Tilstandsrommodeller. Hans- Pe1er Halvorsen, M.Sc.

Størrelse: px
Begynne med side:

Download "Tilstandsrommodeller. Hans- Pe1er Halvorsen, M.Sc."

Transkript

1 Tilstandsrommodeller Hans- Pe1er Halvorsen, M.Sc.

2 Tilstandsrom- modeller Dataverktøy Spesial>lfelle MathScript LabVIEW Differensial - likninger Tidsplanet Laplace Blokk- diagrammer Transfer- funksjoner 2.orden 1.orden Analyse/Design Stabilitets- analyse Det komplekse plan 2. Frekvensrespons 1. Systemets poler Bodediagram Realisering/ Implementering Reguleringsteknikk Serie, Parallel, Feedback Det komplekse plan S- planet K = Forsterkning T=Tidskonstant Sprang- respons 1.orden med >dsforsinkelse Reguleringssystem Asympto>sk stabilt system Air Heater Tidsplanet Ustabilt system Marginalt stabilt system Asympto>sk stabilt system Marginalt stabilt system Ustabilt system

3 Tilstandsrommodeller Tilstandsrom- modeller Spesial>lfelle Differensial- likninger Laplace Transfer- funksjoner En strukturert form/kompakt form når vi har et se1 med 1.ordens (lineære) differenislalikninger Generelt består et dynamisk system av flere enn en differensiallikning, slik at de1e er en veldig hendig måte å se1e opp det dynamiske systemet på. Veldig mye reguleringsteori (da særlig avansert reguleringsteori) er basert på at systemet er sa1 opp på >lstandsromform Tilstandsrommodeller kan enkelt implementers i LabVIEW, MathScript, osv.

4 Tilstandsrommodeller Dynamisk System u1, u2, u3, inngangssignaler (pådrag) x1, x2, x3, - interne >lstander F.eks Trykk, Temperatur, Nivå, osv. y1, y2, y3, utgangsignaler(målinger) A, B, C, D er matriser x, u, y er vektorer

5 Tilstandsrommodeller Et se1 med lineære differensial- likninger Som se1es opp på en strukturert måte x Systemets interne >lstander u pådraget(ene) (fra regulatoren) y utgangen(e), dvs det vi fysisk måler

6 Tilstandsrommodeller - Eksempel x1 og x2 Systemets interne >lstander u pådraget (fra regulatoren) y utgangen, dvs det vi fysisk måler x En vektor som består av systemets interne >lstander u En vektor som består av systemets pådrag (vi kan ha mer enn et pådrag!) y En vektor som består av systemets måling(er)

7 Tilstandsrommodeller - MathScript MathScript: A = [1, 2; 3, 4]; B = [0; 1]; C = [1, 0]; D = [0]; Sprangrespons: NB! Som du ser så er de1e systemet ustabilt! model = ss(a, B, C, D) step(model) Studenter: Prøv deie! Kan vi finne transferfunksjonen(e) hvis vi har funnet >lstandsrommodellen? Ja! H = tf(model)

8 Tilstandsrommodeller Eksempler Hva blir Tilstandsrommodellen for systemet?????

9 Implementer denne i MathScript Hva blir Transferfunksjonen?

10 Tilstandsrommodeller Eksempler Hva blir Tilstandsrommodellen for systemet?????

11 Implementer denne i MathScript Hva blir Transferfunksjonen(e)?

12 SISO Dynamisk System SIMO Dynamisk System Single Input, Single Output Single Input, Mul>ple Output MISO Dynamisk System MIMO Dynamisk System Mul>ple Input, Single Output Mul>ple Input, Mul>ple Output

13 Tilstandsrommodeller - Vanntankeksempel Systemets differenislalikninger: NB! De1e er en forenklet modell av systemet! h er nivået i tanken, mens Fout er utstrøminen i bunnen gjennom en ven>l, Kp er pumpeforsterkningen som gjør at det renner vann inn i tanken. Målet er å regulere nivået i tanken på et gi1 nivå (referanseverdi), dvs u er pådraget fra regulatoren som styrer pumpa på innløpet. Nivået h blir målt vha boblerørprinsippet. Hva blir Tilstandsrommodellen for systemet????? Dere får 5 minu1er på å finne denne, samt simulere systemet i MathScript (sprangrespons). Hva blir transferfunksjonen? Bruk disse verdiene i simuleringen Kp = 16.5; At = 78.5;

14 Tilstandsrommodeller Vanntankeksempel Systemets differenislalikninger: Vi se1er: Da får vi: Tilslu1:

15 Tilstandsrommodeller Vanntankeksempel MathScript: clc, clear Kp = 16.5; A_tank = 78.5; A = [0, -1/A_tank; 0, 0]; B = [Kp/A_tank; 0]; C = [1, 0]; D = [0]; model = ss(a, B, C, D) step(model) Transferfunksjonen: H = tf(model) Kommentar >l resultatene: Vi ser at vanntanken oppfører seg som en typisk integrator.

16 Hans- PeIer Halvorsen, M.Sc. Telemark University College Faculty of Technology Department of Electrical Engineering, Technology and E- mail: Blog: hip://home.hit.no/~hansha/ 16

Stabilitetsanalyse. Hans- Pe/er Halvorsen, M.Sc.

Stabilitetsanalyse. Hans- Pe/er Halvorsen, M.Sc. Stabilitetsanalyse Hans- Pe/er Halvorsen, M.Sc. Tilstandsrom- modeller Dataverktøy Spesial@lfelle MathScript LabVIEW Differensial - likninger Tidsplanet Laplace Blokk- diagrammer Transfer- funksjoner 2.orden

Detaljer

MathScript. Hans- Pe1er Halvorsen, M.Sc.

MathScript. Hans- Pe1er Halvorsen, M.Sc. MathScript Hans- Pe1er Halvorsen, M.Sc. Ja! De1e er et IA fag dvs. både AutomaFsering og InformaFkk! Arbeidslivet krever anvendt kunnskap! Tilstandsrom- modeller Dataverktøy SpesialFlfelle MathScript LabVIEW

Detaljer

Frequency Response and Stability Analysis. Hans- Pe9er Halvorsen, M.Sc.

Frequency Response and Stability Analysis. Hans- Pe9er Halvorsen, M.Sc. Frequency Response and Stability Analysis Hans- Pe9er Halvorsen, M.Sc. Tilstandsrom- modeller Dataverktøy SpesialElfelle MathScript LabVIEW Differensial - likninger Tidsplanet Laplace Blokk- diagrammer

Detaljer

Systemidentifikasjon Oppgaver

Systemidentifikasjon Oppgaver Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics Systemidentifikasjon Oppgaver HANS-PETTER HALVORSEN, 2012.03.16 Faculty of Technology, Postboks

Detaljer

Tilstandsestimering Oppgaver

Tilstandsestimering Oppgaver Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics Tilstandsestimering Oppgaver HANS-PETTER HALVORSEN, 2012.01.27 Faculty of Technology, Postboks 203,

Detaljer

Frequency Response and Stability Analysis

Frequency Response and Stability Analysis Control Engineering Frequency Response and Stability Analysis Hans-Petter Halvorsen Dataverktøy Spesialtilfelle MathScript LabVIEW Differensial -likninger Tidsplanet Laplace 2.orden 1.orden Realisering/

Detaljer

Observer HANS-PETTER HALVORSEN, 2012.02.24. Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics

Observer HANS-PETTER HALVORSEN, 2012.02.24. Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics Observer HANS-PETTER HALVORSEN, 2012.02.24 Faculty of Technology, Postboks 203, Kjølnes ring 56,

Detaljer

Tilstandsestimering Løsninger

Tilstandsestimering Løsninger Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics Tilstandsestimering Løsninger HANS-PETTER HALVORSEN, 2012.01.27 Faculty of Technology, Postboks

Detaljer

Kalmanfilter HANS-PETTER HALVORSEN, 2012.02.24

Kalmanfilter HANS-PETTER HALVORSEN, 2012.02.24 Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics HANS-PETTER HALVORSEN, 2012.02.24 Faculty of Technology, Postboks 203, Kjølnes ring 56, N-3901 Porsgrunn,

Detaljer

Systemidentifikasjon

Systemidentifikasjon University College of Southeast Norway HANS-PETTER HALVORSEN http://home.hit.no/~hansha Forord Dette dokumentet brukes som forelesningsnotater i modellbasert regulering over temaet systemidentifikasjon.

Detaljer

Stabilitetsanalyse i MATLAB og LabVIEW

Stabilitetsanalyse i MATLAB og LabVIEW Stabilitetsanalyse i MATLAB og LabVIEW Av Finn Haugen (finn@techteach.no) TechTeach (http://techteach.no) 21.12 2002 1 2 TechTeach Innhold 1 Stabilitetsanalyse i MATLAB og LabVIEW 7 1.1 MATLAB... 7 1.1.1

Detaljer

1 Tidsdiskret PID-regulering

1 Tidsdiskret PID-regulering Finn Haugen (finn@techteach.no), TechTeach (techteach.no) 16.2.02 1 Tidsdiskret PID-regulering 1.1 Innledning Dette notatet gir en kortfattet beskrivelse av analyse av tidsdiskrete PID-reguleringssystemer.

Detaljer

Sammenlikningav simuleringsverktøyfor reguleringsteknikk

Sammenlikningav simuleringsverktøyfor reguleringsteknikk Presentasjon ved NFA-dagene 28.-29.4 2010 Sammenlikningav simuleringsverktøyfor reguleringsteknikk Av Finn Haugen (finn.haugen@hit.no) Høgskolen i Telemark Innhold: Eksempler på min egen bruk av simuleringsverktøy

Detaljer

KYBERNETIKKLABORATORIET. FAG: Dynamiske systemer DATO: 09.13 OPPG.NR.: DS3 MOTOR GENERATOROPPGAVE I

KYBERNETIKKLABORATORIET. FAG: Dynamiske systemer DATO: 09.13 OPPG.NR.: DS3 MOTOR GENERATOROPPGAVE I KYBERNETIKKLABORATORIET FAG: Dynamiske systemer DATO: 09.13 OPPG.NR.: DS3 MOTOR GENERATOROPPGAVE I Et reguleringssystem består av en svitsjstyrt (PWM) motor-generatorenhet og en mikrokontroller (MCU) som

Detaljer

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE AVDELING FOR INGENIØRUTDANNING ESAMENSOPPGAVE Emne: Gruppe(r): Eksamensoppgav en består av: ybernetikk I 2E Antall sider (inkl. forsiden): 5 Emnekode: SO 38E Dato: 5. juni 2004 Antall oppgaver: 6 Faglig

Detaljer

2-Tank System. Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics

2-Tank System. Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics 2-Tank System Hans- Petter Halvorsen, 2013.06.20 Faculty of Technology, Postboks 203, Kjølnes ring

Detaljer

Reguleringsteknikk. Finn Aakre Haugen. 16. juni 2014

Reguleringsteknikk. Finn Aakre Haugen. 16. juni 2014 Reguleringsteknikk Finn Aakre Haugen 16. juni 2014 1 2 F. Haugen: Reguleringsteknikk Innhold 1 Innledning til reguleringsteknikk 15 1.1 Grunnleggende begreper..................... 15 1.2 Hvaerreguleringgodtfor?...

Detaljer

KYBERNETIKKLABORATORIET. FAG: Kybernetikk DATO: 01.13 OPPG. NR.: R134 TEMPERATURREGULERING

KYBERNETIKKLABORATORIET. FAG: Kybernetikk DATO: 01.13 OPPG. NR.: R134 TEMPERATURREGULERING KYBERNETIKKLABORATORIET FAG: Kybernetikk DATO: 01.13 OPPG. NR.: R134 TEMPERATURREGULERING Denne øvelsen inneholder følgende momenter: a) En prosess, styring av luft - temperatur, skal undersøkes, og en

Detaljer

Reguleringsteknikk med LabVIEW og MathScript eksempler

Reguleringsteknikk med LabVIEW og MathScript eksempler Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics Reguleringsteknikk med LabVIEW og MathScript eksempler HANS- PETTER HALVORSEN, 2013.11.08 Faculty

Detaljer

Emnekode: sa 318E. Pensumlitteratur ( se liste nedenfor), fysiske tabeller, skrivesaker og kalkulator

Emnekode: sa 318E. Pensumlitteratur ( se liste nedenfor), fysiske tabeller, skrivesaker og kalkulator I I ~ høgskolen i oslo Emne: Gruppe(r): Eksamensoppgav en består av: Kybernetikk 2EY Antall sider (inkl. forsiden): 5 Emnekode: sa 318E Dato: 15. iuni 2004 Antall OPfgaver: Faglig veileder: Vesle møy Tyssø

Detaljer

KYBERNETIKKLABORATORIET. FAG: Industriell IT DATO: 08.14 OPPG.NR.: LV4. LabVIEW Temperaturmålinger BNC-2120

KYBERNETIKKLABORATORIET. FAG: Industriell IT DATO: 08.14 OPPG.NR.: LV4. LabVIEW Temperaturmålinger BNC-2120 KYBERNETIKKLABORATORIET FAG: Industriell IT DATO: 08.14 OPPG.NR.: LV4. LabVIEW LabVIEW Temperaturmålinger BNC-2120 Lampe/sensor-system u y I denne oppgaven skal vi teste et lampe/sensor-system som vist

Detaljer

NB! Vedlegg 2 skal benyttes i forbindelse med oppgave 3a), og vedlegges besvarelsen.

NB! Vedlegg 2 skal benyttes i forbindelse med oppgave 3a), og vedlegges besvarelsen. SLUTTPRØVE EMNE: EE407 Kybernetikk videregående LÆRER Kjell Erik Wolden KLASSE(R): IA, EL DATO: 0..0 PRØVETID, fra - til (kl.): 9.00.00 Oppgavesettet består av følgende: Antall sider (inkl. vedlegg): 0

Detaljer

Spørretime / Oppsummering

Spørretime / Oppsummering MAS107 Reguleringsteknikk Spørretime / Oppsummering AUD F 29. mai kl. 10:00 12:00 Generell bakgrunnsmateriale Gjennomgang av eksamen 2006 MAS107 Reguleringsteknikk, 2007: Side 1 G. Hovland Presentasjon

Detaljer

Emne 10 Litt mer om matriser, noen anvendelser

Emne 10 Litt mer om matriser, noen anvendelser Emne 10 Litt mer om matriser, noen anvendelser (Reelle) ortogonale matriser La A være en reell, kvadratisk matrise, dvs. en (n n)-matrise hvor hvert element Da vil A være ortogonal dersom: og Med menes

Detaljer

48 Praktisk reguleringsteknikk

48 Praktisk reguleringsteknikk 48 Praktisk reguleringsteknikk Figur 2.18: Simulering av nivåreguleringssystemet for flistanken. Regulatoren er en PI-regulator. (Resten av frontpanelet for simulatoren er som vist i figur 2.14.) Kompenseringsegenskaper:

Detaljer

Emne 11 Differensiallikninger

Emne 11 Differensiallikninger Emne 11 Differensiallikninger Differensiallikninger er en dynamisk beskrivelse av et system eller en prosess, basert på de balanselikningene vi har satt opp for prosessen. (Matematisk modellering). Vi

Detaljer

,QQOHGQLQJ 3-1/ )DJ 67( 6W\ULQJ DY URPIDUW \ / VQLQJVIRUVODJ WLO YLQJ

,QQOHGQLQJ 3-1/ )DJ 67( 6W\ULQJ DY URPIDUW \ / VQLQJVIRUVODJ WLO YLQJ 3-1/ )DJ 67( 6W\ULQJ DY URPIDUW \ / VQLQJVIRUVODJ WLO YLQJ,QQOHGQLQJ Der det er angitt referanser, er det underforstått at dette er til sider, figurer, ligninger, tabeller etc., i læreboken, dersom andre

Detaljer

Eksperimentell innstilling av PID-regulator

Eksperimentell innstilling av PID-regulator Kapittel 4 Eksperimentell innstilling av PID-regulator 4.1 Innledning Dette kapitlet beskriver noen tradisjonelle metoder for eksperimentell innstilling av regulatorparametre i P-, PI- og PID-regulatorer,

Detaljer

EMAR2101 Reguleringssystemer 1: Øving 3

EMAR2101 Reguleringssystemer 1: Øving 3 Høgskolen i Buskerud Finn Haugen (finn.haugen@hibu.no) 6.10 2008 EMAR2101 Reguleringssystemer 1: Øving 3 Oppgave 1 I underkapittel 1.1 i læreboken er det listet opp syv forskjellige formål for reguleringsteknikken,

Detaljer

ITPE2400/DATS2400: Datamaskinarkitektur

ITPE2400/DATS2400: Datamaskinarkitektur ITPE2400/DATS2400: Datamaskinarkitektur Forelesning 6: Mer om kombinatoriske kretser Aritmetikk Sekvensiell logikk Desta H. Hagos / T. M. Jonassen Institute of Computer Science Faculty of Technology, Art

Detaljer

Finn Haugen. Oppgaver i reguleringsteknikk 1. Nevn 5 variable som du vet eller antar kan være gjenstand for regulering i industrianlegg.

Finn Haugen. Oppgaver i reguleringsteknikk 1. Nevn 5 variable som du vet eller antar kan være gjenstand for regulering i industrianlegg. Finn Haugen. Oppgaver i reguleringsteknikk 1 Oppgave 0.1 Hvilke variable skal reguleres? Nevn 5 variable som du vet eller antar kan være gjenstand for regulering i industrianlegg. Oppgave 0.2 Blokkdiagram

Detaljer

Emne 9. Egenverdier og egenvektorer

Emne 9. Egenverdier og egenvektorer Emne 9. Egenverdier og egenvektorer Definisjon: Vi starter med en lineær transformasjon fra til, hvor Dersom, hvor, sier vi at: er egenverdiene til A er tilhørende egenvektorer. betyr at er et reelt eller

Detaljer

Slik skal du tune dine PID-regulatorer

Slik skal du tune dine PID-regulatorer Slik skal du tune dine PID-regulatorer Ivar J. Halvorsen SINTEF, Reguleringsteknikk PROST temadag Tirsdag 22. januar 2002 Granfos Konferansesenter, Oslo 1 Innhold Hva er regulering og tuning Enkle regler

Detaljer

LabVIEW and Single-Board RIO to Control a Quadcopter

LabVIEW and Single-Board RIO to Control a Quadcopter LabVIEW and Single-Board RIO to Control a Quadcopter Universitetet i Agder, Grimstad Øyvind Magnussen Master i (2011) PhD Hva er mekatronikk? Intro Kontrollsystem Sensorer sbrio Simulering Testing LabVIEW?

Detaljer

AU3: Espen Seljemo Torry Eriksen Vidar Wensel Magnus Bendiksen

AU3: Espen Seljemo Torry Eriksen Vidar Wensel Magnus Bendiksen AU3: Espen Seljemo Torry Eriksen Vidar Wensel Magnus Bendiksen 1.0 Problemstilling... 3 2.0 Fuzzy logikk... 3 2.1 Historie... 3 2.2 Fuzzy regulering... 3 2.3 Når kan man ta i bruk Fuzzy regulering?...

Detaljer

SIMULERINGSNOTAT. Prosjekt i emnet «Styresystemer og reguleringsteknikk» Gruppe 01. Laget av Torbjørn Morken Øyvind Eklo

SIMULERINGSNOTAT. Prosjekt i emnet «Styresystemer og reguleringsteknikk» Gruppe 01. Laget av Torbjørn Morken Øyvind Eklo SIMULERINGSNOTAT Prosjekt i emnet «Styresystemer og reguleringsteknikk» Gruppe 01 Laget av Torbjørn Morken Øyvind Eklo Høgskolen i Sør-Trøndelag 2015 Sammendrag Simulering av nivåregulering av tank ved

Detaljer

EMAR2101 Reguleringssystemer 1: Løsning til øving 3

EMAR2101 Reguleringssystemer 1: Løsning til øving 3 Høgskolen i Buskerud Finn Haugen (finn.haugen@hibu.no) 6.10 2008 EMAR2101 Reguleringssystemer 1: Løsning til øving 3 Løsning til oppgave 1 Eksempler på anvendelser: Produktkvalitet: Regulering av slipekraft

Detaljer

DET TEKNISK-NATURVITENSKAPELIGE FAKULTET MASTEROPPGAVE. Forfatter: Ben Ove Landa (signatur forfatter)

DET TEKNISK-NATURVITENSKAPELIGE FAKULTET MASTEROPPGAVE. Forfatter: Ben Ove Landa (signatur forfatter) DET TEKNISK-NATURVITENSKAPELIGE FAKULTET MASTEROPPGAVE Studieprogram/spesialisering: Master i Teknologi Kybernetikk/Signalbehandling Vårsemesteret, 2010 Åpen / Konfidensiell Forfatter: Ben Ove Landa (signatur

Detaljer

STE 6219 Digital signalbehandling Løsning til kontinuasjonseksamen

STE 6219 Digital signalbehandling Løsning til kontinuasjonseksamen HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Masterstudiet EL/RT Side av 4 STE 629 Digital signalbehandling Løsning til kontinuasjonseksamen Tid: Fredag 03.08.2007, kl: 09:00-2:00

Detaljer

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE AVDELING FOR INGENIØRUTDANNING ESAMENSOPPGAVE Emne: Gruppe(r): Eksamensoppgaven består av: ybernetikk I 2E Antall sider (inkl. forsiden): Emnekode: SO 318E Dato: Antall oppgaver: 6 Faglig veileder: Veslemøy

Detaljer

UiA. 1100 employees 10000 Students. Frank!

UiA. 1100 employees 10000 Students. Frank! UiA 1100 employees 10000 Students Frank! Health and Sport Sciences Humanities and Education Fine Arts Engineering and Science Economics and Social Sciences Teacher Education Unit http://www.uia.no/nyheter/ny-kraftig-vekst-i-soekningen-til-uia

Detaljer

Eksamensoppgaver i Reguleringsteknikk 1 og Dynamiske systemer.

Eksamensoppgaver i Reguleringsteknikk 1 og Dynamiske systemer. Eksamensoppgaver i Reguleringsteknikk 1 og Dynamiske systemer. Eksamensoppgaver med løsningsforslag Redigert versjon av 00h, 00utsatt, 01h og 01utsatt samt disse eks. i Dynamiske systemer: 0h 0uts. 03

Detaljer

NYE METODER FOR REGULERING AV VANNKRAFTANLEGG

NYE METODER FOR REGULERING AV VANNKRAFTANLEGG NYE METODER FOR REGULERING AV VANNKRAFTANLEGG - Kan automatisk regulering overta for en lokal spesialist? Jane Solvi, Skagerak Kraft AS Ingvar Andreassen, Skagerak Kraft AS Bernt Lie, Høgskolen i Telemark

Detaljer

Eksperimentell innstilling av PID-regulator

Eksperimentell innstilling av PID-regulator Kapittel 4 Eksperimentell innstilling av PID-regulator 4.1 Innledning Dette kapitlet beskriver noen tradisjonelle metoder for eksperimentell innstilling av regulatorparametre i P-, PI- og PID-regulatorer,

Detaljer

Forelesning 14 Systemer av dierensiallikninger

Forelesning 14 Systemer av dierensiallikninger Forelesning 14 Systemer av dierensiallikninger Eivind Eriksen 9. april 010 Dierensiallikninger En dierensiallikning inneholder en avhengig variabel (typisk y ) og en uavhengig variabel (typisk x), som

Detaljer

0 M. Z w Z q w M w M q q. M D G b 1 s

0 M. Z w Z q w M w M q q. M D G b 1 s US Navy s Deep Submergence Rescue Vehicle Oppgave 1 - DSRV DSRV kinematisk bevegelseslikninger x ucos wsin ż usin wcos q Dynamiske likninger for heave og pitch # m Z w Z q w M w I y M q q Z w Z q w M w

Detaljer

Tidsdomene analyse (kap 3 del 2)

Tidsdomene analyse (kap 3 del 2) INF3470 Digital signalbehandling Tidsdomene analyse (kap 3 del 2) Sverre Holm 3.9 Diskret konvolusjon Metode for å finne responsen fra et filter med 0 initialbetingelser, fra impulsresponsen h[n] Enkelt

Detaljer

Formelliste til boken Reguleringsteknikk

Formelliste til boken Reguleringsteknikk Formelliste til boken Reguleringsteknikk Finn Haugen 14. februar 013 Nedenfor er de mest aktuelle formlene i boken. Formlene står i samme rekkefølge som i boken. IEA-indeksen (Integral of Absolute value

Detaljer

TTK 4140 Reguleringsteknikk m/elektriske kretser Dataøving 2

TTK 4140 Reguleringsteknikk m/elektriske kretser Dataøving 2 NTNU Norges teknisknaturvitenskapelige universitet Institutt for teknisk kybernetikk vårsemesteret 2004 TTK 4140 Reguleringsteknikk m/elektriske kretser Dataøving 2 Fiskelabben G-116/G-118 Uke 16: Onsdag

Detaljer

Uke 4: z-transformasjonen

Uke 4: z-transformasjonen Uke 4: z-transformasjonen Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/26 Dagens temaer z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper

Detaljer

So3ware History. Hans- Pe(er Halvorsen, M.Sc. h(p://home.hit.no/~hansha/?page=so3ware_development

So3ware History. Hans- Pe(er Halvorsen, M.Sc. h(p://home.hit.no/~hansha/?page=so3ware_development h(p://home.hit.no/~hansha/?page=so3ware_development O. Widder. (2013). geek&poke. Available: http://geek-and-poke.com! So3ware History Hans- Pe(er Halvorsen, M.Sc. 1 Quotes Det finnes absolu. ingen grunn

Detaljer

Reguleringsteknikk Sammendrag REVISJON ØRJAN LANGØY OLSEN

Reguleringsteknikk Sammendrag REVISJON ØRJAN LANGØY OLSEN 2015 Reguleringsteknikk Sammendrag REVISJON 1.1.1 ØRJAN LANGØY OLSEN Innhold Ordliste... 2 PID (Proporsjonal Integral Derivasjon) regulator... 3 Ziegler-Nichols Closed-loop tuning... 3 Ziegler-Nichols

Detaljer

Eksamen i MIK130, Systemidentifikasjon

Eksamen i MIK130, Systemidentifikasjon DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Eksamen i MIK130, Systemidentifikasjon Dato: Tirsdag 28. november 2006 Lengde på eksamen: 4 timer Tillatte hjelpemidler:

Detaljer

AMS-case forts. Eksemplifisering av modellbasert. tilnærming til design av brukergrensesnitt

AMS-case forts. Eksemplifisering av modellbasert. tilnærming til design av brukergrensesnitt AMS-case forts. Eksemplifisering av modellbasert tilnærming til design av brukergrensesnitt Objekt-interaktor med valg Relatert objekt velges ofte blant mange kandidater Output av kandidat-sett Input av

Detaljer

Prosess-systemteknikk fordypningsemne PROSJEKTTITTEL: Stabiliserende regulering av kompressor. Atle Andreassen

Prosess-systemteknikk fordypningsemne PROSJEKTTITTEL: Stabiliserende regulering av kompressor. Atle Andreassen NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for kjemi og biologi Institutt for kjemisk prosessteknologi FORDYPNINGSEMNE HØST 2001 SIK 2092P1 Prosess-systemteknikk fordypningsemne PROSJEKTTITTEL:

Detaljer

Kan vi stole på klimamodellenes profetier for Arktis?

Kan vi stole på klimamodellenes profetier for Arktis? Kan vi stole på klimamodellenes profetier for Arktis? Øyvind Byrkjedal Geofysisk Institutt og Bjerknessenteret, Universitetet I Bergen Profetier for Arktis Observert trend 1953-2003, vinter Modellert trend

Detaljer

Manual for wxmaxima tilpasset R2

Manual for wxmaxima tilpasset R2 Manual for wxmaxima tilpasset R Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, også regner symbolsk. Det vil si at den kan forenkle uttrykk,

Detaljer

Oppdatert usikkerhetshåndbok for fiskale gassmålestasjoner

Oppdatert usikkerhetshåndbok for fiskale gassmålestasjoner Prosjektnavn dd/mm/yyyy 1 Oppdatert usikkerhetshåndbok for fiskale gassmålestasjoner Kjell-Eivind Frøysa, CMR Instrumentation Dag Flølo, Statoil Gaute Ø. Lied, CMR Instrumentation Usikkerhetshåndbok NFOGM

Detaljer

Reguleringsteknikk. Jens G. Balchen Trond Andresen Bjarne A. Foss. 1. utgave

Reguleringsteknikk. Jens G. Balchen Trond Andresen Bjarne A. Foss. 1. utgave Reguleringsteknikk Jens G. Balchen Trond Andresen Bjarne A. Foss 1. utgave 1999 TAPIR FORLAG, TRONDHEIM 1999 ISBN 82-519-1338-1 Det må ikke kopieres fra denne boka ut over det som er tillatt etter bestemmelser

Detaljer

Ny jordmodell for skandinaviske leirer

Ny jordmodell for skandinaviske leirer Ny jordmodell for skandinaviske leirer Bakgrunn og fremgangsmåte. J.A. Rønningen Bakgrunn 1) Hovedmålet er å lage en robust og brukervennlig 3D jordmodell for skandinavisk leire, basert på effektivspenninger

Detaljer

Reguleringsteknikken kan ha stor (ofte avgjørende) betydning for blant annet følgende forhold:

Reguleringsteknikken kan ha stor (ofte avgjørende) betydning for blant annet følgende forhold: Kapittel 1 Innledning 1.1 Reguleringsteknikkens betydning Reguleringsteknikk er metoder og teknikker for automatisk styring en fysisk prosess slik at verdien av en gitt prosessvariabel er tilstrekkelig

Detaljer

Formelark for eksamen i TE 559 Signaler og systemer Kontinuerlig tid Diskret tid Beskrivelse Dierensialligning Dieranseligning y(t) =y (t) +3u(t) +5u (t) y[k] =,y[k, ] + u[k] Beskrivelse Impulsrespons,

Detaljer

Dato: Tirsdag 28. november 2006 Lengde på eksamen: 4 timer Tillatte hjelpemidler: Kun standard enkel kalkulator, HP 30S

Dato: Tirsdag 28. november 2006 Lengde på eksamen: 4 timer Tillatte hjelpemidler: Kun standard enkel kalkulator, HP 30S DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Eksamen i MIK130, Systemidentifikasjon Dato: Tirsdag 28. november 2006 Lengde på eksamen: 4 timer Tillatte hjelpemidler:

Detaljer

Løsning til deleksamen 2 i SEKY3322 Kybernetikk 3

Løsning til deleksamen 2 i SEKY3322 Kybernetikk 3 Høgskolen i Buskerud. Finn Haugen (finn@techteach.no). Løsning til deleksamen 2 i SEKY3322 Kybernetikk 3 Tid: 7. april 28. Varighet 4 timer. Vekt i sluttkarakteren: 3%. Hjelpemidler: Ingen trykte eller

Detaljer

case forts. Alternativ 1 Alternativer Sammensetning Objekt-interaktor med valg

case forts. Alternativ 1 Alternativer Sammensetning Objekt-interaktor med valg Objekt-interaktor med valg AMS- case forts. Eksemplifisering av modellbasert tilnærming til design av brukergrensesnitt Relatert objekt velges ofte blant mange kandidater Output av kandidat-sett Input

Detaljer

TRANSISTORER Transistor forsterker

TRANSISTORER Transistor forsterker Kurs: FYS1210 Elektronikk med prosjektoppgaver Gruppe: Gruppe-dag: Oppgave: LABORAORIEØVELSE NR 4 Omhandler: RANSISORER ransistor forsterker Revidert utgave, desember 2014 (. Lindem, M.Elvegård, K.Ø. Spildrejorde)

Detaljer

Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B

Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B Oppgave 1 En parametrisk linje L og et plan P (i rommet)

Detaljer

Clino Professional Ozone Generator ONY10-3 and ONY20-3 Instructions for assembly and use. Edition 3.

Clino Professional Ozone Generator ONY10-3 and ONY20-3 Instructions for assembly and use. Edition 3. Clino Professional Ozone Generator ONY10-3 and ONY20-3 Instructions for assembly and use. Edition 3. ONY-serien Komplett integrerte ozongeneratorer for industrielt bruk, basert på den seneste teknologi

Detaljer

Høgskolen i Østfold Avdeling for informasjonsteknologi. Fag ITD 30005 Industriell IT. Laboppgave 2. Del 1. Temperatur-regulering

Høgskolen i Østfold Avdeling for informasjonsteknologi. Fag ITD 30005 Industriell IT. Laboppgave 2. Del 1. Temperatur-regulering Høgskolen i Østfold Avdeling for informasjonsteknologi Fag ITD 30005 Industriell IT Laboppgave 2. Del 1. Temperatur-regulering Frist for innlevering: Tirsdag 20.okt 2015 Remmen 01.10.2015 00 Sept 10 Temperaturregulering

Detaljer

EKSAMEN. Ta med utregninger i besvarelsen for å vise hvordan du har kommet fram til svaret.

EKSAMEN. Ta med utregninger i besvarelsen for å vise hvordan du har kommet fram til svaret. EKSAMEN Emnekode: ITD30005 Emne: Industriell IT Dato: 16.12.2015 Eksamenstid: kl. 0900 til kl. 1300 Hjelpemidler: Tre A4-ark (seks sider) med egne notater. "ikke-kommuniserende" kalkulator. Faglærer: Robert

Detaljer

PRISSETTING AV KOMPETANSE: PRAKTISK BRUK AV VALGT EVALUERINGSMODELL

PRISSETTING AV KOMPETANSE: PRAKTISK BRUK AV VALGT EVALUERINGSMODELL PRISSETTING AV KOMPETANSE: PRAKTISK BRUK AV VALGT EVALUERINGSMODELL ØYSTEIN HUSEFEST MELAND Faculty of Economics and Social Science University of Agder, Servicebox 422 N-4604 Kristiansand, Norway oystein.meland@uia.no

Detaljer

Kryptografi og nettverkssikkerhet

Kryptografi og nettverkssikkerhet Kryptografi og nettverkssikkerhet Kapittel : Blokkchiffere og DES (the Data Encryption Standard) Moderne symmetrisk kryptografi Skal se på moderne blokkchiffere, en av de mest brukte kryptoalgoritmene.

Detaljer

Oppgave Nr.og navn LABORATORIEØVELSE NR 6 Revidert utgave desember 2014 T. Lindem, K. Ø. Spildrejorde, M. Elvegård

Oppgave Nr.og navn LABORATORIEØVELSE NR 6 Revidert utgave desember 2014 T. Lindem, K. Ø. Spildrejorde, M. Elvegård Kurs: FYS1210 Elektronikk med prosjektoppgaver Gruppe: Gruppe-dag: Oppgave Nr.og navn LABORATORIEØVELSE NR 6 Revidert utgave desember 2014 T. Lindem, K. Ø. Spildrejorde, M. Elvegård Omhandler: «KLOKKEGENERATOR

Detaljer

Operasjonsforsterkeren

Operasjonsforsterkeren Operasjonsforsterkeren En kort innføring og oversikt Forelesningsnotat for SIE3040 Reguleringsteknikk med elektriske kretser ved Odd Pettersen. utgave pril 2000 (noen korreksjoner mars 2003) NORGES TEKNISK-NTURVITENSKPELIGE

Detaljer

Regulatoren. Gjennomgang av regulatorens parameter og konfigurasjon

Regulatoren. Gjennomgang av regulatorens parameter og konfigurasjon Regulatoren Fagstoff ODD STÅLE VIKENE Gjennomgang av regulatorens parameter og konfigurasjon Listen [1] Regulatoren sammenligner er-verdi (PV) og skalverdi (SV), og behandler avviket vha P-,I- og D-ledd.

Detaljer

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning.

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning. Stavanger, 30. juni 2016 Det teknisknaturvitenskapelige fakultet ELE620 Systemidentifikasjon, 2016. Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning.

Detaljer

Kryptografi og nettverkssikkerhet

Kryptografi og nettverkssikkerhet Kryptografi og nettverkssikkerhet Kapittel : Blokkchiffere og DES (the Data Encryption Standard) Moderne symmetrisk kryptografi Skal se på moderne blokkchiffere, en av de mest brukte kryptoalgoritmene.

Detaljer

Plan for fagskoleutdanning

Plan for fagskoleutdanning Publiseringsdato: 07.07.2016 Plan for fagskoleutdanning Automatisering 2-årig teknisk fagskole Fagskolane i Hordaland Bergen tekniske fagskole 1 Innhold i utdanningen Innledning I mange industribedrifter,

Detaljer

Alle modeller og simuleringer i begge delprosjektene ble oppbygd ved hjelp av Matlab og Simulink

Alle modeller og simuleringer i begge delprosjektene ble oppbygd ved hjelp av Matlab og Simulink Resumè I oppgaveformuleringen er prosjektet delt opp i to delprosjekter, klassisk modellering med konvensjonell regulering, og tilstandsmodellering med tilstandsregulering av hydraulisk utstyr til oljeboring,

Detaljer

Tittel Objektorientert systemutvikling 1. Eksamenstid, fra-til 09.00-12.00 Ant. oppgaver 6

Tittel Objektorientert systemutvikling 1. Eksamenstid, fra-til 09.00-12.00 Ant. oppgaver 6 EKSAMENSFORSIDE Fagnr. OBJ208a Tittel Objektorientert systemutvikling 1 Ansvarlig faglærer Viggo Holmstedt Klasse(r) IS 2 og IN 2 Eksamensoppgaven består av følgende: Tillatte hjelpemidler: Dato 17.12.2008

Detaljer

TRANSISTORER. Navn: Navn: Kurs: FY-IN204 Elektronikk med prosjektoppgaver - 4 vekttall. Oppgave: LABORATORIEØVELSE NR 2.

TRANSISTORER. Navn:   Navn:   Kurs: FY-IN204 Elektronikk med prosjektoppgaver - 4 vekttall. Oppgave: LABORATORIEØVELSE NR 2. Kurs: FY-IN204 Elektronikk med prosjektoppgaver - 4 vekttall Gruppe: Gruppe-dag: Oppgave: LABORATORIEØVELSE NR 2 Omhandler: TRANSISTORER Revidert utgave 23.02.2001, 20.02.2003 av HBalk Utført dato: Utført

Detaljer

Emne 6. Lineære transformasjoner. Del 1

Emne 6. Lineære transformasjoner. Del 1 Emne 6. Lineære transformasjoner. Del 1 Lineære transformasjoner kan sammenliknes med vanlig funksjonslære. X x 1 x 2 x 3 f Y Gitt to tallmengder X og Y. y 1 En funksjon f er her en regel som y 2 knytter

Detaljer

EKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014

EKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014 EKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014 Matematikk R2 Oversikt over hovedområdene: Programfag Hovedområder Matematikk R1 Geometri Algebra Funksjoner Matematikk R2 Geometri Algebra Funksjoner

Detaljer

NORDMAT, Oslo. virkelig IEEE. et redskapsfag for ingeniøren? Trond Clausen Høgskolen i Telemark. Er ingeniørmatematikk

NORDMAT, Oslo. virkelig IEEE. et redskapsfag for ingeniøren? Trond Clausen Høgskolen i Telemark. Er ingeniørmatematikk IEEE Er ingeniørmatematikk virkelig et redskapsfag for ingeniøren? Trond Clausen Høgskolen i Telemark NORDMAT, Oslo 7./8. november 2006 Undersøkelsen gjelder: GRUNNLEGGENDE MATEMATIKK PÅ FIRST CYCLE/UNDERGRADUATE

Detaljer

Designnotat. 1. Innledning

Designnotat. 1. Innledning Designnotat Design og utforming av en klasse A effektforsterker Forfatter: Fredrik Ellertsen Versjon: 1 Dato: 26.03.2015 Kontrollert av: Dato: Innhold 1. Innledning 1 2. Mulig løsning 2 3. Realisering

Detaljer

3.9 Teori og praksis for Minste kvadraters metode.

3.9 Teori og praksis for Minste kvadraters metode. 3.9 Teori og praksis for Minste kvadraters metode. Vi fortsetter med minste kvadraters problem. Nå skal vi se nærmere på noen teoretiske spørsmål, bl.a. hvordan normallikningene utledes. Minner om MK problemstillingen:

Detaljer

Dato: Eksamenstid: 2E. 7. juni 2006 ST ~

Dato: Eksamenstid: 2E. 7. juni 2006 ST ~ G hsgskolen oslo Emne Emnekode Faglig veileder: Kybernetikk VeSlem0Y TYSS0 _Ln 3~q E' _~j~rn Engebretsen Gruppe(r): Dato: Eksamenstid: 2E 7. juni 2006 ST ~ Eksamensopp-gaven! Antal! sider (inkl. Antal!

Detaljer

Model nr. 2. Model nr. 4

Model nr. 2. Model nr. 4 Model nr. 1 Model nr. 2 210-170001-128 Alu profil 2,5 m. 210-170001-128-Opal 2,5 m. Opal Akryl 210-170001-128-Frost 2,5 m. Frostet Akryl 210-170001-128-Clear 2,5 m. Klar akryl 210-170002-128 Alu profil

Detaljer

Lær å bruke wxmaxima

Lær å bruke wxmaxima Bjørn Ove Thue og Sigbjørn Hals Lær å bruke wxmaxima Et godt og gratis CAS-verktøy med enkelt brukergrensesnitt. Oppdatert versjon, november 2009 Lær å bruke wxmaxima. Eksempler fra Sinus-bøkene fra Cappelen

Detaljer

IA4412 Systemutvikling og dokumentasjon Læringsutbytte, arbeidsbelastning og vurderingsformer

IA4412 Systemutvikling og dokumentasjon Læringsutbytte, arbeidsbelastning og vurderingsformer IA4412 Systemutvikling og dokumentasjon Læringsutbytte, arbeidsbelastning og vurderingsformer B. Lund. (2013). Lunch. Available: http://www.lunchstriper.no, http://www.dagbladet.no/tegneserie/lunch Hans-Petter

Detaljer

5.6 Diskrete dynamiske systemer

5.6 Diskrete dynamiske systemer 5.6 Diskrete dynamiske systemer Egenverdier/egenvektorer er viktige for å analysere systemer av typen x k+1 = A x k, k 0, der A er en kvadratisk diagonaliserbar matrise. Tenker her at x k angir systemets

Detaljer

Prosjektarbeid. BSc. Hans-Petter Halvorsen, M.Sc. E-mail: hans.p.halvorsen@hit.no Blog: http://home.hit.no/~hansha/ 1

Prosjektarbeid. BSc. Hans-Petter Halvorsen, M.Sc. E-mail: hans.p.halvorsen@hit.no Blog: http://home.hit.no/~hansha/ 1 BSc. Prosjektarbeid Hans-Petter Halvorsen, M.Sc. Telemark University College Faculty of Technology Department of Electrical Engineering, Information Technology and Cybernetics E-mail: hans.p.halvorsen@hit.no

Detaljer

HAVBRUKSTJENESTEN A/S

HAVBRUKSTJENESTEN A/S HAVBRUKSTJENESTEN A/S Strømmåling Lokalitet: Seterneset, Molde kommune Dato: Oktober og desember og januar Omsøkt/disponert av: SalMar Organic AS Rapportansvarlig: Havbrukstjenesten AS, Arild Kjerstad

Detaljer

Utvikling og analyse av 4-tank laboratorieprosess

Utvikling og analyse av 4-tank laboratorieprosess Avdeling for teknologiske fag Bachelorutdanningen RAPPORT FRA 6. SEMESTERS PROSJEKT I EMNE IA5506 VÅREN 2009 IA6-4-09 Utvikling og analyse av 4-tank laboratorieprosess Avdeling for teknologiske fag Adresse:

Detaljer

Emne 7. Vektorrom (Del 1)

Emne 7. Vektorrom (Del 1) Emne 7. Vektorrom (Del 1) Første del av dette emnet innholder lite nytt regnemessig, men vi innfører en rekke nye begreper. Avbildning (image). R m T R n n image(t) Vi kan starte med samme skjematiske

Detaljer

Presentasjon 1, Requirement engineering process

Presentasjon 1, Requirement engineering process Presentasjon 1, Requirement ing process Prosessodeller Hvorfor bruke prosessmodeller? En prosessmodell er en forenklet beskrivelse av en prosess En prosessmodell er vanligvis lagd ut fra et bestemt perspektiv

Detaljer

Muliggjørende teknologier "Teknologibad" Manufacturing

Muliggjørende teknologier Teknologibad Manufacturing Muliggjørende teknologier "Teknologibad" Manufacturing Geir Ringen, Forskningssjef SINTEF Raufoss Manufacturing Technology for a better society 1 Megatrender Demografiske endringer (økende verdenspopulasjon,

Detaljer

Dagens temaer. Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture. Kort repetisjon fra forrige gang. Kombinatorisk logikk

Dagens temaer. Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture. Kort repetisjon fra forrige gang. Kombinatorisk logikk Dagens temaer Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture Kort repetisjon fra forrige gang Kombinatorisk logikk Analyse av kretser Eksempler på byggeblokker Forenkling

Detaljer

Velkommen til læringsnettverk 9.9.15. Line Hurup Thomsen, fagrådgiver Utviklingssenter for sykehjem og hjemmetjenester

Velkommen til læringsnettverk 9.9.15. Line Hurup Thomsen, fagrådgiver Utviklingssenter for sykehjem og hjemmetjenester Velkommen til læringsnettverk 9.9.15 Line Hurup Thomsen, fagrådgiver Utviklingssenter for sykehjem og hjemmetjenester Viktige områder/faktorer for å få til endringer i helsetjenesten Viktige områder for

Detaljer

Løsningsforslag B = 1 3 A + B, AB, BA, AB BA, B 2, B 3 C + D, CD, DC, AC, CB. det(a), det(b)

Løsningsforslag B = 1 3 A + B, AB, BA, AB BA, B 2, B 3 C + D, CD, DC, AC, CB. det(a), det(b) Innlevering BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Fredag 05. februar 2016 kl 14:00 Antall oppgaver: 5 Løsningsforslag 1 Vi denerer noen matriser A [ 1 5 2 0 B [ 1

Detaljer