Tilstandsrommodeller. Hans- Pe1er Halvorsen, M.Sc.

Størrelse: px
Begynne med side:

Download "Tilstandsrommodeller. Hans- Pe1er Halvorsen, M.Sc."

Transkript

1 Tilstandsrommodeller Hans- Pe1er Halvorsen, M.Sc.

2 Tilstandsrom- modeller Dataverktøy Spesial>lfelle MathScript LabVIEW Differensial - likninger Tidsplanet Laplace Blokk- diagrammer Transfer- funksjoner 2.orden 1.orden Analyse/Design Stabilitets- analyse Det komplekse plan 2. Frekvensrespons 1. Systemets poler Bodediagram Realisering/ Implementering Reguleringsteknikk Serie, Parallel, Feedback Det komplekse plan S- planet K = Forsterkning T=Tidskonstant Sprang- respons 1.orden med >dsforsinkelse Reguleringssystem Asympto>sk stabilt system Air Heater Tidsplanet Ustabilt system Marginalt stabilt system Asympto>sk stabilt system Marginalt stabilt system Ustabilt system

3 Tilstandsrommodeller Tilstandsrom- modeller Spesial>lfelle Differensial- likninger Laplace Transfer- funksjoner En strukturert form/kompakt form når vi har et se1 med 1.ordens (lineære) differenislalikninger Generelt består et dynamisk system av flere enn en differensiallikning, slik at de1e er en veldig hendig måte å se1e opp det dynamiske systemet på. Veldig mye reguleringsteori (da særlig avansert reguleringsteori) er basert på at systemet er sa1 opp på >lstandsromform Tilstandsrommodeller kan enkelt implementers i LabVIEW, MathScript, osv.

4 Tilstandsrommodeller Dynamisk System u1, u2, u3, inngangssignaler (pådrag) x1, x2, x3, - interne >lstander F.eks Trykk, Temperatur, Nivå, osv. y1, y2, y3, utgangsignaler(målinger) A, B, C, D er matriser x, u, y er vektorer

5 Tilstandsrommodeller Et se1 med lineære differensial- likninger Som se1es opp på en strukturert måte x Systemets interne >lstander u pådraget(ene) (fra regulatoren) y utgangen(e), dvs det vi fysisk måler

6 Tilstandsrommodeller - Eksempel x1 og x2 Systemets interne >lstander u pådraget (fra regulatoren) y utgangen, dvs det vi fysisk måler x En vektor som består av systemets interne >lstander u En vektor som består av systemets pådrag (vi kan ha mer enn et pådrag!) y En vektor som består av systemets måling(er)

7 Tilstandsrommodeller - MathScript MathScript: A = [1, 2; 3, 4]; B = [0; 1]; C = [1, 0]; D = [0]; Sprangrespons: NB! Som du ser så er de1e systemet ustabilt! model = ss(a, B, C, D) step(model) Studenter: Prøv deie! Kan vi finne transferfunksjonen(e) hvis vi har funnet >lstandsrommodellen? Ja! H = tf(model)

8 Tilstandsrommodeller Eksempler Hva blir Tilstandsrommodellen for systemet?????

9 Implementer denne i MathScript Hva blir Transferfunksjonen?

10 Tilstandsrommodeller Eksempler Hva blir Tilstandsrommodellen for systemet?????

11 Implementer denne i MathScript Hva blir Transferfunksjonen(e)?

12 SISO Dynamisk System SIMO Dynamisk System Single Input, Single Output Single Input, Mul>ple Output MISO Dynamisk System MIMO Dynamisk System Mul>ple Input, Single Output Mul>ple Input, Mul>ple Output

13 Tilstandsrommodeller - Vanntankeksempel Systemets differenislalikninger: NB! De1e er en forenklet modell av systemet! h er nivået i tanken, mens Fout er utstrøminen i bunnen gjennom en ven>l, Kp er pumpeforsterkningen som gjør at det renner vann inn i tanken. Målet er å regulere nivået i tanken på et gi1 nivå (referanseverdi), dvs u er pådraget fra regulatoren som styrer pumpa på innløpet. Nivået h blir målt vha boblerørprinsippet. Hva blir Tilstandsrommodellen for systemet????? Dere får 5 minu1er på å finne denne, samt simulere systemet i MathScript (sprangrespons). Hva blir transferfunksjonen? Bruk disse verdiene i simuleringen Kp = 16.5; At = 78.5;

14 Tilstandsrommodeller Vanntankeksempel Systemets differenislalikninger: Vi se1er: Da får vi: Tilslu1:

15 Tilstandsrommodeller Vanntankeksempel MathScript: clc, clear Kp = 16.5; A_tank = 78.5; A = [0, -1/A_tank; 0, 0]; B = [Kp/A_tank; 0]; C = [1, 0]; D = [0]; model = ss(a, B, C, D) step(model) Transferfunksjonen: H = tf(model) Kommentar >l resultatene: Vi ser at vanntanken oppfører seg som en typisk integrator.

16 Hans- PeIer Halvorsen, M.Sc. Telemark University College Faculty of Technology Department of Electrical Engineering, Technology and E- mail: Blog: hip://home.hit.no/~hansha/ 16

Stabilitetsanalyse. Hans- Pe/er Halvorsen, M.Sc.

Stabilitetsanalyse. Hans- Pe/er Halvorsen, M.Sc. Stabilitetsanalyse Hans- Pe/er Halvorsen, M.Sc. Tilstandsrom- modeller Dataverktøy Spesial@lfelle MathScript LabVIEW Differensial - likninger Tidsplanet Laplace Blokk- diagrammer Transfer- funksjoner 2.orden

Detaljer

MathScript. Hans- Pe1er Halvorsen, M.Sc.

MathScript. Hans- Pe1er Halvorsen, M.Sc. MathScript Hans- Pe1er Halvorsen, M.Sc. Ja! De1e er et IA fag dvs. både AutomaFsering og InformaFkk! Arbeidslivet krever anvendt kunnskap! Tilstandsrom- modeller Dataverktøy SpesialFlfelle MathScript LabVIEW

Detaljer

Control Engineering. Stability Analysis. Hans-Petter Halvorsen

Control Engineering. Stability Analysis. Hans-Petter Halvorsen Control Engineering Stability Analysis Hans-Petter Halvorsen Dataverktøy MathScript LabVIEW Differensial -likninger Tidsplanet Laplace 2.orden 1.orden Realisering/ Implementering Reguleringsteknikk Serie,

Detaljer

Frequency Response and Stability Analysis. Hans- Pe9er Halvorsen, M.Sc.

Frequency Response and Stability Analysis. Hans- Pe9er Halvorsen, M.Sc. Frequency Response and Stability Analysis Hans- Pe9er Halvorsen, M.Sc. Tilstandsrom- modeller Dataverktøy SpesialElfelle MathScript LabVIEW Differensial - likninger Tidsplanet Laplace Blokk- diagrammer

Detaljer

Systemidentifikasjon Oppgaver

Systemidentifikasjon Oppgaver Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics Systemidentifikasjon Oppgaver HANS-PETTER HALVORSEN, 2012.03.16 Faculty of Technology, Postboks

Detaljer

Tilstandsestimering Oppgaver

Tilstandsestimering Oppgaver Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics Tilstandsestimering Oppgaver HANS-PETTER HALVORSEN, 2012.01.27 Faculty of Technology, Postboks 203,

Detaljer

Frequency Response and Stability Analysis

Frequency Response and Stability Analysis Control Engineering Frequency Response and Stability Analysis Hans-Petter Halvorsen Dataverktøy Spesialtilfelle MathScript LabVIEW Differensial -likninger Tidsplanet Laplace 2.orden 1.orden Realisering/

Detaljer

Simuleringseksempel. Vi ønsker å simulere følgende system (vanntank) i MathScript: Matematisk modell:

Simuleringseksempel. Vi ønsker å simulere følgende system (vanntank) i MathScript: Matematisk modell: Simuleringseksempel Vi ønsker å simulere følge system (vanntank) i MathScript: Matematisk modell: Vi har funnet følge matematiske modell for systemet: [ ] der: er nivået i tanken er pådragssignalet til

Detaljer

Observer HANS-PETTER HALVORSEN, 2012.02.24. Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics

Observer HANS-PETTER HALVORSEN, 2012.02.24. Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics Observer HANS-PETTER HALVORSEN, 2012.02.24 Faculty of Technology, Postboks 203, Kjølnes ring 56,

Detaljer

Systemidentifikasjon Løsninger

Systemidentifikasjon Løsninger University College of Southeast Norway Systemidentifikasjon Løsninger HANS-PETTER HALVORSEN http://home.hit.no/~hansha Innholdsfortegnelse 1 Innledning... 3 2 Minste kvadraters metode... 7 3 Validering...

Detaljer

Tilstandsestimering Løsninger

Tilstandsestimering Løsninger Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics Tilstandsestimering Løsninger HANS-PETTER HALVORSEN, 2012.01.27 Faculty of Technology, Postboks

Detaljer

Kalmanfilter HANS-PETTER HALVORSEN, 2012.02.24

Kalmanfilter HANS-PETTER HALVORSEN, 2012.02.24 Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics HANS-PETTER HALVORSEN, 2012.02.24 Faculty of Technology, Postboks 203, Kjølnes ring 56, N-3901 Porsgrunn,

Detaljer

Systemidentifikasjon

Systemidentifikasjon University College of Southeast Norway HANS-PETTER HALVORSEN http://home.hit.no/~hansha Forord Dette dokumentet brukes som forelesningsnotater i modellbasert regulering over temaet systemidentifikasjon.

Detaljer

Simulering i MATLAB og SIMULINK

Simulering i MATLAB og SIMULINK Simulering i MATLAB og SIMULINK Av Finn Haugen (finn@techteach.no) TechTeach (http://techteach.no) 13. november 2004 1 2 TechTeach Innhold 1 Simulering av differensiallikningsmodeller 7 1.1 Innledning...

Detaljer

Stabilitetsanalyse i MATLAB og LabVIEW

Stabilitetsanalyse i MATLAB og LabVIEW Stabilitetsanalyse i MATLAB og LabVIEW Av Finn Haugen (finn@techteach.no) TechTeach (http://techteach.no) 21.12 2002 1 2 TechTeach Innhold 1 Stabilitetsanalyse i MATLAB og LabVIEW 7 1.1 MATLAB... 7 1.1.1

Detaljer

1 Tidsdiskret PID-regulering

1 Tidsdiskret PID-regulering Finn Haugen (finn@techteach.no), TechTeach (techteach.no) 16.2.02 1 Tidsdiskret PID-regulering 1.1 Innledning Dette notatet gir en kortfattet beskrivelse av analyse av tidsdiskrete PID-reguleringssystemer.

Detaljer

Sammenlikningav simuleringsverktøyfor reguleringsteknikk

Sammenlikningav simuleringsverktøyfor reguleringsteknikk Presentasjon ved NFA-dagene 28.-29.4 2010 Sammenlikningav simuleringsverktøyfor reguleringsteknikk Av Finn Haugen (finn.haugen@hit.no) Høgskolen i Telemark Innhold: Eksempler på min egen bruk av simuleringsverktøy

Detaljer

KYBERNETIKKLABORATORIET. FAG: Dynamiske systemer DATO: 09.13 OPPG.NR.: DS3 MOTOR GENERATOROPPGAVE I

KYBERNETIKKLABORATORIET. FAG: Dynamiske systemer DATO: 09.13 OPPG.NR.: DS3 MOTOR GENERATOROPPGAVE I KYBERNETIKKLABORATORIET FAG: Dynamiske systemer DATO: 09.13 OPPG.NR.: DS3 MOTOR GENERATOROPPGAVE I Et reguleringssystem består av en svitsjstyrt (PWM) motor-generatorenhet og en mikrokontroller (MCU) som

Detaljer

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE AVDELING FOR INGENIØRUTDANNING ESAMENSOPPGAVE Emne: Gruppe(r): Eksamensoppgav en består av: ybernetikk I 2E Antall sider (inkl. forsiden): 5 Emnekode: SO 38E Dato: 5. juni 2004 Antall oppgaver: 6 Faglig

Detaljer

2-Tank System. Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics

2-Tank System. Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics 2-Tank System Hans- Petter Halvorsen, 2013.06.20 Faculty of Technology, Postboks 203, Kjølnes ring

Detaljer

Reguleringsteknikk. Finn Aakre Haugen. 16. juni 2014

Reguleringsteknikk. Finn Aakre Haugen. 16. juni 2014 Reguleringsteknikk Finn Aakre Haugen 16. juni 2014 1 2 F. Haugen: Reguleringsteknikk Innhold 1 Innledning til reguleringsteknikk 15 1.1 Grunnleggende begreper..................... 15 1.2 Hvaerreguleringgodtfor?...

Detaljer

KYBERNETIKKLABORATORIET. FAG: Kybernetikk DATO: 01.13 OPPG. NR.: R134 TEMPERATURREGULERING

KYBERNETIKKLABORATORIET. FAG: Kybernetikk DATO: 01.13 OPPG. NR.: R134 TEMPERATURREGULERING KYBERNETIKKLABORATORIET FAG: Kybernetikk DATO: 01.13 OPPG. NR.: R134 TEMPERATURREGULERING Denne øvelsen inneholder følgende momenter: a) En prosess, styring av luft - temperatur, skal undersøkes, og en

Detaljer

Reguleringsteknikk med LabVIEW og MathScript eksempler

Reguleringsteknikk med LabVIEW og MathScript eksempler Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics Reguleringsteknikk med LabVIEW og MathScript eksempler HANS- PETTER HALVORSEN, 2013.11.08 Faculty

Detaljer

Emnekode: sa 318E. Pensumlitteratur ( se liste nedenfor), fysiske tabeller, skrivesaker og kalkulator

Emnekode: sa 318E. Pensumlitteratur ( se liste nedenfor), fysiske tabeller, skrivesaker og kalkulator I I ~ høgskolen i oslo Emne: Gruppe(r): Eksamensoppgav en består av: Kybernetikk 2EY Antall sider (inkl. forsiden): 5 Emnekode: sa 318E Dato: 15. iuni 2004 Antall OPfgaver: Faglig veileder: Vesle møy Tyssø

Detaljer

Motor - generatoroppgave II

Motor - generatoroppgave II KYBERNETIKKLABORATORIET FAG: Kybernetikk DATO: 01.17 OPPG.NR.: R113 Motor - generatoroppgave II Et reguleringssyste består av en svitsjstyrt (PWM) otor-generatorenhet og en ikrokontroller (MCU) so åler

Detaljer

Simuleringsalgoritmer

Simuleringsalgoritmer Simuleringsalgoritmer Finn Aakre Haugen, dosent Høgskolen i Telemark 14. september 2015 1 Innledning 1.1 Hva er simulering? Simulering av et system er beregning av tidsresponser vha. en matematisk modell

Detaljer

Løsningsforslag Dataøving 2

Løsningsforslag Dataøving 2 TTK45 Reguleringsteknikk, Vår 6 Løsningsforslag Dataøving Oppgave a) Modellen er gitt ved: Setter de deriverte lik : ẋ = a x c x x () ẋ = a x + c x x x (a c x ) = () x ( a + c x ) = Det gir oss likevektspunktene

Detaljer

Løsningsforslag øving 6

Løsningsforslag øving 6 TTK5 Reguleringsteknikk, Vår Løsningsforslag øving Oppgave Vi setter inntil videre at τ = e τs. a) Finn først h s) gitt ved h s) = T i s T s) + T i s) ) ) ) ) + ζ s ω + s ω Vi starter med amplitudeforløpet.

Detaljer

KYBERNETIKKLABORATORIET. FAG: Industriell IT DATO: 08.14 OPPG.NR.: LV4. LabVIEW Temperaturmålinger BNC-2120

KYBERNETIKKLABORATORIET. FAG: Industriell IT DATO: 08.14 OPPG.NR.: LV4. LabVIEW Temperaturmålinger BNC-2120 KYBERNETIKKLABORATORIET FAG: Industriell IT DATO: 08.14 OPPG.NR.: LV4. LabVIEW LabVIEW Temperaturmålinger BNC-2120 Lampe/sensor-system u y I denne oppgaven skal vi teste et lampe/sensor-system som vist

Detaljer

Simuleringsnotat. Prosjekt i emnet «Styresystemer og reguleringsteknikk» Gruppe 6. av Stian Venseth og Kim Joar Øverås

Simuleringsnotat. Prosjekt i emnet «Styresystemer og reguleringsteknikk» Gruppe 6. av Stian Venseth og Kim Joar Øverås av Stian Venseth og Kim Joar Øverås Prosjekt i emnet «Styresystemer og reguleringsteknikk» Gruppe 6 Sammendrag I dette arbeidsnotatet vil det bli komme frem hvordan vi har jobbet med modellering og simulering

Detaljer

Øving 1 ITD Industriell IT

Øving 1 ITD Industriell IT Utlevert : uke 37 Innlevert : uke 39 (senest torsdag 29. sept) Avdeling for Informasjonsteknologi Høgskolen i Østfold Øving 1 ITD 30005 Industriell IT Øvingen skal utføres individuelt. Det forutsettes

Detaljer

Minste kvadraters metode i MATLAB og LabVIEW

Minste kvadraters metode i MATLAB og LabVIEW Minste kvadraters metode i MATLAB og LabVIEW Av Finn Haugen (finn@techteach.no) TechTeach (http://techteach.no) 22.12 2002 1 2 TechTeach Innhold 1 Minste kvadraters metode i MATLAB 7 2 Minste kvadraters

Detaljer

Løsning til eksamen i EE4107 Kybernetikk- videregående

Løsning til eksamen i EE4107 Kybernetikk- videregående Høgskolen i elemark. Finn Haugen(finn.haugen@hit.no). Løsning til eksamen i EE4107 Kybernetikk- videregående Eksamensdato: 11.6 2009. Varighet 3 timer. Vekt i sluttkarakteren: 70%. Hjelpemidler: Ingen

Detaljer

NB! Vedlegg 2 skal benyttes i forbindelse med oppgave 3a), og vedlegges besvarelsen.

NB! Vedlegg 2 skal benyttes i forbindelse med oppgave 3a), og vedlegges besvarelsen. SLUTTPRØVE EMNE: EE407 Kybernetikk videregående LÆRER Kjell Erik Wolden KLASSE(R): IA, EL DATO: 0..0 PRØVETID, fra - til (kl.): 9.00.00 Oppgavesettet består av følgende: Antall sider (inkl. vedlegg): 0

Detaljer

Spørretime / Oppsummering

Spørretime / Oppsummering MAS107 Reguleringsteknikk Spørretime / Oppsummering AUD F 29. mai kl. 10:00 12:00 Generell bakgrunnsmateriale Gjennomgang av eksamen 2006 MAS107 Reguleringsteknikk, 2007: Side 1 G. Hovland Presentasjon

Detaljer

Emne 11 Differensiallikninger

Emne 11 Differensiallikninger Emne 11 Differensiallikninger Differensiallikninger er en dynamisk beskrivelse av et system eller en prosess, basert på de balanselikningene vi har satt opp for prosessen. (Matematisk modellering). Vi

Detaljer

Emne 10 Litt mer om matriser, noen anvendelser

Emne 10 Litt mer om matriser, noen anvendelser Emne 10 Litt mer om matriser, noen anvendelser (Reelle) ortogonale matriser La A være en reell, kvadratisk matrise, dvs. en (n n)-matrise hvor hvert element Da vil A være ortogonal dersom: og Med menes

Detaljer

48 Praktisk reguleringsteknikk

48 Praktisk reguleringsteknikk 48 Praktisk reguleringsteknikk Figur 2.18: Simulering av nivåreguleringssystemet for flistanken. Regulatoren er en PI-regulator. (Resten av frontpanelet for simulatoren er som vist i figur 2.14.) Kompenseringsegenskaper:

Detaljer

,QQOHGQLQJ 3-1/ )DJ 67( 6W\ULQJ DY URPIDUW \ / VQLQJVIRUVODJ WLO YLQJ

,QQOHGQLQJ 3-1/ )DJ 67( 6W\ULQJ DY URPIDUW \ / VQLQJVIRUVODJ WLO YLQJ 3-1/ )DJ 67( 6W\ULQJ DY URPIDUW \ / VQLQJVIRUVODJ WLO YLQJ,QQOHGQLQJ Der det er angitt referanser, er det underforstått at dette er til sider, figurer, ligninger, tabeller etc., i læreboken, dersom andre

Detaljer

Emnekode: LO 358E. OYAo~~ Alle skrevne og trykte hjelpemidler, skrivesaker og kalkulator

Emnekode: LO 358E. OYAo~~ Alle skrevne og trykte hjelpemidler, skrivesaker og kalkulator ~ h øgskolen i oslo Emne: Kybemetikk Emnekode: LO 358E Gruppe(r): Dato: \? 2E OYAo~~ Eksamensoppgav Antall sider (inkl. Antall oppgaver en består av: forsiden): 6 5 Faglig veileder: Veslemøy Tyssø Bjørn

Detaljer

Eksperimentell innstilling av PID-regulator

Eksperimentell innstilling av PID-regulator Kapittel 4 Eksperimentell innstilling av PID-regulator 4.1 Innledning Dette kapitlet beskriver noen tradisjonelle metoder for eksperimentell innstilling av regulatorparametre i P-, PI- og PID-regulatorer,

Detaljer

Tidsdiskrete systemer

Tidsdiskrete systemer Tidsdiskrete systemer Finn Haugen TechTeach 22.juli2004 Innhold 1 Tidsdiskrete signaler 2 2 Z-transformasjonen 3 2.1 Definisjon av Z-transformasjonen... 3 2.2 Egenskaper ved Z-transformasjonen... 4 3 Differenslikninger

Detaljer

Modellbasert regulering: Foroverkopling

Modellbasert regulering: Foroverkopling 36 Generelt Dette er artikkel nr. 5 i artikkelserien Reguleringsteknikk som publiseres i AMNYTT. Artiklene er/blir som følger: Artikkel 1: Reguleringsteknikkens betydning og grunnprinsipp. (Publisert i

Detaljer

Foroverkopling. Kapittel Innledning

Foroverkopling. Kapittel Innledning Kapittel 10 Foroverkopling 10.1 Innledning Vi vet fra tidligere kapitler at tilbakekoplet regulering vil kunne bringe prosessutgangen tilstrekkelig nær referansen. I de fleste tilfeller er dette en tilstrekkelig

Detaljer

EMAR2101 Reguleringssystemer 1: Øving 3

EMAR2101 Reguleringssystemer 1: Øving 3 Høgskolen i Buskerud Finn Haugen (finn.haugen@hibu.no) 6.10 2008 EMAR2101 Reguleringssystemer 1: Øving 3 Oppgave 1 I underkapittel 1.1 i læreboken er det listet opp syv forskjellige formål for reguleringsteknikken,

Detaljer

2.2.1 Framgangsmåte for matematisk modellering Modellering av massesystemer. Modellbegreper... 15

2.2.1 Framgangsmåte for matematisk modellering Modellering av massesystemer. Modellbegreper... 15 Innhold 1 Innledning 9 2 Matematisk modellering 13 2.1 Innledning... 13 2.2 Utviklingavdynamiskemodeller... 14 2.2.1 Framgangsmåte for matematisk modellering...... 14 2.2.2 Modellering av massesystemer.

Detaljer

Løsningsforslag øving 4

Løsningsforslag øving 4 TTK405 Reguleringsteknikk, Vår 206 Oppgave Løsningsforslag øving 4 Når k 50, m 0, f 20, blir tilstandsromformen (fra innsetting i likning (3.8) i boka) Og (si A) blir: (si A) [ ] [ ] 0 0 ẋ x + u 5 2 0.

Detaljer

Reguleringsstrukturer

Reguleringsstrukturer Kapittel 11 Reguleringsstrukturer Dette kapitlet beskriver diverse reguleringsstrukturer for industrielle anvendelser. I strukturene inngår én eller flere PID-reguleringssløyfer. 11.1 Kaskaderegulering

Detaljer

GENERELLE VEKTORROM. Hittil har vi bare snakket om vektorrom av type

GENERELLE VEKTORROM. Hittil har vi bare snakket om vektorrom av type Emne 8 GENERELLE VEKTORROM Hittil har vi bare snakket om vektorrom av type og underrom av dette. Vi definerte en mengde V som et underrom av hvis det inneholdt og var lukket under addisjon og skalar multiplikasjon.

Detaljer

ITPE2400/DATS2400: Datamaskinarkitektur

ITPE2400/DATS2400: Datamaskinarkitektur ITPE2400/DATS2400: Datamaskinarkitektur Forelesning 6: Mer om kombinatoriske kretser Aritmetikk Sekvensiell logikk Desta H. Hagos / T. M. Jonassen Institute of Computer Science Faculty of Technology, Art

Detaljer

Dagens temaer. Definisjon av z-transformasjonen. Tema. Time 5: z-transformasjon og frekvens transformasjon. Fra forrige gang

Dagens temaer. Definisjon av z-transformasjonen. Tema. Time 5: z-transformasjon og frekvens transformasjon. Fra forrige gang Dagens temaer Time 5: z-transformasjon og frekvens transformasjon Andreas Austeng@ifi.uio.no, NF3470 fi/uio September 2009 Fra forrige gang Kausalitet, stabilitet og inverse systemer Z 1 { }: nvers z-transformasjon

Detaljer

Finn Haugen. Oppgaver i reguleringsteknikk 1. Nevn 5 variable som du vet eller antar kan være gjenstand for regulering i industrianlegg.

Finn Haugen. Oppgaver i reguleringsteknikk 1. Nevn 5 variable som du vet eller antar kan være gjenstand for regulering i industrianlegg. Finn Haugen. Oppgaver i reguleringsteknikk 1 Oppgave 0.1 Hvilke variable skal reguleres? Nevn 5 variable som du vet eller antar kan være gjenstand for regulering i industrianlegg. Oppgave 0.2 Blokkdiagram

Detaljer

KYBERNETIKKLABORATORIET. FAG: Dynamiske systemer DATO: OPPG.NR.: DS4E. FREKVENS OG SPRANGRESPONSANALYSE Med ELVIS

KYBERNETIKKLABORATORIET. FAG: Dynamiske systemer DATO: OPPG.NR.: DS4E. FREKVENS OG SPRANGRESPONSANALYSE Med ELVIS KYBERNETIKKLABORATORIET FAG: Dynamiske systemer DATO: 09.12 OPPG.NR.: DS4E FREKVENS OG SPRANGRESPONSANALYSE Med ELVIS BESVARELSE: Protokollen skal besvare alle spørsmål. Diagrammene skal ha definerte akser

Detaljer

HØGSKOLEN - I - STAVANGER. Institutt for elektroteknikk og databehandling

HØGSKOLEN - I - STAVANGER. Institutt for elektroteknikk og databehandling HØGSKOLEN - I - STAVANGER Institutt for elektroteknikk og databehandling EKSAMEN I: TE 559 Signaler og systemer VARIGHET: 5 timer TILLATTE HJELPEMIDLER: Kalkulator, K. Rottmanns formelsamling OPPGAVESETTET

Detaljer

Emne 9. Egenverdier og egenvektorer

Emne 9. Egenverdier og egenvektorer Emne 9. Egenverdier og egenvektorer Definisjon: Vi starter med en lineær transformasjon fra til, hvor Dersom, hvor, sier vi at: er egenverdiene til A er tilhørende egenvektorer. betyr at er et reelt eller

Detaljer

Computer Problem 1 TTK 4190 NavFart

Computer Problem 1 TTK 4190 NavFart Computer Problem 1 TTK 419 NavFart Frode Efteland efteland@stud.ntnu.no 3 mars 24 Innhold 1 Oppgave 1 - DSRV 4 1.1 a)forwardspeedmodell... 5 1.1.1 Simulinkmodell... 6 1.1.2 Matlabplott... 7 1.1.3 Resultat...

Detaljer

TTK 4140 Reguleringsteknikk m/elektriske kretser Dataøving 1

TTK 4140 Reguleringsteknikk m/elektriske kretser Dataøving 1 NTNU Norges teknisknaturvitenskapelige universitet Institutt for teknisk kybernetikk vårsemesteret 2004 TTK 4140 Reguleringsteknikk m/elektriske kretser Dataøving 1 Veiledning : Fiskelabben G-116/G-118

Detaljer

Slik skal du tune dine PID-regulatorer

Slik skal du tune dine PID-regulatorer Slik skal du tune dine PID-regulatorer Ivar J. Halvorsen SINTEF, Reguleringsteknikk PROST temadag Tirsdag 22. januar 2002 Granfos Konferansesenter, Oslo 1 Innhold Hva er regulering og tuning Enkle regler

Detaljer

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning. systemidentifikasjon fra sprangrespons.

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning. systemidentifikasjon fra sprangrespons. Stavanger, 29. september 2016 Det teknisknaturvitenskapelige fakultet ELE620 Systemidentifikasjon, 2016. Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning.

Detaljer

2003/05-001: Dynamics / Dynamikk

2003/05-001: Dynamics / Dynamikk Institutt for kjemisk prosessteknologi SIK 050: Prosessregulering 003/05-001: Dynamics / Dynamikk Author: Heinz A Preisig Heinz.Preisig@chemeng.ntnu.no English: Given the transfer function g(s) := s (

Detaljer

LabVIEW and Single-Board RIO to Control a Quadcopter

LabVIEW and Single-Board RIO to Control a Quadcopter LabVIEW and Single-Board RIO to Control a Quadcopter Universitetet i Agder, Grimstad Øyvind Magnussen Master i (2011) PhD Hva er mekatronikk? Intro Kontrollsystem Sensorer sbrio Simulering Testing LabVIEW?

Detaljer

EMAR2101 Reguleringssystemer 1: Løsning til øving 3

EMAR2101 Reguleringssystemer 1: Løsning til øving 3 Høgskolen i Buskerud Finn Haugen (finn.haugen@hibu.no) 6.10 2008 EMAR2101 Reguleringssystemer 1: Løsning til øving 3 Løsning til oppgave 1 Eksempler på anvendelser: Produktkvalitet: Regulering av slipekraft

Detaljer

AU3: Espen Seljemo Torry Eriksen Vidar Wensel Magnus Bendiksen

AU3: Espen Seljemo Torry Eriksen Vidar Wensel Magnus Bendiksen AU3: Espen Seljemo Torry Eriksen Vidar Wensel Magnus Bendiksen 1.0 Problemstilling... 3 2.0 Fuzzy logikk... 3 2.1 Historie... 3 2.2 Fuzzy regulering... 3 2.3 Når kan man ta i bruk Fuzzy regulering?...

Detaljer

STE 6219 Digital signalbehandling Løsning til kontinuasjonseksamen

STE 6219 Digital signalbehandling Løsning til kontinuasjonseksamen HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Masterstudiet EL/RT Side av 4 STE 629 Digital signalbehandling Løsning til kontinuasjonseksamen Tid: Fredag 03.08.2007, kl: 09:00-2:00

Detaljer

KYBERNETIKKLABORATORIET. FAG: Dynamiske systemer DATO: OPPG.NR.: DS4 FREKVENS OG SPRANGRESPONSANALYSE

KYBERNETIKKLABORATORIET. FAG: Dynamiske systemer DATO: OPPG.NR.: DS4 FREKVENS OG SPRANGRESPONSANALYSE KYBERNETIKKLABORATORIET FAG: Dynamiske systemer DATO: 08.14 OPPG.NR.: DS4 FREKVENS OG SPRANGRESPONSANALYSE BESVARELSE: Protokollen skal besvare alle spørsmål. Diagrammene skal ha definerte akser og forklarende

Detaljer

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE AVDELING FOR INGENIØRUTDANNING ESAMENSOPPGAVE Emne: Gruppe(r): Eksamensoppgaven består av: ybernetikk I 2E Antall sider (inkl. forsiden): Emnekode: SO 318E Dato: Antall oppgaver: 6 Faglig veileder: Veslemøy

Detaljer

DET TEKNISK-NATURVITENSKAPELIGE FAKULTET MASTEROPPGAVE. Forfatter: Ben Ove Landa (signatur forfatter)

DET TEKNISK-NATURVITENSKAPELIGE FAKULTET MASTEROPPGAVE. Forfatter: Ben Ove Landa (signatur forfatter) DET TEKNISK-NATURVITENSKAPELIGE FAKULTET MASTEROPPGAVE Studieprogram/spesialisering: Master i Teknologi Kybernetikk/Signalbehandling Vårsemesteret, 2010 Åpen / Konfidensiell Forfatter: Ben Ove Landa (signatur

Detaljer

Litt generelt om systemidentifikasjon.

Litt generelt om systemidentifikasjon. Stavanger, 29. juni 2016 Det teknisknaturvitenskapelige fakultet ELE620 Systemidentifikasjon, 2016. Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning.

Detaljer

Artikkelserien Reguleringsteknikk

Artikkelserien Reguleringsteknikk Finn Haugen (finn@techteach.no) 18. november, 2008 Artikkelserien Reguleringsteknikk Dette er artikkel nr. 7 i artikkelserien Reguleringsteknikk: Artikkel 1: Reguleringsteknikkens betydning og grunnprinsipp.

Detaljer

Innhold Oppgaver om AC analyse

Innhold Oppgaver om AC analyse Innhold Oppgaver om AC analyse 30 a) Finn krets og bodeplot vedhjelp av målt impulsrespons.... 30 b) Finn krets og bodeplot vedhjelp av målt respons.... 30 Gitt Bodeplot, Del opp og finn systemfunksjon...

Detaljer

Uke 5: Analyse i z- og frekvensdomenet

Uke 5: Analyse i z- og frekvensdomenet Uke 5: Analyse i z- og frekvensdomenet Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/32 Dagens temaer Fra forrige gang Kausalitet, stabilitet og inverse systemer

Detaljer

SIMULERINGSNOTAT. Prosjekt i emnet «Styresystemer og reguleringsteknikk» Gruppe 01. Laget av Torbjørn Morken Øyvind Eklo

SIMULERINGSNOTAT. Prosjekt i emnet «Styresystemer og reguleringsteknikk» Gruppe 01. Laget av Torbjørn Morken Øyvind Eklo SIMULERINGSNOTAT Prosjekt i emnet «Styresystemer og reguleringsteknikk» Gruppe 01 Laget av Torbjørn Morken Øyvind Eklo Høgskolen i Sør-Trøndelag 2015 Sammendrag Simulering av nivåregulering av tank ved

Detaljer

3.2.2 Tilstandsrommodeller

3.2.2 Tilstandsrommodeller 54 Dnamiske sstemer Sperposisjonsprinsippet. For lineære differensiallikninger men ikke for lineære gjelder sperposisjonsprinsippet: Den totale responsen som skldes avhengige inngangssignaler, vil være

Detaljer

UiA. 1100 employees 10000 Students. Frank!

UiA. 1100 employees 10000 Students. Frank! UiA 1100 employees 10000 Students Frank! Health and Sport Sciences Humanities and Education Fine Arts Engineering and Science Economics and Social Sciences Teacher Education Unit http://www.uia.no/nyheter/ny-kraftig-vekst-i-soekningen-til-uia

Detaljer

NYE METODER FOR REGULERING AV VANNKRAFTANLEGG

NYE METODER FOR REGULERING AV VANNKRAFTANLEGG NYE METODER FOR REGULERING AV VANNKRAFTANLEGG - Kan automatisk regulering overta for en lokal spesialist? Jane Solvi, Skagerak Kraft AS Ingvar Andreassen, Skagerak Kraft AS Bernt Lie, Høgskolen i Telemark

Detaljer

Eksamensoppgaver i Reguleringsteknikk 1 og Dynamiske systemer.

Eksamensoppgaver i Reguleringsteknikk 1 og Dynamiske systemer. Eksamensoppgaver i Reguleringsteknikk 1 og Dynamiske systemer. Eksamensoppgaver med løsningsforslag Redigert versjon av 00h, 00utsatt, 01h og 01utsatt samt disse eks. i Dynamiske systemer: 0h 0uts. 03

Detaljer

Forelesning 14 Systemer av dierensiallikninger

Forelesning 14 Systemer av dierensiallikninger Forelesning 14 Systemer av dierensiallikninger Eivind Eriksen 9. april 010 Dierensiallikninger En dierensiallikning inneholder en avhengig variabel (typisk y ) og en uavhengig variabel (typisk x), som

Detaljer

Eksperimentell innstilling av PID-regulator

Eksperimentell innstilling av PID-regulator Kapittel 4 Eksperimentell innstilling av PID-regulator 4.1 Innledning Dette kapitlet beskriver noen tradisjonelle metoder for eksperimentell innstilling av regulatorparametre i P-, PI- og PID-regulatorer,

Detaljer

0 M. Z w Z q w M w M q q. M D G b 1 s

0 M. Z w Z q w M w M q q. M D G b 1 s US Navy s Deep Submergence Rescue Vehicle Oppgave 1 - DSRV DSRV kinematisk bevegelseslikninger x ucos wsin ż usin wcos q Dynamiske likninger for heave og pitch # m Z w Z q w M w I y M q q Z w Z q w M w

Detaljer

Reguleringsteknikk Sammendrag REVISJON ØRJAN LANGØY OLSEN

Reguleringsteknikk Sammendrag REVISJON ØRJAN LANGØY OLSEN 2015 Reguleringsteknikk Sammendrag REVISJON 1.1.1 ØRJAN LANGØY OLSEN Innhold Ordliste... 2 PID (Proporsjonal Integral Derivasjon) regulator... 3 Ziegler-Nichols Closed-loop tuning... 3 Ziegler-Nichols

Detaljer

Tidsdomene analyse (kap 3 del 2)

Tidsdomene analyse (kap 3 del 2) INF3470 Digital signalbehandling Tidsdomene analyse (kap 3 del 2) Sverre Holm 3.9 Diskret konvolusjon Metode for å finne responsen fra et filter med 0 initialbetingelser, fra impulsresponsen h[n] Enkelt

Detaljer

Forelesning nr.7 INF 1411 Elektroniske systemer. Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester

Forelesning nr.7 INF 1411 Elektroniske systemer. Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester Forelesning nr.7 INF 1411 Elektroniske systemer Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester Dagens temaer Nøyaktigere modeller for ledere, R, C og L Tidsrespons til reaktive

Detaljer

Løsningsforslag øving 8

Løsningsforslag øving 8 K405 Reguleringsteknikk, Vår 206 Oppgave Løsningsforslag øving 8 a Vi begynner med å finne M 2 s fra figur 2 i oppgaveteksten. M 2 s ω r 2 ω h m sh a sh R2 sr 2 ω K v ω 2 h m sh a sh R2 sr 2 h m sh a sh

Detaljer

Formelliste til boken Reguleringsteknikk

Formelliste til boken Reguleringsteknikk Formelliste til boken Reguleringsteknikk Finn Haugen 14. februar 013 Nedenfor er de mest aktuelle formlene i boken. Formlene står i samme rekkefølge som i boken. IEA-indeksen (Integral of Absolute value

Detaljer

Bokmål / Nynorsk / English NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK. Eksamen TFY4185 Måleteknikk

Bokmål / Nynorsk / English NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK. Eksamen TFY4185 Måleteknikk Bokmål / Nynorsk / English Side av 4 NOGES TEKNISK- NATUITENSKAPELIGE UNIESITET INSTITUTT FO FYSIKK Steinar aaen, tel.482 96 758 Eksamen TFY485 Måleteknikk Lørdag 7. desember 20 Tid: 09.00-3.00 Tillatt

Detaljer

TTK 4140 Reguleringsteknikk m/elektriske kretser Dataøving 2

TTK 4140 Reguleringsteknikk m/elektriske kretser Dataøving 2 NTNU Norges teknisknaturvitenskapelige universitet Institutt for teknisk kybernetikk vårsemesteret 2004 TTK 4140 Reguleringsteknikk m/elektriske kretser Dataøving 2 Fiskelabben G-116/G-118 Uke 16: Onsdag

Detaljer

SLUTTPRØVE (Teller 60% av sluttkarakteren)

SLUTTPRØVE (Teller 60% av sluttkarakteren) Høgskolen i Telemark Avdeling for teknologiske fag SLUTTPRØVE (Teller 60% av sluttkarakteren) EMNE: EE4209 Modellbasert regulering LÆRERE Kjell - Erik Wolden og Hans - Petter Halvorsen KLASSE(R): 2IA DATO:

Detaljer

Uke 4: z-transformasjonen

Uke 4: z-transformasjonen Uke 4: z-transformasjonen Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/26 Dagens temaer z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper

Detaljer

6.5 Minste kvadraters problemer

6.5 Minste kvadraters problemer 6.5 Minste kvadraters problemer I mange anvendte situasjoner møter man lineære likningssystemer som er inkonsistente, dvs. uten løsninger, samtidig som man gjerne skulle ha funnet en løsning. Hva gjør

Detaljer

Læreplan i Programmering og modellering - programfag i studiespesialiserende utdanningsprogram

Læreplan i Programmering og modellering - programfag i studiespesialiserende utdanningsprogram 2.12.2016 Læreplan i - programfag i studiespesialiserende utdanningsprogram Formål Programmering er et emne som stadig blir viktigere i vår moderne tid. Det er en stor fordel å kunne forstå og bruke programmering

Detaljer

Fagnr: SO318E. Veslemøy Tyssø Eksamenstid, I fra - til: Eksamensoppgaven består av Tillatte hjelpemidler: Antall oppgaver: 5

Fagnr: SO318E. Veslemøy Tyssø Eksamenstid, I fra - til: Eksamensoppgaven består av Tillatte hjelpemidler: Antall oppgaver: 5 Fag: Kybernetikk l Fagnr: SO318E Faglig veileder: Bjørn Engebretsen, Klasse(r): 2EY Dato: 5/6-02 Veslemøy Tyssø Eksamenstid, I fra - til: 0900-1400 Eksamensoppgaven består av Tillatte hjelpemidler: Antall

Detaljer

Tidsdomene analyse (kap 3 del 2)

Tidsdomene analyse (kap 3 del 2) INF3470 Digital signalbehandling Tidsdomene analyse (kap 3 del 2) Sverre Holm 3.9 Diskret konvolusjon Metode for å finne responsen fra et filter med 0 initialbetingelser, fra impulsresponsen h[n] Enkelt

Detaljer

So3ware History. Hans- Pe(er Halvorsen, M.Sc. h(p://home.hit.no/~hansha/?page=so3ware_development

So3ware History. Hans- Pe(er Halvorsen, M.Sc. h(p://home.hit.no/~hansha/?page=so3ware_development h(p://home.hit.no/~hansha/?page=so3ware_development O. Widder. (2013). geek&poke. Available: http://geek-and-poke.com! So3ware History Hans- Pe(er Halvorsen, M.Sc. 1 Quotes Det finnes absolu. ingen grunn

Detaljer

Bokmål / Nynorsk / English NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK. Eksamen TFY4185 Måleteknikk

Bokmål / Nynorsk / English NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK. Eksamen TFY4185 Måleteknikk Bokmål / Nynorsk / English Side 1 av 5 NORGES TEKNISK- NATURITENSKAPELIGE UNIERSITET INSTITUTT FOR FYSIKK Steinar Raaen tel. 482 96 758 Eksamen TFY4185 Måleteknikk Mandag 17. desember 2012 Tid: 09.00-13.00

Detaljer

TRANSISTORER Transistor forsterker

TRANSISTORER Transistor forsterker Kurs: FYS1210 Elektronikk med prosjektoppgaver Gruppe: Gruppe-dag: Oppgave: LABORAORIEØELSE NR 4 Omhandler: RANSISORER ransistor forsterker 27. februar 2012. Lindem Utført dato: Utført av: Navn: email:

Detaljer

E-læring hvordan? Botnane Bedriftsutvikling AS

E-læring hvordan? Botnane Bedriftsutvikling AS E-læring hvordan? Det er mange forskjellige metoder og former Disse kan tilpasses de ulike behov bedriften har For å få best utbytte kan en benytte flere virkemidler Det kan lages moduler som bruker går

Detaljer

Kan vi stole på klimamodellenes profetier for Arktis?

Kan vi stole på klimamodellenes profetier for Arktis? Kan vi stole på klimamodellenes profetier for Arktis? Øyvind Byrkjedal Geofysisk Institutt og Bjerknessenteret, Universitetet I Bergen Profetier for Arktis Observert trend 1953-2003, vinter Modellert trend

Detaljer

Elementær Matriseteori

Elementær Matriseteori Elementær Matriseteori Magnus B. Botnan NTNU 3. august, 2015 Kursinfo - Foreleser: Magnus B. Botnan http://www.math.ntnu.no/~botnan/ - Hjemmeside: https: //wiki.math.ntnu.no/tma4110/2015h/forkurs/start

Detaljer

Prosess-systemteknikk fordypningsemne PROSJEKTTITTEL: Stabiliserende regulering av kompressor. Atle Andreassen

Prosess-systemteknikk fordypningsemne PROSJEKTTITTEL: Stabiliserende regulering av kompressor. Atle Andreassen NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for kjemi og biologi Institutt for kjemisk prosessteknologi FORDYPNINGSEMNE HØST 2001 SIK 2092P1 Prosess-systemteknikk fordypningsemne PROSJEKTTITTEL:

Detaljer

AMS-case forts. Eksemplifisering av modellbasert. tilnærming til design av brukergrensesnitt

AMS-case forts. Eksemplifisering av modellbasert. tilnærming til design av brukergrensesnitt AMS-case forts. Eksemplifisering av modellbasert tilnærming til design av brukergrensesnitt Objekt-interaktor med valg Relatert objekt velges ofte blant mange kandidater Output av kandidat-sett Input av

Detaljer