Auditorium 105 helge.drange@gfi.uib.no 1. Polare koordinater

Detaljer

Eksamen REA3024 Matematikk R2

Eksamen REA3024 Matematikk R2 Eksamen 03.1.009 REA304 Matematikk R Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen:

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

Geometri. Mål. for opplæringen er at eleven skal kunne

Geometri. Mål. for opplæringen er at eleven skal kunne 8 1 Geometri Mål for opplæringen er at eleven skal kunne bruke geometri i planet til å analysere og løse sammensatte teoretiske og praktiske problemer knyttet til lengder, vinkler og areal 1.1 Vinkelsummen

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (13 poeng) a) Skriv på standardform 1) 36 00 000 ) 0,034 10 b) Løs likningen x + 6x = 16 c) Løs ulikheten x x> 0 d) På tallinjen ovenfor har vi merket av 1 punkter. Hvert

Detaljer

Eksamen 25.05.2011. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 25.05.2011. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 25.05.2011 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Eksamen 1T, Våren 2011

Eksamen 1T, Våren 2011 Eksamen 1T, Våren 011 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (13 poeng) a) Skriv på standardform 1) 36 00 000 ) 0,034

Detaljer

AST1010 Eksamensoppgaver

AST1010 Eksamensoppgaver AST1010 Eksamensoppgaver 26. september 2016 Oppgave 1: Koordinatsystem og tall a) Hvor mange buesekunder er det i ett bueminutt, og hvor mange bueminutter er det i én grad? Det er 60 buesekunder i ett

Detaljer

GeoGebraøvelser i geometri

GeoGebraøvelser i geometri GeoGebraøvelser i geometri av Peer Andersen Peer Andersen 2014 Innhold Innledning... 3 Øvelse 1. Figurer i GeoGebra... 4 Øvelse 2. Noen funksjoner i GeoGebra... 8 Øvelse 3. Omskrevet sirkelen til en trekant...

Detaljer

Tegning av tredimensjonale figurer parallell sentral perspektiv Parallell-projeksjoner grunnlinje horisontalprojeksjon vertikalprojeksjon

Tegning av tredimensjonale figurer parallell sentral perspektiv Parallell-projeksjoner grunnlinje horisontalprojeksjon vertikalprojeksjon Tegning av tredimensjonale figurer Å tegne en tredimensjonal figur på et papirark byr på fundamentale prinsipielle problemer: Papiret er todimensjonalt, mens gjenstandene som skal avbildes, er tredimensjonal.

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Trigonometri og geometri

Trigonometri og geometri 6 Trigonometri og geometri 6.1 Sinus til en vinkel Oppgave 6.110 a) Hvilken av disse påstandene er riktig? 1) sin = 3) sin = 2) sin = b) Hvilken av disse påstandene er riktig? b a Oppgave 6.111 ruk lommeregneren

Detaljer

Hvor i all verden? Helge Jellestad

Hvor i all verden? Helge Jellestad Helge Jellestad Hvor i all verden? Vi presenterer her deler av et et undervisningsopplegg for ungdomstrinnet og videregående skole. Hele opplegget kan du lese mer om på www.caspar.no/tangenten/2009/hvor-i-all-verden.pdf.

Detaljer

7. TRINN MATEMATIKK PERIODEPLAN 2, UKE 44 52

7. TRINN MATEMATIKK PERIODEPLAN 2, UKE 44 52 1 7. TRINN MATEMATIKK PERIODEPLAN 2, UKE 44 52 KOMPETANSEMÅL Tall og algebra Mål for opplæringa er at eleven skal kunne: utvikle, og bruke metodar for hovudrekning, overslagsrekning og skriftleg rekning,

Detaljer

Trekanter på geobrettet. - oppgavene er hentet fra ressurspermen til Ingvill M. Stedøys Matematiske koffert

Trekanter på geobrettet. - oppgavene er hentet fra ressurspermen til Ingvill M. Stedøys Matematiske koffert G E O B R E T T Innledende tips- differensiering Når dere jobber med geobrettet kan det være fint å bruke bare en liten del av brettet, for at det ikke skal bli for vanskelig til å begynne med. Sett på

Detaljer

R1 Eksamen høsten 2009 Løsning

R1 Eksamen høsten 2009 Løsning R1 Eksamen, høsten 009 Løsning R1 Eksamen høsten 009 Løsning Del 1 Oppgave 1 3 a) Deriver funksjonen f( x) 5e x f( x) 5e 3 15e 3 x 3x b) Deriver funksjonen gx x 3 ln x x x g( x) 3x ln x x 3 x 3ln 1 3 c)

Detaljer

Kurshefte GeoGebra. Barnetrinnet

Kurshefte GeoGebra. Barnetrinnet Kurshefte GeoGebra Barnetrinnet GeoGebra Geometri og algebra Dynamisk geometriverktøy Algebraisk verktøy Gratis Brukes på alle nivåer i utdanningssystemet Finnes på både bokmål og nynorsk Kan lastes ned

Detaljer

Løsningsforslag heldagsprøve våren 2012 1T

Løsningsforslag heldagsprøve våren 2012 1T Løsningsforslag heldagsprøve våren 01 1T DEL 1 OPPGAVE 1 a1) Skriv så enkelt som mulig x 9 x 6 Vi må faktorisere både teller og nevner. Så kan vi forkorte felles faktorer. Da får vi: x 9 x x 6 a) 4a4 b

Detaljer

Eksamen REA3022 R1, Høsten 2010

Eksamen REA3022 R1, Høsten 2010 Eksamen REA30 R1, Høsten 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (0 poeng) a) Deriver funksjonene 1) f x x e x e x

Detaljer

Løsningsforslag eksamen høsten 2010. DEL 1: Uten hjelpemidler. Oppgave 1

Løsningsforslag eksamen høsten 2010. DEL 1: Uten hjelpemidler. Oppgave 1 Løsningsforslag eksamen høsten 2010 DEL 1: Uten hjelpemidler Oppgave 1 a) Løs likningssystemet y 4 3 y 8 y 4 y 4. Setter inn i den andre likninga: 3 4 8, får 3 y 4 3 1 3 y 1 b) Løs likningen 1 4 2 2 5

Detaljer

Matematikk og fysikk RF3100

Matematikk og fysikk RF3100 DUMMY Matematikk og fysikk RF300 Løsningsforslag 23. januar 205 Tidsfrist: 30.januar 205 Oppgave a) Gjør om til kanoniske polarkoordinater, d.v.s. (r, θ)-koordinater innenfor området r 0 og 80 < θ < 80.

Detaljer

Navigasjon. Koordinater og navigasjon Norsk Folkehjelp Lørenskog Tirsdag 29. januar 2015. Tom Hetty Olsen

Navigasjon. Koordinater og navigasjon Norsk Folkehjelp Lørenskog Tirsdag 29. januar 2015. Tom Hetty Olsen Navigasjon Koordinater og navigasjon Norsk Folkehjelp Lørenskog Tirsdag 29. januar 2015 Tom Hetty Olsen Kartreferanse Kartreferanse er en tallangivelse av en geografisk posisjon. Tallene kan legges inn

Detaljer

Løsning eksamen R1 våren 2008

Løsning eksamen R1 våren 2008 Løsning eksamen R våren 008 Oppgave a) f ( ) ln f ( ) ( ) ln (ln ) ln ln b) c) d) e) ( 4 6) : ( ) 4 6 6 0 64 ( 8) ( 8) 8 8 8 6 lim lim lim 8 8 6 8 ( 8) 8 lg( y ) lg y lg lg lg y lg y lg lg y lg lg y y

Detaljer

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 2 Innleveringsfrist Torsdag 25. oktober 2012 kl. 14:30 Antall oppgaver: 16

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 2 Innleveringsfrist Torsdag 25. oktober 2012 kl. 14:30 Antall oppgaver: 16 Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 2 Innleveringsfrist Torsdag 25. oktober 2012 kl. 14:30 Antall oppgaver: 16 1 Finn volum og overateareal til følgende gurer. Tegn gjerne

Detaljer

36038 GEODESI 2 LØSNINGSFORSLAG, EKSAMEN 10.1.2000, kl 0900 1400

36038 GEODESI 2 LØSNINGSFORSLAG, EKSAMEN 10.1.2000, kl 0900 1400 Geodesi 2-99v 1 INSTITUTT FOR GEOMATIKK NTNU side 1 av 6 36038 GEODESI 2 LØSNINGSFORSLAG, EKSAMEN 10.1.2000, kl 0900 1400 (Det synes som om også dette års oppgaver var mer arbeidskrevende enn tidligere

Detaljer

Norges Informasjonstekonlogiske Høgskole

Norges Informasjonstekonlogiske Høgskole Oppgavesettet består av 10 (ti) sider. Norges Informasjonstekonlogiske Høgskole RF3100 Matematikk og fysikk Side 1 av 10 Tillatte hjelpemidler: Kalkulator, vedlagt formelark Varighet: 3 timer Dato: 11.desember

Detaljer

Løsningsforslag heldagsprøve våren 2010 1T

Løsningsforslag heldagsprøve våren 2010 1T Løsningsforslag heldagsprøve våren 00 T DEL OPPGAVE a) Regn ut x x x x x x x x x x 9x x x x x 6x x x x 6x x 6x b) Løs likninga x x 6 x x 6 x x 6 x x 6 x x x x c) Løs likningssettet ved regning x y x y

Detaljer

SALG > KOSTNAD når mer enn 100 produkt selges. Virksomheten går da med overskudd.

SALG > KOSTNAD når mer enn 100 produkt selges. Virksomheten går da med overskudd. SALG > KOSTNAD y = 20x Salg y = 0 000 Kostnad 20x > 0 000 SALG > KOSTNAD mer enn 00 produkt selges. Virksomheten går da med overskudd. Slik kan ulikheter løses grafisk En ulikhet består av en venstre side,

Detaljer

Kort innføring i kart, kartreferanser og kompass

Kort innføring i kart, kartreferanser og kompass Kort innføring i kart, kartreferanser og kompass UTM Universal Transverse Mercator (UTM) er en måte å projisere jordas horisontale flate over i to dimensjoner. UTM deler jorda inn i 60 belter fra pol til

Detaljer

Løsning, Oppsummering av kapittel 10.

Løsning, Oppsummering av kapittel 10. Ukeoppgaver, uke 36 Matematikk 3, Oppsummering av kapittel. Løsning, Oppsummering av kapittel. Oppgave a) = +, = + z og z =z +. b) f(,, z) = +, + z,z + så (f(, 3, ) = +3, 3+, +3=7, 3, 5 c ) Gradienten

Detaljer

Eksamen 1T våren 2011

Eksamen 1T våren 2011 Eksamen 1T våren 011 Oppgave 1 a) 1) ) 7 6 00 000 =,6 10 0,04 10 =,4 10 4 b) c) x x + 6x= 16 + 6x 16 = 0 6 ± 6 4 1 ( 16) 6 ± 6 + 64 6 ± 100 6 ± 10 x = = = = = ± 5 1 x = 8 eller x = x x xx > 0 ( 1) > 0

Detaljer

Finn volum og overateareal til følgende gurer. Tegn gjerne gurene.

Finn volum og overateareal til følgende gurer. Tegn gjerne gurene. Innlevering FO99A - Matematikk forkurs HIOA Obligatorisk innlevering Innleveringsfrist Fredag oktober 01 kl 1:00 Antall oppgaver: 16 Løsningsforslag 1 Finn volum og overateareal til følgende gurer Tegn

Detaljer

Matematisk julekalender for trinn, 2014

Matematisk julekalender for trinn, 2014 Matematisk julekalender for 8.-10. trinn, 2014 Årets julekalender for 8.-10. trinn består av 9 enkeltstående oppgaver som kan løses uavhengig av hverandre. Alle oppgavene har flere svaralternativer, hvorav

Detaljer

Løsningsforslag uke 42

Løsningsforslag uke 42 Løsningsforslag uke 42 Oppgave 2 (Eksamen 2008). La,, være hjørnene i en trekant i planet, og la de motstående sidene ha lengdene a, b, c. Punktet D på linjen er slik at D står normalt på. La være det

Detaljer

Sammendrag kapittel 9 - Geometri

Sammendrag kapittel 9 - Geometri Sammendrag kapittel 9 - Geometri Absolutt vinkelmål (radianer) Det absolutte vinkelmålet til en vinkel v, er folholdet mellom buelengden b, og radien r. Buelengde v = b r Med v i radianer! b = r v Omregning

Detaljer

Heldagsprøve i matematikk. Svar og løsningsforslag

Heldagsprøve i matematikk. Svar og løsningsforslag Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være

Detaljer

Kul geometri - overflateareal og volum av kuler

Kul geometri - overflateareal og volum av kuler Kul geometri - overflateareal og volum av kuler Helmer Aslaksen Institutt for lærerutdanning og skoleforskning/matematisk institutt Universitetet i Oslo helmer.aslaksen@gmail.com www.math.nus.edu.sg/aslaksen/

Detaljer

Kul geometri - overflateareal og volum av kuler

Kul geometri - overflateareal og volum av kuler Kul geometri - overflateareal og volum av kuler Helmer Aslaksen Institutt for lærerutdanning og skoleforskning/matematisk institutt Universitetet i Oslo helmer.aslaksen@gmail.com www.math.nus.edu.sg/aslaksen/

Detaljer

Trigonometri, regulære mangekanter og stjerner

Trigonometri, regulære mangekanter og stjerner Trigonometri, regulære mangekanter og stjerner Nybegynner Processing Introduksjon Nå som du kan tegne mangekanter (hvis du ikke har gjort leksjonen om mangekanter, bør du gjøre dem først), skal vi se på

Detaljer

Sammendrag R1. Sandnes VGS 19. august 2009

Sammendrag R1. Sandnes VGS 19. august 2009 Sammendrag R1 Sandnes VGS 19. august 2009 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A

Detaljer

Introduksjon til kjeglesnitt. Forfatter: Eduard Ortega

Introduksjon til kjeglesnitt. Forfatter: Eduard Ortega Introduksjon til kjeglesnitt Forfatter: Eduard Ortega 1 Introduksjon Et kjeglesnitt er en todimensjonal figur som beskrives ved skjæringen mellom et plan og en rett, sirkulær kjegle. Alle kjeglesnitt kan

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

FASIT Svarene trenger ikke være like utdypende som her. Side 1 UNIVERSITETET I OSLO

FASIT Svarene trenger ikke være like utdypende som her. Side 1 UNIVERSITETET I OSLO FASIT Svarene trenger ikke være like utdypende som her. Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: AST1010 Astronomi en kosmisk reise Eksamensdag: Onsdag 13. mai

Detaljer

Det passer å starte et kurs i astronomi med å fortelle hvordan vi befinner oss på en helt alminnelig plass i et nesten tomt univers.

Det passer å starte et kurs i astronomi med å fortelle hvordan vi befinner oss på en helt alminnelig plass i et nesten tomt univers. 1 Det passer å starte et kurs i astronomi med å fortelle hvordan vi befinner oss på en helt alminnelig plass i et nesten tomt univers. Da må vi snakke om astronomiske avstander. Astronomiske avstander

Detaljer

Formler, likninger og ulikheter

Formler, likninger og ulikheter 58 3 Formler, likninger og ulikheter Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Sammendrag R1. 26. januar 2011

Sammendrag R1. 26. januar 2011 Sammendrag R1 26. januar 2011 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A B hvis to påstander

Detaljer

Kvalifiseringstjenesten Tentamen matematikk GS3 22. 04. 2013

Kvalifiseringstjenesten Tentamen matematikk GS3 22. 04. 2013 Tentamen matematikk GS3 Mandag 22. april 2013 DEL 1 Excel Oppgave 1. Hans låner 90 000 kr i banken til 4 % rente pr år. Nedbetalingstiden for lånet er 6 år. a) Lag tabellen nedenfor i Excel. År % rente

Detaljer

AST En kosmisk reise Forelesning 1 : Kursopplegg. Gruppetimer

AST En kosmisk reise Forelesning 1 : Kursopplegg. Gruppetimer AST1010 - En kosmisk reise Forelesning 1 : Om emnet, pensum og eksamen Hva er astronomi og astrofysikk? Å finne fram på stjernehimmelen Kursopplegg Forelesninger: 2 x 2 timer/uke. Gruppetimer: 1 x 2 timer/uke

Detaljer

Løsning eksamen R1 våren 2009

Løsning eksamen R1 våren 2009 Løsning eksamen R1 våren 009 Oppgave 1 a) 1) f( ) ( 1) 4 f ( ) 4( 1) ( 1) 4( 1) 8 ( 1) ) g ( ) e 3 3 3 g( ) e ( e ) 1 e e ( ) 1e e (1) e b) ( ) lim lim lim ( ) 4 4 4 ( ) ( ) ( ) ( ) c) ( ) ( ) ( ) ( )

Detaljer

Corioliskraften. Forsøk på å forstå et eksotisk fenomen Arnt Inge Vistnes, 27. mars 2006

Corioliskraften. Forsøk på å forstå et eksotisk fenomen Arnt Inge Vistnes, 27. mars 2006 1 Corioliskraften Forsøk på å forstå et eksotisk fenomen Arnt Inge Vistnes, 27. mars 2006 Fiktive krefter I FYS-MEK/F1110 lærer vi om hvorfor det kan være praktisk å innføre fiktive krefter i visse sammenhenger.

Detaljer

Generell trigonometri

Generell trigonometri 7 Generell trigonometri 7.1 et utvidede vinkelbegrepet Oppgave 7.110 Tegn vinklene i grunnstilling. a) 30 b) 120 c) 210 d) 300 Oppgave 7.111 Tegn vinklene i grunnstilling. a) 45 b) 360 c) 540 d) 720 Oppgave

Detaljer

Eksamen 25.05.2011. MAT1008 Matematikk 2T. Nynorsk/Bokmål

Eksamen 25.05.2011. MAT1008 Matematikk 2T. Nynorsk/Bokmål Eksamen 25.05.2011 MAT1008 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.

Detaljer

Resultanten til krefter

Resultanten til krefter KRAFTBEGREPET Resultanten til krefter En kraft er en vektor. Kraften har måltall (størrelse), enhet(n) og retning (horisontalt mot høyre) Kraften virker langs en rett linje, kraftens angrepslinje Punktet

Detaljer

Fremdriftsplan for sommerkurset 2014 Planen er ment som et utgangspunkt, kan justeres underveis

Fremdriftsplan for sommerkurset 2014 Planen er ment som et utgangspunkt, kan justeres underveis Oldervoll m.fl. Sinus matematikk, Forkurs grunnbok, Cappelen Jerstad m.fl. Rom-Stoff-Tid, Forkurs grunnbok, Cappelen. Øving: EN/MMT (D3-11), PD (D3-15), EA/DA (D3-17) Fremdriftsplan for sommerkurset 2014

Detaljer

Skipsoffisersutdanningen i Norge. Innholdsfortegnelse. 00TM01G - Emneplan for: Matematikk på operativt nivå

Skipsoffisersutdanningen i Norge. Innholdsfortegnelse. 00TM01G - Emneplan for: Matematikk på operativt nivå Skipsoffisersutdanningen i Norge 00TM01G - Emneplan for: Matematikk på operativt nivå Generelt Utarbeidet av: Maritime fagskoler i Norge Godkjent av: Linda Gran Kalve Versjon: 2.01 Gjelder fra: 27.09.2016

Detaljer

Kurshefte GeoGebra. Ungdomstrinnet

Kurshefte GeoGebra. Ungdomstrinnet Kurshefte GeoGebra Ungdomstrinnet GeoGebra Geometri og algebra Dynamisk geometriverktøy Algebraisk verktøy Gratis Brukes på alle nivåer i utdanningssystemet Finnes på både bokmål og nynorsk Kan lastes

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA45 Matematikk Anbefalte oppgaver - Løsningsforslag Uke 5.5.: Kulen er grafen til rφ, θ) asinφ) cosθ)i + sin φ sinθ)j + cosφ)k), φ π, θ < π. Vi har slik at φ θ acosφ) cosθ)i + sinφ) sinθ)j + cosφ)k)

Detaljer

Eksamen 28.11.2012. MAT1017 Matematikk 2T. Nynorsk/Bokmål

Eksamen 28.11.2012. MAT1017 Matematikk 2T. Nynorsk/Bokmål Eksamen 28.11.2012 MAT1017 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.

Detaljer

Begynneropplæring i matematikk Geometri og måling

Begynneropplæring i matematikk Geometri og måling Begynneropplæring i matematikk Geometri og måling Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI 26-Jan-07 Dagsoversikt Problemløsning som metode i å

Detaljer

Løsningsforslag for øvningsoppgaver: Kapittel 14

Løsningsforslag for øvningsoppgaver: Kapittel 14 Løsningsforslag for øvningsoppgaver: Kapittel 14 Jon Walter Lundberg 15.05.015 14.01 En kule henger i et tau. Med en snor som vi holder horisontalt, trekker vi kula mot høyre med en kraft på 90N. Tauet

Detaljer

plassere negative hele tall på tallinje

plassere negative hele tall på tallinje Kompetansemål etter 7. trinn Tall og algebra: 1. beskrive plassverdisystemet for desimaltall, regne med positive og negative hele tall, desimaltall, brøker og prosent, og plassere dem på tallinje 2. finne

Detaljer

, men det blir svært tungvindt her.) 3 xe3x 1 9 e3x C 1 9 e3x 3x 1 C

, men det blir svært tungvindt her.) 3 xe3x 1 9 e3x C 1 9 e3x 3x 1 C Oppgave a) Deriver funksjonene: ) fx x sinx uv u v uv gir: f x x sinx x cosx x sinx x cosx ) gx sinx sinxcosx sinx, x k cosx cosx g x cosx (x k) (Kan også bruke u v u vuv, men det blir svært tungvindt

Detaljer

Eksamen 24.11.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 24.11.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 24.11.2010 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Kilde: Norges orienteringsforbund.

Kilde: Norges orienteringsforbund. Steinkjer seniorforum 2015 Kart og terreng. Asbjørn Kjellsen 1 Høydekurver Kilde: Norges orienteringsforbund. Figuren ovenfor viser et terreng med to fjelltopper sett fra siden, og sett ovenfra slik de

Detaljer

Eksamen AST november 2007 Oppgaver med fasit

Eksamen AST november 2007 Oppgaver med fasit Eksamen AST1010 15 november 2007 Oppgaver med fasit Oppgave 1. Hva er himmelekvator og hva er ekliptikken? Hva er grunnen til at himmelekvator og ekliptikken ikke faller sammen på himmelkula, men danner

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 2

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 2 Løsning av utvalgte øvingsoppgaver til Sigma R kapittel B. a Da ABC er 90, blir AC + 8. Siden CAE er 90, blir CE + 8 7. b Vinkelen mellom CE og grunnflata blir vinkel ACE. tan ACE som gir at vinkelen blir

Detaljer

GEOGEBRA. 1 Tegn figurer. Fremgangsmåte: 1 Klikk bort Algebrafeltet.

GEOGEBRA. 1 Tegn figurer. Fremgangsmåte: 1 Klikk bort Algebrafeltet. GEOGEBRA 1 Tegn figurer. 1 Klikk bort Algebrafeltet. 2 Klikk bort Rutenett og Akser. 3 Klikk på tegnet for Mangekant. 4 Velg Regulær Mangekant. Sett av 2 punkter. Du får spørsmål om hvor mange sider. Velg

Detaljer

LØSNINGSFORSLAG, KAPITTEL 2

LØSNINGSFORSLAG, KAPITTEL 2 ØNINGFORAG, KAPITTE REVIEW QUETION: Hva er forskjellen på konduksjon og konveksjon? Konduksjon: Varme overføres på molekylært nivå uten at molekylene flytter på seg. Tenk deg at du holder en spiseskje

Detaljer

R2 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka

R2 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka R kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka E Bruker formelen cos 36 cos( 8 ) E sin 8 v og sin8 5 cos v sin sin8 5 5 6 5 5 8 5 5 8 6 5 8 6 5 8 8 3 5 5 5 a f ( ) sin 5 cos f ( ) 5cos

Detaljer