Hva legger vi i spillteori?

Størrelse: px
Begynne med side:

Download "Hva legger vi i spillteori?"

Transkript

1 Hva legger vi i spillteori? Modell for rasjonelle aktørers adferd i mellom-menneskelige relasjoner Kan også brukes til å analysere helt vanlige spill, for å avdekke hva som skjer underveis og for å finne strategier for å vinne.

2 Kravene vi stiller til et spill: Lett å spille og enkelt å lære Morsomt, fengende Ha et matematisk innhold

3 SPILLGEOGRAFI

4 Landeveien: Start Slå med tre terninger, innom alle rutene i rekkefølge, førstemann til mål. Antall øyne på terningene bestemmer hvor langt man kan gå , mål

5 Nim med én bunke: Trekk 1, 2 eller 3 fyrstikker annen hver gang, den som tar den siste har vunnet

6 Nim med to bunker: Trekk så mange fyrstikker du vil, men bare fra én bunke av gangen. Den som tar siste fyrstikken har vunnet.

7 Børs:

8 Juniper Green: Ingen flere tall igjen!

9 Lotto: Velg ut et tall mellom 1 og , den som treffer riktig tall har vunnet og får premien.

10 Spill-geografi: I et åpent spill har alle spillerne full innsikt i hverandres strategier og legger det til grunn for egne valg. Det motsatte kalles et lukket spill. I et strategispill er det kun spillernes valg som bestemmer spillets gang, mens i et lotteri er det innbakt noe form for tilfeldigheter

11 Spill-geografi: Lotto Lotteri Landevei Lukkede spill Åpne spill Børs Sjakk, Nim Strategispill

12 GRAF-TEORI

13 Graftteori: En rettet graf er en geometrisk figur som består av noder og rettede kanter mellom nodene. En vei i en rettet graf er en sekvens av påfølgende rettede kanter. En sykel er en vei som starter og slutter i samme node En rettet graf er sammenhengende dersom ethvert par av noder er forbundet med en (ikke-rettet) vei av kanter.

14 Graftteori anvendt på spill: Et spill er beskrevet av et beslutningstre. Et beslutningstre er en rettet, sammenhengende graf uten sykler

15 Graftteori, fortsetter: En forløper u til en node v er en node slik at det finnes en vei fra u til v. Tilsvarende sier vi at v er en etterfølger til u. Dersom det ikke finnes noder mellom u og v er kalles de en primær forløper/ etterfølger. En initial node er en node uten forløpere. En terminal node er en node uten etterfølgere. Hvis et beslutningstre kun har en initial node kalles denne treets rot.

16 Graftteori, fortsetter: Høyden til en node er det minimale antall kanter fram til en terminal node. Dybden til en node er antall kanter tilbake til rota. Lengden til et spill er høyden til rota.

17 UTBYTTE- FUNKSJONER

18 Utbyttefunksjoner: Funksjon på grafen med verdier i intervallet [0,1] 0 I-node: II-node: 0 Fastsetter verdier på terminale noder 1 0 Skille mellom I- noder og II-noder Bruker Zermelos algoritme for å bestemme verdien på de andre nodene

19 Utbyttefunksjon for Nim med én bunke: Grøn 0 betyr at spiller I vinner, rød 0 betyr at spiller II vinner

20 Utbyttefunksjon for lotterier: Zermelos algoritme: X er en I-node U(x) = max U(v) hvor v gjennomløper alle primære etterfølgere til x U(x) = min U(v) hvor v gjennomløper alle primære etterfølgere til x X er en II-node Vektet gjennomsnitt: U(x) = P(v)u(v) hvor v gjennomløper alle primære etterfølgere til x

21 Utbyttefunksjon for Primo: Verdi=g Verdi=1 1/3 2/3 1/3 2/3 Verdi=4g/9 + 1/3 Verdi=2g/3 Verdi=0 Verdi=g

22 LUKKEDE SPILL

23 Lukkede spill: To spillere med to mulige strategier hver. Spiller I velger strategi 1 med sannsynlighet x og spiller II velger strategi 1 med sannsynlighet y.valgene gjøres simultant. Blandede strategier som simultant optimaliserer utbyttefunksjonene for begge spillerne kalles en Nashlikevekt.

24 Et pengespill: To spillere viser samtidig fram en mynt, enten en 10- krone eller en 20-krone. Dersom begge viser det samme får spiller I begge myntene, dersom de er forskjellige får spiller II begge myntene. Hvem tjener mest på dette spillet, I eller II, og hvordan lønner det seg å spille?

25 Fangenes dilemma: To fanger sitter i arrest og blir forhørt. Den ene vet ikke hva den andre sier. Begge to blir presentert for følgende problemstilling: Dersom ingen tilstår blir straffen 1 år for begge to. Dersom begge tilstår får de 8 år hver. Dersom den ene tilstår og den andre ikke, får den som tier 10 år og den andre går fri. Hva gjør de?

26 Da er det på tide å spille litt, men først tar vi en pause!

Hva skal til for å lage en spillteoretisk modell?

Hva skal til for å lage en spillteoretisk modell? Spillteori Spillteori er et effektivt verktøy for å analyse av strategisk adferd. Spillteori baserer seg på at bevisste aktører forstår at de er i en situasjon der de gjensidig påvirker hverandre gjennom

Detaljer

MAT1140: Kort sammendrag av grafteorien

MAT1140: Kort sammendrag av grafteorien MAT1140: Kort sammendrag av grafteorien Dette notatet gir en kort oversikt over den delen av grafteorien som er gjennomgått i MAT1140 høsten 2013. Vekten er på den logiske oppbygningen, og jeg har utelatt

Detaljer

Oppsummering av forelesningen 10.11.04 Spillteori (S & W kapittel 12 og 19) Fangens dilemma

Oppsummering av forelesningen 10.11.04 Spillteori (S & W kapittel 12 og 19) Fangens dilemma Økonomisk Institutt, november 004 Robert G. Hansen, rom 08 Oppsummering av forelesningen 0..04 Spillteori (S & W kapittel og 9) Fangens dilemma Spillteori er et effektivt verktøy for analyse av strategisk

Detaljer

MAT1140: Notat om grafteori

MAT1140: Notat om grafteori MAT1140: Notat om grafteori Dette notatet har to hensikter for det første å lære bort litt grafteori og for det andre å gi et eksempel på hvordan en matematisk teori bygges opp systematisk ved hjelp av

Detaljer

MAT1140: Kort sammendrag av grafteorien

MAT1140: Kort sammendrag av grafteorien MAT1140, H-15 MAT1140: Kort sammendrag av grafteorien Dette notatet gir en kort oppsummering av grafteorien i MAT1140. Vekten er på den logiske oppbygningen, og jeg har utelatt all motivasjon og (nesten)

Detaljer

MAT1030 Forelesning 24

MAT1030 Forelesning 24 MAT1030 Forelesning 24 Grafteori og trær Roger Antonsen - 28. april 2009 (Sist oppdatert: 2009-04-28 22:32) Forelesning 24 Oppsummering En graf består av noder og kanter Kanter ligger inntil noder, og

Detaljer

INF oktober Stein Krogdahl. Kap 23.5: Trær og strategier for spill med to spillere

INF oktober Stein Krogdahl. Kap 23.5: Trær og strategier for spill med to spillere INF 4130 1. oktober 2009 Stein Krogdahl Dagens program: Første time: Kap 23.5: Trær og strategier for spill med to spillere Andre time, gjesteforelesning: Rune Djurhuus: Om sjakkspillende programmer (Ikke

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet «Midterm» i: INF 4130: Algoritmer: Design og effektivitet Eksamensdag: 1. november 2011 Tid for «midterm»: Kl. 09:00 13:00 (4 timer) [124%,

Detaljer

Forelesning 23. Grafteori. Dag Normann april Oppsummering. Oppsummering. Oppsummering. Digresjon: Firefarveproblemet

Forelesning 23. Grafteori. Dag Normann april Oppsummering. Oppsummering. Oppsummering. Digresjon: Firefarveproblemet Forelesning 23 Grafteori Dag Normann - 16. april 2008 Oppsummering En graf består av noder og kanter Kanter ligger inntil noder, og noder kan være naboer. Vi bør kjenne til begrepene om sammenhengende

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 16. april 2008 Oppsummering En graf består av noder og kanter Kanter ligger inntil noder, og

Detaljer

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Forelesning 23: Grafteori

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Forelesning 23: Grafteori Oppsummering MAT1030 Diskret matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 16. april 2008 En graf består av noder og kanter Kanter ligger inntil noder, og

Detaljer

Forelesning 28. Grafer og trær, eksempler. Dag Normann - 5. mai Grafer og trær. Grafer og trær. Grafer og trær

Forelesning 28. Grafer og trær, eksempler. Dag Normann - 5. mai Grafer og trær. Grafer og trær. Grafer og trær Forelesning 28, eksempler Dag Normann - 5. mai 2008 I dag skal vi se på en rekke eksempeloppgaver, og gjennomgå løsningene på tavla. Alle eksemplene er oppgaver som ville kunne bli gitt til eksamen, enten

Detaljer

AKTIVITETER. knyttet til grunnleggende tallforståelse. Ny GIV 1. samling 2012/2013 Astrid Bondø Anne-Gunn Svorkmo Svein Hallvard Torkildsen.

AKTIVITETER. knyttet til grunnleggende tallforståelse. Ny GIV 1. samling 2012/2013 Astrid Bondø Anne-Gunn Svorkmo Svein Hallvard Torkildsen. AKTIVITETER knyttet til grunnleggende tallforståelse Ny GIV 1. samling 2012/2013 Astrid Bondø Anne-Gunn Svorkmo Svein Hallvard Torkildsen 20-Dec-12 3 3 Kast en terning Skriv tallet i en av rutene. Fortsett

Detaljer

6. oktober Dagens program: Første time: Andre time, gjesteforelesning: Uavgjørbarhet. Stein Krogdahl. (Ikke pensum, egne foiler legges ut)

6. oktober Dagens program: Første time: Andre time, gjesteforelesning: Uavgjørbarhet. Stein Krogdahl. (Ikke pensum, egne foiler legges ut) Dagens program: Første time: INF 4130 6. oktober 2011 Stein Krogdahl Kap 23.5: Spilltrær og strategier for spill med to spillere Andre time, gjesteforelesning: Rune Djurhuus: Om sjakkspillende programmer

Detaljer

LO118D Forelesning 9 (DM)

LO118D Forelesning 9 (DM) LO118D Forelesning 9 (DM) Grafteori 26.09.2007 1 Introduksjon 2 Veier og sykler 3 Hamiltonsykler og omreisende handelsmenn Graf, urettet Definisjon En graf (eller urettet graf) G består av en mengde V

Detaljer

Regler for: getsmart Grønn. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene!

Regler for: getsmart Grønn. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! -6 Regler for: getsmart Grønn Hele tall 3 4 Hele tall 8-6 -6 3-6 3 8 Hele tall Hele tall 3 4 Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Sjekk

Detaljer

LO118D Forelesning 10 (DM)

LO118D Forelesning 10 (DM) LO118D Forelesning 10 (DM) Grafteori 03.10.2007 1 Korteste vei 2 Grafrepresentasjoner 3 Isomorfisme 4 Planare grafer Korteste vei I en vektet graf går det an å finne den veien med lavest total kostnad

Detaljer

En enkel innføring i croquet. Hagecroquet («Garden Croquet»)

En enkel innføring i croquet. Hagecroquet («Garden Croquet») En enkel innføring i croquet Croquet kan spilles på forskjellige måter. Det spilles turneringer på internasjonalt nivå, både individuelt og lag, men det vanligste er å spille croquet som et hyggelig sosialt

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF 4130: lgoritmer: Design og effektivitet Eksamensdag: 12. desember 2008 Tid for eksamen: Kl. 09:00 12:00 (3 timer) Oppgavesettet

Detaljer

Regler for: Ungdomstrinnet. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene!

Regler for: Ungdomstrinnet. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! (x²) 1 2 Regler for: getsmart Grå Ungdomstrinnet 8 _ (x²) 1 2 4 (x²) 1 2 _ (x²) 1 2 _ 4 _ 8 Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Sjekk

Detaljer

G høgskolen i oslo. Emnekode:!;_unstiq intelliqens lv 145A Gruppe(r) : Dato: Tillatte

G høgskolen i oslo. Emnekode:!;_unstiq intelliqens lv 145A Gruppe(r) : Dato: Tillatte I Emne: G høgskolen i oslo Emnekode:!;_unstiQ intelliqens lv 145A Gruppe(r) : Dato: 23.04.04 Tillatte Antall sider (inkl. Antall oppgaver: hjelpemidler: forsiden): 5 3 Inoen Faglig veileder: Eva Vihovde

Detaljer

Familiematematikk MATTEPAKKE 2. Trinn

Familiematematikk MATTEPAKKE 2. Trinn Familiematematikk MATTEPAKKE 2. Trinn May Renate Settemsdal og Ingvill Merete Stedøy Sauen Erik Du trenger 50 tellebrikker som skal være sauene foran Erik i køen. Oppgave: Sauen Erik skulle få klippet

Detaljer

LO118D Forelesning 12 (DM)

LO118D Forelesning 12 (DM) LO118D Forelesning 12 (DM) Trær 15.10.2007 1 Traversering av trær 2 Beslutningstrær 3 Isomorfisme i trær Preorden-traversering 1 Behandle den nåværende noden. 2 Rekursivt behandle venstre subtre. 3 Rekursivt

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 33: Repetisjon Dag Normann Matematisk Institutt, Universitetet i Oslo 26. mai 2008 Innledning Onsdag 21/5 gjorde vi oss ferdige med det meste av den systematiske

Detaljer

Innledning. MAT1030 Diskret matematikk. Kapittel 11. Kapittel 11. Forelesning 33: Repetisjon

Innledning. MAT1030 Diskret matematikk. Kapittel 11. Kapittel 11. Forelesning 33: Repetisjon Innledning MAT1030 Diskret matematikk Forelesning 33: Repetisjon Dag Normann Matematisk Institutt, Universitetet i Oslo 26. mai 2008 Onsdag 21/5 gjorde vi oss ferdige med det meste av den systematiske

Detaljer

Forslag til opplegg for en foreldrekveld om matematikk (varighet: 2 timer) v/ Ingvill M. Stedøy-Johansen, 2007

Forslag til opplegg for en foreldrekveld om matematikk (varighet: 2 timer) v/ Ingvill M. Stedøy-Johansen, 2007 Forslag til opplegg for en foreldrekveld om matematikk (varighet: 2 timer) v/ Ingvill M. Stedøy-Johansen, 2007 Inviter foreldrene på matematisk aften (forslag til invitasjon nederst i dette dokumentet).

Detaljer

Kap 9 Tre Sist oppdatert 15.03

Kap 9 Tre Sist oppdatert 15.03 Kap 9 Tre Sist oppdatert 15.03 Definere et tre som en datastruktur. Definere begreper knyttet til tre. Diskutere mulige implementasjoner av tre Analysere implementasjoner av tre som samlinger. Diskutere

Detaljer

Moro med måling trinn 75 minutter

Moro med måling trinn 75 minutter INSPIRIA science center: Bjørnstadveien 16, 1712 GRÅLUM Telefon: 03245/ 69 13 93 00 E-post: post@inspiria.no www.inspiria.no Lærerveiledning Passer for: Varighet: Moro med måling 1. - 2. trinn 75 minutter

Detaljer

TERNINGER. - variasjon i matematikkundervisningen. Astrid Bondø NSMO. 18-Aug-13

TERNINGER. - variasjon i matematikkundervisningen. Astrid Bondø NSMO. 18-Aug-13 TERNINGER - variasjon i matematikkundervisningen Astrid Bondø NSMO 18-Aug-13 Siffer blir tall Lamis skriftserie: Et ess i ermet Bruk en vanlig 6-er terning eller en 0-9 terning. Kast terningene. Du får

Detaljer

Løsnings forslag i java In115, Våren 1996

Løsnings forslag i java In115, Våren 1996 Løsnings forslag i java In115, Våren 1996 Oppgave 1a For å kunne kjøre Warshall-algoritmen, må man ha grafen på nabomatriseform, altså en boolsk matrise B, slik at B[i][j]=true hvis det går en kant fra

Detaljer

Måned: Desember Treningsform Tid Forklaring Treningssone

Måned: Desember Treningsform Tid Forklaring Treningssone Måned: November Uke 1 Dag 1 Styrketråkk 1.5t 2x15min styrketråkk, 4 min pause. Sone 2 Nivå: 6-8 timer Dag 2 Intervall 1.5t 4x6min intervall, 3 min pause. sone 3 lav Måned: November Uke 2 Dag 1 Styrketråkk

Detaljer

København 20 Stockholm

København 20 Stockholm UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 115 Algoritmer og datastrukturer Eksamensdag: 26. mai 2001 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 7 sider. Vedlegg:

Detaljer

Uretta grafar (1) Mengde nodar Mengde kantar som er eit uordna par av nodar

Uretta grafar (1) Mengde nodar Mengde kantar som er eit uordna par av nodar Kapittel 13, Grafar Uretta grafar (1) Ein uretta graf Mengde nodar Mengde kantar som er eit uordna par av nodar To nodar er naboar dersom dei er knytta saman med einkant Ein node kan ha kant til seg sjølv.

Detaljer

INF1020 Algoritmer og datastrukturer GRAFER

INF1020 Algoritmer og datastrukturer GRAFER GRAFER Dagens plan: Minimale spenntrær Prim Kapittel 9.5.1 Kruskal Kapittel 9.5.2 Dybde-først søk Kapittel 9.6.1 Løkkeleting Dobbeltsammenhengende grafer Kapittel 9.6.2 Å finne ledd-noder articulation

Detaljer

Regning som grunnleggende ferdighet Ny GIV! Møre og Romsdal

Regning som grunnleggende ferdighet Ny GIV! Møre og Romsdal Regning som grunnleggende ferdighet Ny GIV! Møre og Romsdal Hefte med praktiske eksempler Tone Elisabeth Bakken Molde, 29.januar 2013 Ønsker du beskrivelse av og informasjon om flere metoder, - ta kontakt!

Detaljer

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Dag Normann

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Dag Normann MAT1030 Diskret Matematikk Forelesning 25: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo Forelesning 25 27. april 2010 (Sist oppdatert: 2010-04-27 14:16) MAT1030 Diskret Matematikk 27. april

Detaljer

Forelesning 33. Repetisjon. Dag Normann mai Innledning. Kapittel 11

Forelesning 33. Repetisjon. Dag Normann mai Innledning. Kapittel 11 Forelesning 33 Repetisjon Dag Normann - 26. mai 2008 Innledning Onsdag 21/5 gjorde vi oss ferdige med det meste av den systematiske repetisjonen av MAT1030. Det som gjensto var kapitlene 11 om trær og

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 25: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 27. april 2010 (Sist oppdatert: 2010-04-27 14:15) Forelesning 25 MAT1030 Diskret Matematikk 27. april

Detaljer

Tall, forståelse og eksamen Videregående skole (1P, 2P og 2PY)

Tall, forståelse og eksamen Videregående skole (1P, 2P og 2PY) Tall, forståelse og eksamen Videregående skole (1P, 2P og 2PY) Oslo, 16.-17.10.14 Astrid Bondø 19-Nov-15 Bygda Alvfjord Eksamen har i dag 5000 innbyggere. 2P 2014 Man regner med at innbyggertallet vil

Detaljer

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon Repetisjon og mer motivasjon MAT030 Diskret matematikk Forelesning 22: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 4. april 2008 Først litt repetisjon En graf består av noder og

Detaljer

Regler for: getsmart Måling. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene!

Regler for: getsmart Måling. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Regler for: getsmart Måling Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Sjekk hjemmesiden for flere PowerPoint presentasjoner. Det vil bli lagt

Detaljer

3 x 3 ruter. Hvilke matematiske utfordringer finnes det i et spillebrett på 3x3 ruter? Her er noen eksempler på spill og problemløsningsoppgaver

3 x 3 ruter. Hvilke matematiske utfordringer finnes det i et spillebrett på 3x3 ruter? Her er noen eksempler på spill og problemløsningsoppgaver 3 x 3 ruter Hvilke matematiske utfordringer finnes det i et spillebrett på 3x3 ruter? Her er noen eksempler på spill og problemløsningsoppgaver som kan brukes i matematikktimene. Magisk kvadrat Du har

Detaljer

MAT1030 Forelesning 22

MAT1030 Forelesning 22 MAT1030 Forelesning 22 Grafteori Roger Antonsen - 21. april 2009 (Sist oppdatert: 2009-04-21 15:13) Introduksjon Introduksjon Vi skal nå over til kapittel 10 & grafteori. Grafer fins overalt rundt oss!

Detaljer

MAT1030 Forelesning 25

MAT1030 Forelesning 25 MAT1030 Forelesning 25 Trær Roger Antonsen - 29. april 2009 (Sist oppdatert: 2009-04-29 00:28) Forelesning 25 Litt repetisjon Vi har snakket om grafer og trær. Av begreper vi så på var følgende. Eulerstier

Detaljer

Julekalender mellomtrinn -

Julekalender mellomtrinn - Julekalender 2004 - mellomtrinn - 1. desember Vi har noen underlige terninger. De viser tallene 1, -2, 3, -4, 5, -6. Om vi slår to terninger samtidig, hvilken av summene listet opp under klarer vi IKKE

Detaljer

Introduksjon. MAT1030 Diskret matematikk. Søkealgoritmer for grafer. En graf

Introduksjon. MAT1030 Diskret matematikk. Søkealgoritmer for grafer. En graf Introduksjon MAT13 Diskret matematikk Forelesning 21: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 9. april 28 Vi skal nå over til kapittel 1 & grafteori. Grafer fins overalt rundt

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 115 og IN 110 Algoritmer og datastrukturer Eksamensdag: 14. mai 1996 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 8 sider.

Detaljer

Korteste Vei I. Lars Vidar Magnusson 9.4.2014. Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei

Korteste Vei I. Lars Vidar Magnusson 9.4.2014. Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei Korteste Vei I Lars Vidar Magnusson 9.4.2014 Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei Korteste Vei Problemet I denne forelesningen skal vi se på hvordan vi kan finne korteste

Detaljer

Regler for: Videregående. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene!

Regler for: Videregående. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! (x²) 1 2 Regler for: getsmart Grå Algebra Videregående 8 _ (x²) 1 2 Algebra 4 (2 2³) 1 4 _ xy (2 2³) 1 4 _ xy (x²) 1 2 _ (2 2³) 1 4 _ xy (x²) 1 2 _ (2 2³) 1 4 _ xy 4 Algebra Algebra _ 8 Det anbefales at

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2016, forelesning 5 1 / 49

Detaljer

REKT Random Events Knowledge Test

REKT Random Events Knowledge Test REKT Random Events Knowledge Test Dette instrumentet er utarbeidet av psykolog og forsker Nigel Turner, ved Center for Addiction and Mental Health i Toronto, Canada. Instrumentet har både klinisk og forskningsmessig

Detaljer

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Roger Antonsen

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Roger Antonsen MAT1030 Diskret Matematikk Forelesning 25: Trær Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 25 29. april 2009 (Sist oppdatert: 2009-04-29 00:28) MAT1030 Diskret Matematikk

Detaljer

Mattemoro! Går r det virkelig an å leke seg til ferdigheter i matematikk? Hva kjennertegner den. Oversikt. Spill til hjelp i automatiseringen av

Mattemoro! Går r det virkelig an å leke seg til ferdigheter i matematikk? Hva kjennertegner den. Oversikt. Spill til hjelp i automatiseringen av Mattemoro! Mona Røsseland, R som har tenkt å gjøre et forsøk! Går r det virkelig an å leke seg til ferdigheter i matematikk? Hva kjennertegner den gode lærer? l Entusiasme og engasjement. Kjennskap til

Detaljer

Regler for: getsmart Gul og Blå. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene!

Regler for: getsmart Gul og Blå. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Regler for: getsmart Gul og Blå 6 Diagram Brøk Diagram 6 Brøk Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Sjekk hjemmesiden for flere powerpoint-presentasjoner.

Detaljer

MONOPOLISTISK KONKURRANSE, OLIGOPOL OG SPILLTEORI

MONOPOLISTISK KONKURRANSE, OLIGOPOL OG SPILLTEORI MONOPOLISTISK KONKURRANSE, OLIGOPOL OG SPILLTEORI Astrid Marie Jorde Sandsør Torsdag 20.09.2012 Dagens forelesning Monopolistisk konkurranse Hva er det? Hvordan skiller det seg fra monopol? Hvordan skiller

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 11. august 2014 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode D. Ingen

Detaljer

TRINN 1: HVA ER ET SET?

TRINN 1: HVA ER ET SET? ALDER: 8 år til voksen ANTALL SPILLERE: 2 til 4 FORMÅL MED SPILLET: Å skåre flest poeng. Skår poeng ved å lage SET med din terning og de som allerede er på brettet. Jo flere SET du lager, jo flere poeng

Detaljer

Hvorfor blir det tull med tall? - grunnleggende tallforståelse

Hvorfor blir det tull med tall? - grunnleggende tallforståelse Hvorfor blir det tull med tall? - grunnleggende tallforståelse Ny GIV videregående skole Astrid Bondø Svein Hallvard Torkildsen 16-Oct-13 Grunnleggende tallforståelse Mange elever sliter med å klare matematikken

Detaljer

LP. Leksjon 7. Kapittel 13: Nettverk strøm problemer

LP. Leksjon 7. Kapittel 13: Nettverk strøm problemer LP. Leksjon 7. Kapittel 13: Nettverk strøm problemer Skal studere matematiske modeller for strøm i nettverk. Dette har anvendelser av typen fysiske nettverk: internet, vei, jernbane, fly, telekommunikasjon,

Detaljer

MAT1030 Forelesning 25

MAT1030 Forelesning 25 MAT1030 Forelesning 25 Trær Dag Normann - 27. april 2010 (Sist oppdatert: 2010-04-27 14:16) Forelesning 25 Litt repetisjon Vi har snakket om grafer og trær. Av begreper vi så på var følgende: Eulerstier

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 14. desember 2011 Eksamenstid 1500 1900 Sensurdato 14. januar Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

God matematikkundervisning... - Kva er det? Hva er matematisk kompetanse? Oversikt

God matematikkundervisning... - Kva er det? Hva er matematisk kompetanse? Oversikt God matematikkundervisning... - Kva er det? Mona Røsseland Matematikksenteret, NTNU Leder i Lamis Lærebokforfatter, MULTI 12-Apr-07 Oversikt Noen tanker om hva som kan være kjennetegn på god matematikkundervisning..

Detaljer

IN 115 Fasitforslag til Eksamen 1997 Omskrevet til Java. 1. april 2000

IN 115 Fasitforslag til Eksamen 1997 Omskrevet til Java. 1. april 2000 IN 115 Fasitforslag til Eksamen 1997 Omskrevet til Java 1. april 2000 1 2 Oppgave 1 1-a 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 5 1 2 3 4 1 2 3 4 1 2 3 4 2 3 1 2 3 4 1 2 3 4 1 6 0 1 2 3 4 4 1 2 3 4 Figur

Detaljer

SJAKK * Veiledning og undervisningsmateriell. for lærere. Utarbeidet for Larvikskolene i 2011 av Bjarte Engeset, Larvik Sjakklubb,

SJAKK * Veiledning og undervisningsmateriell. for lærere. Utarbeidet for Larvikskolene i 2011 av Bjarte Engeset, Larvik Sjakklubb, SJAKK * Veiledning og undervisningsmateriell for lærere Utarbeidet for Larvikskolene i 2011 av Bjarte Engeset, Larvik Sjakklubb, i forbindelse med prosjektet SJAKKLØFTET SJAKKREGLER *En spiller har hvite

Detaljer

Familiematematikk MATTEPAKKE. 1. Trinn. May Renate Settemsdal og Ingvill Merete Stedøy

Familiematematikk MATTEPAKKE. 1. Trinn. May Renate Settemsdal og Ingvill Merete Stedøy Familiematematikk MATTEPAKKE 1. Trinn May Renate Settemsdal og Ingvill Merete Stedøy Aktiviteter Hvor mange? Sorter og tell alle tingene som er i kofferten. Hva er det flest av? Hva er det færrest av?

Detaljer

04.01.2015. Dagsoversikt. Matematikkundervisningen har forandret seg. Hvordan bidra til at dine elever får større ferdigheter i matematikk?

04.01.2015. Dagsoversikt. Matematikkundervisningen har forandret seg. Hvordan bidra til at dine elever får større ferdigheter i matematikk? Hvordan bidra til at dine elever får større ferdigheter i matematikk? Haugalandsløftet 26. januar 2015 Tine Foss Pedersen 4-Jan-15 Dagsoversikt Læring basert på forståelse Ulike måter å regne på basert

Detaljer

Spill i Universell Matematikk Ungdom

Spill i Universell Matematikk Ungdom Spill i Universell Matematikk Ungdom 1 Plassverdispillet Kap 2.1 Elevdel: s.3 Presentasjonsdel: s.4 Hvilken plassverdi har sifferet? Finn 10 riktige plassverdier på rad uten å gjøre feil. Nevner lik 100

Detaljer

Starcraft II Regelsett

Starcraft II Regelsett Starcraft II Regelsett Informasjon Turneringens format Turneringen vil inneholde 48 spillere Turneringen deles inn i tre deler. Den første delen er ett gruppespill med 16 grupper som har tre spillere hver.

Detaljer

Oppgaver. Innhold. Sannsynlighet Vg1P

Oppgaver. Innhold. Sannsynlighet Vg1P Oppgaver Innhold Modul 1. Hva er sannsynlighet?... 2 Modul 2. Addisjon av sannsynligheter. Gunstige og mulige utfall... 6 Modul 3. Beregne sannsynligheter ved å bruke tabeller... 10 Modul 4. Beregne sannsynligheter

Detaljer

Grafteori. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori.

Grafteori. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori. MAT030 Diskret Matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo Grafteori 20. april 200 (Sist oppdatert: 200-04-20 4:8) MAT030 Diskret Matematikk 20. april 200

Detaljer

LØSNINGSFORSLAG, EKSAMEN I ALGORITMER OG DATASTRUKTURER (IT1105)

LØSNINGSFORSLAG, EKSAMEN I ALGORITMER OG DATASTRUKTURER (IT1105) Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 8 Faglig kontakt under eksamen: Magnus Lie Hetland LØSNINGSFORSLAG, EKSAMEN I ALGORITMER OG DATASTRUKTURER

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 20. april 2010 (Sist oppdatert: 2010-04-20 14:17) Grafteori MAT1030 Diskret Matematikk 20. april

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 14. desember 2011 Eksamenstid 1500 1900 Sensurdato 14. januar Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

Kapittel 10 fra læreboka Grafer

Kapittel 10 fra læreboka Grafer Kapittel 10 fra læreboka Grafer (utdrag) En graf er en samling punkter (noder) og kanter mellom punktene (eng. nodes, vertex, edge). En graf kalles rettet hvis kantene har en retning og urettet hvis kantene

Detaljer

Sannsynlighet for alle.

Sannsynlighet for alle. Sannsynlighet for alle. Signe Holm Knudtzon Høgskolen i Buskerud og Vestfold Novemberkonferansen 2015 Novemberkonferansen 2015 Signe Holm Knudtzon. HBV. Sannsynlighet for alle 1 Sannsynlighet for alle.

Detaljer

MAT1030 Forelesning 23

MAT1030 Forelesning 23 MAT030 Forelesning 23 Grafteori Roger Antonsen - 22. april 2009 (Sist oppdatert: 2009-04-22 2:36) Forelesning 23 Repetisjon og mer motivasjon Først litt repetisjon En graf består av noder og kanter Kanter

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 13. august 2012 Eksamenstid 0900 1300 Sensurdato 3. september Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

NyGIV Regning som grunnleggende ferdighet Akershus

NyGIV Regning som grunnleggende ferdighet Akershus NyGIV Regning som grunnleggende ferdighet Akershus Hefte med praktiske eksempler Tone Elisabeth Bakken 16.januar 014 Ønsker du beskrivelse av og informasjon om flere metoder, - ta kontakt! tone.bakken@ohg.vg.no

Detaljer

A)8 B) 10 C) 14 D) 20 E) Sidekantene i en terning økes med 20%. Hvor mye øker terningens volum? A) 20 % B) 44 % C) 56,2 % D) 60 % E) 72,8 %

A)8 B) 10 C) 14 D) 20 E) Sidekantene i en terning økes med 20%. Hvor mye øker terningens volum? A) 20 % B) 44 % C) 56,2 % D) 60 % E) 72,8 % SETT 29 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. Per er i butikken for å kjøpe frukt. En appelsin koster 3 kroner, en banan koster 2 kroner, og et eple koster 1 krone. Per skal kjøpe for nøyaktig

Detaljer

Forelesning 23. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori.

Forelesning 23. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori. MAT030 Diskret Matematikk Forelesning 23: Grafteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 23 22. april 2009 (Sist oppdatert: 2009-04-22 2:37) MAT030 Diskret Matematikk

Detaljer

Minimum spenntrær. Lars Vidar Magnusson Kapittel 23. Kruskal Prim

Minimum spenntrær. Lars Vidar Magnusson Kapittel 23. Kruskal Prim Minimum Spenntrær Lars Vidar Magnusson 2.4.2014 Kapittel 23 Minimum spenntrær Kruskal Prim Minimum Spenntrær Et spenntre er et tre som spenner over alle nodene i en graf G = (V, E). Et minimum spenntre

Detaljer

Forfatterne bak Multi!

Forfatterne bak Multi! Multi i praktisk bruk Forfatterne bak Multi! Tilpasset opplæring Forfatterteam: Bjørnar Alseth Universitetet i Oslo Henrik Kirkegaard, Flisnes skole, Ålesund Mona Røsseland, Matematikksenteret Gunnar Nordberg,

Detaljer

Hvordan lykkes med tilpasset undervisning?

Hvordan lykkes med tilpasset undervisning? Hvordan lykkes med tilpasset undervisning? Mona Røsseland Doktorgradsstipendiat Universitetet i Agder www.fiboline.no Oversikt 10-11.30: Makronivå: Hva er god matematikkundervisning og hvordan legger det

Detaljer

MAT1030 Forelesning 22

MAT1030 Forelesning 22 MAT1030 Forelesning 22 Grafteori Dag Normann - 14. april 2010 (Sist oppdatert: 2010-04-14 12:45) Kombinatorikk Oppsummering av regneprinsipper Ordnet utvalg med repetisjon: n r Ordnet utvalg uten repetisjon:

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2009 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 6: Grafer Bjarne Holen (Ifi, UiO) INF2220 H2009, forelesning 6 1 / 31 Dagens plan:

Detaljer

Svarforslag til ukeoppgaver til INF 4130

Svarforslag til ukeoppgaver til INF 4130 Svarforslag til ukeoppgaver til INF 4130 15. november 2011 Oppgave 1: Løs 14.4 (hvori innbakt svaret på oppgave 14.5) Vi skal altså vise at Hungarian-algoritmen kan implementeres i tid O(n 3 ), der n er

Detaljer

Kompetansemål Innhold Læringsmål Kilder

Kompetansemål Innhold Læringsmål Kilder Års Tall telle til 50, dele opp og bygge mengder opp til 10, sette sammen og dele opp tiergruppe telling oppover fra et et vilkårlig tall i tallområdet 1-50 telling nedover fra et et vilkårlig tall i tallområdet

Detaljer

Mוned: November Treningsform Tid Forklaring Treningssone

Mוned: November Treningsform Tid Forklaring Treningssone Mוned: November Uke 1 Dag 1 Styrke 2t 2x15min styrketrוkk. Oppv/nedkj. Styrketrening. Sone 2 Nivו: 8-12 timer Dag 2 Intervall 2t 4x6min intervall sone 3 Mוned: November Uke 2 Dag 1 Styrke 2t 2x15min styrketrוkk.

Detaljer

Korteste vei problemet (seksjon 15.3)

Korteste vei problemet (seksjon 15.3) Korteste vei problemet (seksjon 15.3) Skal studere et grunnleggende kombinatorisk problem, men først: En (rettet) vandring i en rettet graf D = (V, E) er en følge P = (v 0, e 1, v 1, e 2,..., e k, v k

Detaljer

I Spillet Mathable er et spill basert på matematiske likninger som må være dannet på spillbrettet. For å gjøre dette, må spillerne gjøre bruk av et spillebrett med normale ruter(hvite), ruter med en begrensning

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF 110 Algoritmer og datastrukturer Eksamensdag : Torsdag 5. desember 00 Tid for eksamen : 09.00-15.00 Oppgavesettet er på

Detaljer

Forelesning 24. Grafer og trær. Dag Normann april Vektede grafer. En kommunegraf

Forelesning 24. Grafer og trær. Dag Normann april Vektede grafer. En kommunegraf Forelesning 24 Grafer og trær Dag Normann - 21. april 2008 Vi har snakket om grafer og trær. Av begreper vi så på var Eulerkretser og Eulerstier Hamiltonkretser Minimale utspennende trær. Vi skal nå se

Detaljer

Ukeoppgaver fra kapittel 10 & Induksjonsbevis

Ukeoppgaver fra kapittel 10 & Induksjonsbevis Plenumsregning 11 Ukeoppgaver fra kapittel 10 & Induksjonsbevis Roger Antonsen - 24. april 2008 Grafteori Vi regner oppgavene på tavlen i dag. Oppgave 10.9 Oppgave 10.10 Oppgave 10.11 Oppgave 10.12 Oppgave

Detaljer

Kap.12. Flervegssøketre. Studerer 2-3 og 2-4 trær. Sist oppdatert

Kap.12. Flervegssøketre. Studerer 2-3 og 2-4 trær. Sist oppdatert Kap.12 Flervegssøketre Sist oppdatert 12.04.10 Studerer 2-3 og 2-4 trær Motivasjon n maks = antall elementer i et fullt binært tre med nivåer 0 k ; (en node har ett element) n maks = 2 0 + 2 1 + + 2 k

Detaljer

Dersom spillerne ønsker å notere underveis: penn og papir til hver spiller.

Dersom spillerne ønsker å notere underveis: penn og papir til hver spiller. "FBI-spillet" ------------- Et spill for 4 spillere av Henrik Berg Spillmateriale: --------------- 1 vanlig kortstokk - bestående av kort med verdi 1 (ess) til 13 (konge) i fire farger. Kortenes farger

Detaljer

Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008. i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. 0 1 0 0

Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008. i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. 0 1 0 0 Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008 8.4.27 Vi beregner matrisene W i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. a) W 0 = W 1 = W 2 = 1 0 0 0 1 1 0 0 b) W 0 = c) W 0 = d) W 0

Detaljer

KONGSVINGER 08.11.13 NY GIV - REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF

KONGSVINGER 08.11.13 NY GIV - REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF KONGSVINGER 08.11.13 NY GIV - REGNING Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF Mattelæreren God regning For å legge til rette for elevenes utvikling i regning som grunnleggende

Detaljer

Lottotrekningen i Excel

Lottotrekningen i Excel Peer Andersen Lottotrekningen i Excel Mange leverer ukentlig inn sin lottokupong i håp om å vinne den store gevinsten. Men for de aller fleste blir den store gevinsten bare en uoppnåelig drøm. En kan regne

Detaljer

I tillegg trengs 2 terninger.

I tillegg trengs 2 terninger. SORIA MORIA 1 Informasjonsdokument Element - og andre spill - Spilleregler for kortspillene Element, Guldag, Slagmark, Svinepels/Niding & Kul Spillene består av en kortstokk med 72 kort. På kortene finner

Detaljer