HJEMMEOPPGAVER (utgave av ):

Størrelse: px
Begynne med side:

Download "HJEMMEOPPGAVER (utgave av 12-7-2005):"

Transkript

1 HJEMMEOPPGAVER (utgave av : Ogave 1 til 31. januar: La f 1, f 2,... være Fibonacci tallene, det vil si f 1 f 2 1 og f n f n 1 + f n 2 for n 3. Vis: (1 f 1 + f f n f n+2 1. (2 f n+1 f n 1 f 2 n ( 1 n. (3 f m+n f m 1 f n + f m f n+1. (4 Om m n så vil f m f n. (1 Induksjon etter n. (2 Induksjon etter n. (3 Induksjon etter n. (4 Følger av (3. Ogave 2 til 7. februar: Vis at et odde tall n > 1 er et rimtall hvis og bare hvis det ikke kan skrives som summen av tre eller flere konsekutive ositive tall. Vi har m+m+1+ +m+k (k+1m+ k(k { (2l + 1(m + l når k 2l (l + 1(2m + 2l + 1, k 2l + 1. Dette er aldrig rimtall når k 2. Om n n 1 n 2 med n 2 n 1 > 1 er sesielt n 1 og n 2 odde, så vi kan skrive n 1 2l + 1, så l (n 1 1/2, og m n 2 l n 2 (n 1 1/2 > 0, og vi setter k 2l. Vi får at m + m m + k (2l + 1(m + l n 1 n 2. Ogave 3 til 14. februar: Finn, uten å bruke Eulers formel: (1 Antallet ositive heltall 3600 som er rimiske med (2 Antallet ositive heltall 3600 som har en felles faktor større enn 1 med (3 Antallet ositive heltall 7200 som er rimiske med (1 Vi har at så det følger av den kinesiske restsatsen at vi bare behøver å finne restene module 2 4, 3 2 og 5 2 som er rimiske med 2, 3 og 5 resektive og multilisere disse. Men antallet rester er olagt 8, 6 og 20, resektive, så svaret blir (2 Vi får ved (2. (3 Ved den kinesiske restsatsen er restene kongruente modulo 3600 så vi får

2 2 Ogave 4 til 21. februar: La k være et ositivt tall slik at 1 6k + 1, 2 12k + 1 og 3 18k + 1 er rimtall, og la m (1 Vis at ( i 1 (m 1 for i 1, 2, 3. (2 Vis at om gcd(a, i 1 vil a m 1 1 (mod i for i 1, 2, 3. (3 Vis at m er et Carmichaeltall. (4 Vis at vi får Carmichaeltall for k 1, 6, 35. (1 Vi har m 1 s 18k(2 18k k + 1. (2 Føger av (1 og Fermat s lille sats. (3 Følger av (2. (4 En ikke altfor stor regning. Ogave 5 til 28. aril: La være et rimtall forskjellig fra 2 og 5. (1 Vis at deler uendelig mange av tallene 9, 99, 999, 9999,.... (2 Vis at deler uendelig mange av tallene 1, 11, 111, 1111,.... (1 Vi har (mod, så deler 10 1, , ,..., 10 n,... når 1 deler n. (2 Vi har (10 1/(10 1, (10 2 1/(10 1, (10 3 1/(10 1,.... På stand (2 følger derfor av (1 for 3.Men tilfellet 3 er lett. Ogave 6 til 7. mars: La a og k være ositive tall med a 2 og la være et rimtall. (1 Vis at k φ(a k 1. (2 Vis at om φ(n og n så finnes det et rimtall q slik at q n og q 1 (mod. (3 Vis at det finnes uendelig mange rimtall q slik at q 1 (mod. (1 Vi har a k 1 (mod a k 1. (2 La n e 1 1 e k k. Da betyr ϕ(n k k1 e 1 1 i ( 1 1 og n at i 1 for noe i. (3 Anta at q 1,..., q i er alle rimtall som er kongruent til 1 modulo. Anvend (1 med a q 1 q l og k. Da vil φ(a k 1 ved (1 og a k 1 så vi får av (2 at det finnes rimtall q slik at q 1 (mod og q a k 1 som er umulig. Ogave 7 til 21. mars: La n være et ositit tall. (1 Vis at det finnes ikke-negative heltallsløsninger x og y av x 2 y 2 n hvis og bare hvis n er odde eller et multilum av 4.

3 (2 Vis at løsningen er entydig hvis og bare hvis n 1, 4, et odde rimtall, eller 4 ganger et rimtall. 3 (1 Om x og y har samme aritet er x 2 y 2 delbare med 4. Har x og y ulike aritet er x 2 y 2 odde. Om n 4m er x m + 1 og y m 1 en løsning, og om n 2m + 1 er x m + 1 og y m en løsning. (2 Følger ved å analysere løsningene i (1. Ogave 8 til 4. aril: Vis at et tall n er et Carmichaeltall hvis og bare hvis a n a (mod n for alle tall a. Anta at n er et Carmichaeltall. Vi har at n 1 2 k der i 1 n 1 for alle i. Om a er rimisk med n er åstadne klar. Om i a vil a n a (mod i og om i ikke deler a vil a n a (mod i av Fermats lille sats. Derfor vil a n a (mod n for alle a. Omvendt, om a n a (mod n for alle a, og a er i U n kan vi dele bort a og får a n 1 1 (mod n. Ogave 9 til 11. aril: Vis at om er et rimtall som både deler et tall å formen m og et å formen n så vil deler et tall å formen k Ledtåd: ( Vi har 1 ( 1 ( 1 ( 1/2 så 1 (mod 4. Videre vil har 1 2 ( 1 ( 1/2 ( 1 (2 1/8 så 1 (mod 8. La g være rimitiv rot i U. Da vil g ( 1/2 1 så om 8l + 1 vil g 4l 1. Men det betyr at deler g 4l + 1. Ogave 10 til 18. aril: La a 1, a 2,..., a k være alle de ulike kvadratiske restene modulo rimtallet. (1 Vis at om a er en kvadratisk rest modulo og ab 1 (mod så er b en kvadratisk rest modulo. (2 Vis at a 1 a 2 a k 1 (mod om 1 (mod 4. (3 Vis at a 1 a 2 a k 1 (mod om 3 (mod 4. (1 Om a s 2 (mod har vi b bab b 2 s 2 (mod. (2 Om 1 (mod 4 vil Q ( 1/2 være jevn så a 1,..., a k tar ut hverandre arvis, det vil si a i a j 1 (mod for gitt i og assende j i, bortsett fra når a 2 1 som skjer for ±1 som begge er i Q fordi ( 1 1. (3 Om 3 (mod 4 vil Q ( 1/2 være odde. Igjen tar a 1,..., a k ut hverandre bortsett fra de a i slik at a 2 i 1 (mod. Men dette skjer bare for a i 1 fordi 1 / Q ettersom ( 1 1.

4 4 Ogave 11 til 25. aril: Vis at uttrykket (x 2 2/(2y aldrig er et heltall når x og y er heltall. ( Om et rimtall deler 2y må 1, det vil si ( 1 ( 1/2 (2 (3 1. Det følger da av kvadratisk resirositet at (2 (3 1. Vi har at må dele x 2 2 ( og derfor at 1 (2 ( 1 (2 1/8. Sammen med forrige likhet får vi derfor at 3 1 som betyr at 1 (mod 3. Men alle rimtallene som deler 2y kan ikke være å denne formen. Ogave 12 til 2. mai: (1 Vis at for hvert heltall vil φ(n + σ(n 2n. (2 Vis at det er likhet i (1 hvis og bare hvis n 1 eller et rimtall. (1 Av n d n φ(d får vi φ(n d n dµ(n/d og vi har er definisjon σ(n d n µ(n/d. Dette gir hi(n + σ(n d n d(µ(n/d + 1 n(µ(n/n + 1 2n. (2 Om n 1 eller rimtall er det klart likhet. Ellers finnes det to ulike rimtall, q som deler n. Da vil φ(n + σ(n 2n + (n/(µ(n/(n/q + 1 2n + (n/q(µ(q + 1 s(n + (n/q > 2n. Ogave 13 til 9. mai: (1 La f(n være en aritmetisk funksjon som bare tar ikke null verdier. Sett F (n d n f(d. Vis at f(n d n F (n/dµ(d. (2 Vis at n i n φ(n d n(d!/d d µ(n/d. (1 d n F (n/d µ(d d n i1,gcd(n,i1 l (n/d f(e µ(d ed n f(e µ(d e n d (n/e f(e µ(d f(n. Mer at f(e 0 brukes for å unngå 0 0. (2 Sett f(n i1,gcd(n,i i/n og F (n n!/nn. Vi skal vise f(n d n F (dµ(n/d. Av (1 der vi har byttet om d og n/d rekker det å vise at F (n d n f(d. Vi merker at om d er en divisor i n og vi lar 1 a 1,..., a k < d være restene modulo d som er rimiske med d så vil na 1 /d,..., na i k/d gi tall blandt 1, 2,..., n og disse er ulike for ulike divisorer, for om na/d nb/e der e er en divisor i n og b er rimisk med e så må d og e dele hverandre og derfor være like. Vi har (na 1 na i /d k f(dn φ(d, så n! d n f(dnφ(d n n d n f(d ettersom n d n φ(d.

5 5 Ogave 14 til 16. mai: (1 Vis at om n u 2 + v 2 der u, v er rasjonale tall så vil n x 2 + y 2 der x, y er hele tall. (2 Vis at om n x 2 + y 2 der x og y er heltall som er innbyrdes rimiske og om e deler n, der er et rimtall, så vil enten 1 (mod 4 eller 2 og e 1. (1 Vi har at (z 2 n (x 2 + (y 2 for noen hele tall x, y, z. Det følger da av hovedsatsen for fremstilling av n som sum av to kvadrater at de rimtallene som er kongruente 3 modulo 4 må forekomme i n i en like otens. Samme sats sier da at n x 2 + y 2 for noen heltall x, y. (2 Både x og y kan ikke være delbare med 2 ettersom de er innbyrdes rimiske, så minst et av dem er odde. Men da er x 2 + y 2 ikke delbar med 4. Om n vil x 2 + y 2 0 (mod. Minst en av x og y ikke er delbar med. Anta at x ikke er delbar med og la z være element slik at xz 1 (mod. Vi ( får da at 1 + (yz 2 0 (mod og derfor at (mod 4. Ogave 15 til 23. mai: 1 1. Men da er 1 La a, b, c være reelle tall med a > 0. Videre, la d b 2 4ac. Anta at d < 0. Vis at det finnes hele tall x, y, ikke begge 0, slik at ax 2 + bxy + cy 2 2 π. Vi må først utvide Minkowski s sats til: Om X er lukket, konveks, sentralsymmetrisk og F er et gitter slik at vol(x 2 n vol(f så inneholder F et unkt i X. Bevis. La X k (1 + 1 k X for k 1, 2,.... Da vil vol(x k (1 + 1 k n vol(x > 2 k vol(f så X k innholder et unkt x k fra F. Men x 1, x 2,... ligger alle i den begrensete mengden 2X så x k x 0 for uendelig mange k. Men X 1 X 2 X så x 0 k1 X k, og k1 X k X siden X er lukket. Vi fortsetter nu ledtråden for ogaven. La X {(x, y ax 2 + bxy + cy 2 2 π }. Da vil X {(x, y ( ax + b 2 a y2 + y2 4a 2 π }. Sett x ax + b 2 a y og y 4a y. Vi har at X {(x, y (x 2 + (y 2 2 π }. Det følger at X er konveks, og at volumet i (x, y lanet er π 2 π 2. Overgangsmatrisen melllom koordinatene (x, y og (x, y har determinant ( a 4a 1 2. Vi har derfor vol(x Gitteret F {(m, n m, n Z} har volum 1 og vol(x 4 2 n vol(f, så av den utvidete Minkowski s sats vil det finnes heltall x, y som i ogaven.

Dette brukte vi f.eks. til å bevise binomialteoremet. n i. (a + b) n = a i b n i. i=0

Dette brukte vi f.eks. til å bevise binomialteoremet. n i. (a + b) n = a i b n i. i=0 Prinsippet om matematisk induksjon: anta du har en påstand som er avhengig av et positivt heltall n. Om du kan vise to ting, nemlig at påstanden er sann for n = 1 og at om påstanden er sann for n = k,

Detaljer

Introduksjon i tallteotri med anvendelser

Introduksjon i tallteotri med anvendelser Introduksjon i tallteotri med anvendelser Vladimir Oleshchuk 15. september 2005 Delbarhet og divisorer Delbarhet og divisorer Vi skal betrakte tall fra Z = {,..., 2, 1, 0, 1, 2,...} og N = {0, 1,...} og

Detaljer

KJENT OG UKJENT I ELEMENTÆR TALLTEORI. Dan Laksov KTH, Stockholm

KJENT OG UKJENT I ELEMENTÆR TALLTEORI. Dan Laksov KTH, Stockholm KJENT OG UKJENT I ELEMENTÆR TALLTEORI Dan Laksov KTH, Stockholm matematikk/laksov/bokprosjekt/forum/tallteori/july 25, 2005 KJENT OG UKJENT I ELEMENTÆR TALLTEORI Kjent og ukjent i elementær tallteori Dan

Detaljer

Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010

Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010 Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010 1. a) Ingen andre tall enn en deler en, og en deler fire, så (1, 4) = 1 b) 1 c) 7 er et primtall og 7 er ikke en faktor i 41, så største felles

Detaljer

MA1301 Tallteori Høsten 2014 Oversikt over pensumet

MA1301 Tallteori Høsten 2014 Oversikt over pensumet MA1301 Tallteori Høsten 2014 Oversikt over pensumet Richard Williamson 3. desember 2014 Innhold Pensumet 2 Generelle råd 2 Hvordan bør jeg forberede meg?.......................... 2 Hva slags oppgaver

Detaljer

Heltallsdivisjon og rest div og mod

Heltallsdivisjon og rest div og mod Heltallsdivisjon og rest div og mod La a og b være to heltall med a 0. Vi sier at a går opp i b (eng. a divides b) hvis det finnes et heltall c slik at b = ac. I så fall kalles a for en faktor i b og b

Detaljer

Heltallsdivisjon og rest div og mod

Heltallsdivisjon og rest div og mod Heltallsdivisjon og rest div og mod La a og b være to heltall med a 0. Vi sier at a går opp i b (eng. a divides b) hvis det finnes et heltall c slik at b = ac. I så fall kalles a for en faktor i b og b

Detaljer

Euklids algoritmen. p t 2. 2 p t n og b = p s 1. p min(t 2,s 2 )

Euklids algoritmen. p t 2. 2 p t n og b = p s 1. p min(t 2,s 2 ) For å finne største felles divisor (gcd) kan vi begrense oss til N, sidenfor alle a, b Z, harvi gcd(a, b) =gcd( a, b ). I prinsippet, dersom vi vet at a = p t 1 kan vi se at 1 p t 2 2 p t n og b = p s

Detaljer

Største felles divisor. (eng: greatest common divisors)

Største felles divisor. (eng: greatest common divisors) Største felles divisor. (eng: greatest common divisors) La a og b være to tall der ikke begge er 0. Største felles divisor (eller faktor) for a og b er det største heltallet som går opp i både a og b.

Detaljer

Løysingsforslag til eksamen i MA1301-Talteori, 30/11-2005.

Løysingsforslag til eksamen i MA1301-Talteori, 30/11-2005. Løysingsforslag til eksamen i MA1301-Talteori, 30/11-2005. Oppgåve 1 a) Rekn ut gcd(788, 116). Finn alle løysingane i heile tal til likninga 788x + 116y = gcd(788, 116). b) Ein antikvar sel ein dag nokre

Detaljer

TMA4140 Diskret Matematikk Høst 2018

TMA4140 Diskret Matematikk Høst 2018 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 2018 Seksjon 4.1 6 Dersom a c og b d, betyr dette at det eksisterer heltall s og t slik at c

Detaljer

Forelesning 19 torsdag den 23. oktober

Forelesning 19 torsdag den 23. oktober Forelesning 19 torsdag den 23. oktober 5.3 Eulers kriterium Merknad 5.3.1. Følgende proposisjon er kjernen til teorien for kvadratiske rester. Kanskje ser beviset ikke så vanskelig ut, men la merke til

Detaljer

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Tallenes hemmeligheter

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Tallenes hemmeligheter QED 1 7 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 1 Tallenes hemmeligheter Kapittel 1 Oppgave 8. Nei Oppgave 9. Det nnes ikke nødvendigvis et minste element i mengden. Et eksempel

Detaljer

Teorem 10 (Z n, + n ) er en endelig abelsk gruppe. 8. november 2005 c Vladimir Oleshchuk 35. Teorem 11 (Z n, ) er en endelig abelsk gruppe.

Teorem 10 (Z n, + n ) er en endelig abelsk gruppe. 8. november 2005 c Vladimir Oleshchuk 35. Teorem 11 (Z n, ) er en endelig abelsk gruppe. Endelige grupper Teorem 10 (Z n, + n ) er en endelig abelsk gruppe. En gruppe er en mengde S sammen med en binær operasjon definert på S, betegnes (S, ), med følgende egenskaper: 1. a, b S, a b S 2. det

Detaljer

Relativt primiske tall

Relativt primiske tall Relativt primiske tall To heltall a og b (der ikke begge er 0) kalles relativt primiske hvis gcd(a, b) = 1, dvs. de har ingen felles faktorer utenom 1. NB! a og b trenger ikke være primtall for at de skal

Detaljer

TALL. 1 De naturlige tallene. H. Fausk

TALL. 1 De naturlige tallene. H. Fausk TALL H. Fausk 1 De naturlige tallene De naturlige tallene er 1, 2, 3, 4, 5,... (og så videre). Disse tallene brukes til å telle med, og de kalles også telletallene. Listen med naturlige tall stopper ikke

Detaljer

OPPGAVER FOR FORUM

OPPGAVER FOR FORUM OPPGAVER FOR FORUM 2006-2007 MERK!: Du skal først skrive hele oppgaveteksten for hver oppgave, og deretter svaret på oppgaven. Hvert svar skal være detajert, og skrevet i et klart og tydelig matematisk

Detaljer

MA1301 Tallteori Høsten 2014 Løsninger til Eksamen

MA1301 Tallteori Høsten 2014 Løsninger til Eksamen MA1301 Tallteori Høsten 2014 Løsning til Eksamen Richard Williamson 11. desemb 2014 Innhold Oppgave 1 2 a)........................................... 2 b)........................................... 2 c)...........................................

Detaljer

KONTINUASJONSEKSAMEN I TMA4140 LØSNINGSFORSLAG

KONTINUASJONSEKSAMEN I TMA4140 LØSNINGSFORSLAG Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 KONTINUASJONSEKSAMEN I TMA440 LØSNINGSFORSLAG Oppgave Sannhetsverditabell for det logiske utsagnet ( (p q) ) ( q r

Detaljer

MA1301 Tallteori Høsten 2014

MA1301 Tallteori Høsten 2014 MA1301 Tallteori Høsten 014 Richard Williamson 1. august 015 Innhold Forord 7 1 Induksjon og rekursjon 9 1.1 Naturlige tall og heltall............................ 9 1. Bevis.......................................

Detaljer

MAT1030 Forelesning 17

MAT1030 Forelesning 17 MAT1030 Forelesning 17 Rekurrenslikninger Roger Antonsen - 18. mars 009 (Sist oppdatert: 009-03-18 19:3) Forelesning 17 Forrige gang ga vi en rekke eksempler på bruk av induksjonsbevis og rekursivt definerte

Detaljer

Forelesning 14 torsdag den 2. oktober

Forelesning 14 torsdag den 2. oktober Forelesning 14 torsdag den 2. oktober 4.1 Primtall Definisjon 4.1.1. La n være et naturlig tall. Da er n et primtall om: (1) n 2; (2) de eneste naturlige tallene som er divisorer til n er 1 og n. Eksempel

Detaljer

6 Kryptografi Totienten Eulers teorem Et eksempel på et bevis hvor Eulers teorem benyttes RSA-algoritmen...

6 Kryptografi Totienten Eulers teorem Et eksempel på et bevis hvor Eulers teorem benyttes RSA-algoritmen... Innhold 6 Kryptografi 3 6.1 Totienten.................................... 3 6.2 Eulers teorem.................................. 8 6.3 Et eksempel på et bevis hvor Eulers teorem benyttes............ 19

Detaljer

Oversikt over det kinesiske restteoremet

Oversikt over det kinesiske restteoremet Oversikt over det kinesiske restteoremet Richard Williamson 3. desember 2014 Oppgave 1 Finn et heltall x slik at: (1) x 2 (mod 6); (2) x 3 (mod 11). Hvordan vet jeg at vi bør benytte det kinesiske restteoremet?

Detaljer

Modulo-regning. hvis a og b ikke er kongruente modulo m.

Modulo-regning. hvis a og b ikke er kongruente modulo m. Modulo-regning Definisjon: La m være et positivt heltall (dvs. m> 0). Vi sier at to hele tall a og b er kongruente modulo m hvis m går opp i (a b). Dette betegnes med a b (mod m) Vi skriver a b (mod m)

Detaljer

MYNTVEKSLING Cirkeln, KTH 31 Jan. 02

MYNTVEKSLING Cirkeln, KTH 31 Jan. 02 Myntveksling 1 MYNTVEKSLING Cirkeln, KTH 31 Jan. 02 Innledning Problemet Myntveksling. 1 Innledning: Myntveksling er et navn vi gir til en lang rekke problemer og resultater som forkommer i mange deler

Detaljer

For æresdoktoratet i Bergen 28 august 2008

For æresdoktoratet i Bergen 28 august 2008 ITERERTE LINEÆRE REKURSJONER OG SCHUBERT REGNING For æresdoktoratet i Bergen 28 august 2008 1. Adjunksjon av røtter 1.1 Notasjon. La A være en ring. For en A-algebra B betrakter vi Hom A (B, A) som en

Detaljer

3.1. Formodninger om primtall.

3.1. Formodninger om primtall. 15 Mai 2000 Kap 3.1 Formodninger om primtall 1 3.1. Formodninger om primtall. (3.1.1) Mersenne, Godbach og primtallstvillinger. Vi skal her forklare noen av de mest kjente formodningene om primtall. (3.1.2)

Detaljer

Forelesning 20 mandag den 27. oktober

Forelesning 20 mandag den 27. oktober Forelesning 20 mandag den 27. oktober 5.10 Eksempler på hvordan regne ut Legendresymboler ved å benytte kvadratisk gjensidighet Eksempel 5.10.1. La oss se igjen på Proposisjon 5.6.2, hvor vi regnet ut

Detaljer

Eksempler på praktisk bruk av modulo-regning.

Eksempler på praktisk bruk av modulo-regning. Eksempler på praktisk bruk av modulo-regning. Se http://www.cs.hioa.no/~evav/dm/emner/modulo1.pdf Tverrsum Tverrsummen til et heltall er summen av tallets sifre. Eksempel. a = 7358. Tverrsummen til a er

Detaljer

LØSNINGSFORSLAG SIF5015 DISKRET MATEMATIKK Onsdag 18. desember 2002

LØSNINGSFORSLAG SIF5015 DISKRET MATEMATIKK Onsdag 18. desember 2002 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 LØSNINGSFORSLAG SIF55 DISKRET MATEMATIKK Onsdag 8. desember 22 Oppgave a) Vi vil ha 77x (mod 3), så vi trenger en

Detaljer

Diskret matematikk tirsdag 13. oktober 2015

Diskret matematikk tirsdag 13. oktober 2015 Eksempler på praktisk bruk av modulo-regning. Tverrsum Tverrsummen til et heltall er summen av tallets sifre. a = 7358. Tverrsummen til a er lik 7 + 3 + 5 + 8 = 23. Setning. La sum(a) stå for tverrsummen

Detaljer

Øvingsforelesning 5. Binær-, oktal-, desimal- og heksidesimaletall, litt mer tallteori og kombinatorikk. TMA4140 Diskret Matematikk

Øvingsforelesning 5. Binær-, oktal-, desimal- og heksidesimaletall, litt mer tallteori og kombinatorikk. TMA4140 Diskret Matematikk Binær-, oktal-, desimal- og heksidesimaletall, litt mer tallteori og kombinatorikk Øvingsforelesning 5 TMA4140 Diskret Matematikk 1. og 3. oktober 2018 Dagen i dag Repetere binære, oktale osv. heltallsrepresentasjoner,

Detaljer

MA1301 Tallteori Høsten 2014 Oversikt over pensumet for midtsemesterprøven

MA1301 Tallteori Høsten 2014 Oversikt over pensumet for midtsemesterprøven MA1301 Tallteori Høsten 2014 Oversikt over pensumet for midtsemesterprøven Richard Williamson 3. oktober 2014 Innhold Pensumet 2 Generelle råd 2 Hvordan bør jeg forberede meg?..........................

Detaljer

Primtall. Et heltall p > 0 kalles et primtall hvis kun 1 og p går opp i p.

Primtall. Et heltall p > 0 kalles et primtall hvis kun 1 og p går opp i p. Primtall Et heltall p > 0 kalles et primtall hvis kun 1 og p går opp i p. Hvordan avgjøre om et heltall a > 1 er et primtall? Regel: Hvis a > 1 ikke er et primtall, så må det finnes et primtall p a som

Detaljer

Tessellering og mangekanter:

Tessellering og mangekanter: Tessellering og mangekanter: 1. Hva menes med et tessellering? 2. Hva mener vi når vi sier at en figur tessellerer? 3. Hva er en mangekant? 4. Hva menes en regulær mangekant? 5. Regulære mangekanter kan

Detaljer

HVA BøR GYMNASLæRERE VITE OM PRIMTALL?

HVA BøR GYMNASLæRERE VITE OM PRIMTALL? Innledning, referenser og matematikere HVA BøR GYMNASLæRERE VITE OM PRIMTALL? Skövde 4. mai 200 Innledning, referenser og matematikere. Vi lever i en epoke da kunnskap er lavt vurdert. Vårt miljø invaderes

Detaljer

Komplekse tall. Kapittel 15

Komplekse tall. Kapittel 15 Kaittel 5 Komlekse tall Utgangsunktet for all regning er de naturlige tallene N = {,,3,...,} Den berømte matematikeren Leoold Kronecker formulerte dette som Gud skate de naturlige tallene, resten er menneskets

Detaljer

Underveiseksamen i MAT-INF 1100, 17. oktober 2003 Tid: Oppgave- og svarark

Underveiseksamen i MAT-INF 1100, 17. oktober 2003 Tid: Oppgave- og svarark Underveiseksamen i MAT-INF 1100, 17. oktober 003 Tid: 9.00 11.00 Kandidatnummer: De 15 første oppgavene teller poeng hver, de siste 5 teller 4 poeng hver. Den totale poengsummen er altså 50. Det er 5 svaralternativer

Detaljer

STØRRELSER OG TALL Om størrelser skriver Euklid i Bok 5: 1. En størrelse er en del av en annen størrelse, den mindre av den større når den måler (går

STØRRELSER OG TALL Om størrelser skriver Euklid i Bok 5: 1. En størrelse er en del av en annen størrelse, den mindre av den større når den måler (går STØRRELSER OG TALL Om størrelser skriver Euklid i Bok 5:. En størrelse er en del av en annen størrelse, den mindre av den større når den måler (går opp i) den større.. Den større er et multiplum av den

Detaljer

Navn og referenser. William Shakespeare 1564-1616 Galileo Galilei 1564-1642 Claudio Monteverdi 1567-1643

Navn og referenser. William Shakespeare 1564-1616 Galileo Galilei 1564-1642 Claudio Monteverdi 1567-1643 Navn og referenser 1 GRUNNFORSKNING SKAL IKKE VÆRE NYTTIG. ET EKSEMPEL OM PRIMTALL Blackeberg, Kungsholmen, Spånga, Åsö, Norra R. 20-22-23 mars 2001, 19-21 mars 2002 grunnforskning nytte anvendelser offentlig

Detaljer

Niels Henrik Abels matematikkonkurranse Løsninger

Niels Henrik Abels matematikkonkurranse Løsninger Niels Henrik Abels matematikkonkurranse 2015 2016. Finale 1. mars 2016 Oppgave 1. Fargelegg et 2016 1010-rutenett som et sjakkbrett, med rute (i, j) hvit når i + j er et partall og svart når i + j er et

Detaljer

Forelesning 10 torsdag den 18. september

Forelesning 10 torsdag den 18. september Forelesning 10 torsdag den 18. september 2.8 Relativt primiske heltall og Euklids lemma Merknad 2.8.1. Korollar 2.7.20 er et svært viktig teoretisk verktøy. I denne og neste del av kapittelet skal vi se

Detaljer

b) 17 går ikke opp i 84 siden vi får en rest på 16 når 84 deles med 17 c) 17 går opp i 357 siden

b) 17 går ikke opp i 84 siden vi får en rest på 16 når 84 deles med 17 c) 17 går opp i 357 siden Avsnitt. Oppgave Diskret matematikk - Høgskolen i Oslo Løsningsforslag for en del oppgaver fra boken Discrete Mathematics and Its Applications Forfatter: Kenneth H. Rosen a) 7 går opp i 68 siden 68 7 b)

Detaljer

Fra skolematematikken husker vi at kvadratroten til et tall a er det ositive tallet som har kvadrat lik a. Men det betyr at x2 = n x for x 0 x for x <

Fra skolematematikken husker vi at kvadratroten til et tall a er det ositive tallet som har kvadrat lik a. Men det betyr at x2 = n x for x 0 x for x < Lsningsforslag til utvalgte ogaver i kaittel 2 I seksjon 2.1 far du velse i a lse ulikheter hvor tallverdier inngar (ogave 2.1.5) og enkel trening i a fre matematiske resonnementer ved a kombinere bruk

Detaljer

Oversikt over lineære kongruenser og lineære diofantiske ligninger

Oversikt over lineære kongruenser og lineære diofantiske ligninger Oversikt over lineære kongruenser og lineære diofantiske ligninger Richard Williamson 3. desember 2014 Oppgave 1 Finn et heltall x slik at 462x 27 (mod 195). Benytt først Euklids algoritme for å finne

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN BOKMÅL UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT220/MAUMAT44 - Algebra Fredag. juni 204, kl. 09-4 Tillatte hjelpemidler: Kalkulator i samsvar med fakultetets

Detaljer

KLASSISK TALLTEORI. Erik Alfsen og Tom Lindstrøm. Matematisk Institutt, UiO, 1994

KLASSISK TALLTEORI. Erik Alfsen og Tom Lindstrøm. Matematisk Institutt, UiO, 1994 KLASSISK TALLTEORI av Erik Alfsen og Tom Lindstrøm Matematisk Institutt, UiO, 1994 Tallene vi bruker når vi teller 1. Induksjon 1,, 3, 4, 5, kalles naturlige tall. Mengden av alle naturlige tall kalles

Detaljer

Øvingsforelesning 4. Modulo hva er nå det for no? TMA4140 Diskret Matematikk. 24. og 26. september 2018

Øvingsforelesning 4. Modulo hva er nå det for no? TMA4140 Diskret Matematikk. 24. og 26. september 2018 Modulo hva er nå det for no? Øvingsforelesning 4 TMA4140 Diskret Matematikk 24. og 26. september 2018 Dagen i dag Repetere den euklidske algoritmen, kongruensregning og annet underveis H11.3a: Inverser

Detaljer

MAT 4000 Innføring i klassisk tallteori

MAT 4000 Innføring i klassisk tallteori MAT 4000 Innføring i klassisk tallteori Dette heftet i tallteori baserer seg i stor grad på tidligere forelesningsnotater av Karl Egil Aubert, som senere er blitt bearbeidet videre av Erik Alfsen, Tom

Detaljer

Matriser. Kapittel 4. Definisjoner og notasjon

Matriser. Kapittel 4. Definisjoner og notasjon Kapittel Matriser Vi har lært å løse et lineært ligningssystem ved å sette opp totalmatrisen til systemet gausseliminere den ved hjelp av radoperasjoner på matrisen Vi skal nå se nærmere på egenskaper

Detaljer

Litt om diofantiske likninger

Litt om diofantiske likninger 1 Litt om diofantiske likninger av Dag Magne Johannessen Når vi skal løse en likning eller et likningssett, diskuterer vi sjelden hvilken grunnmengde som er til rådighet. Problemet går som regel ut på

Detaljer

Oppgaver MAT2500. Fredrik Meyer. 29. august 2014

Oppgaver MAT2500. Fredrik Meyer. 29. august 2014 Oppgaver MAT500 Fredrik Meyer 9. august 04 Oppgave. Bruk cosinus-setningen til å se at definisjonen av vinkel i planet blir riktig. Løsning. Dette er en litt rar oppgave. Husk at cosinus-setningen sier

Detaljer

Oversikt over bevis at det finnes uendelig mange primtall med bestemte egenskaper

Oversikt over bevis at det finnes uendelig mange primtall med bestemte egenskaper Oversikt over bevis at det finnes uendelig mange primtall med bestemte egenskaper Richard Williamson 3. desember 2014 Oppgave 1 La n være et naturlig tall. Bevis at det finnes et primtall p slik at p >

Detaljer

Rekurrens. MAT1030 Diskret matematikk. Rekurrens. Rekurrens. Eksempel. Forelesning 16: Rekurrenslikninger. Dag Normann

Rekurrens. MAT1030 Diskret matematikk. Rekurrens. Rekurrens. Eksempel. Forelesning 16: Rekurrenslikninger. Dag Normann MAT1030 Diskret matematikk Forelesning 16: likninger Dag Normann Matematisk Institutt, Universitetet i Oslo INGEN PLENUMSREGNING 6/3 og 7/3 5. mars 008 MAT1030 Diskret matematikk 5. mars 008 Mandag ga

Detaljer

R2 eksamen våren 2018 løsningsforslag

R2 eksamen våren 2018 løsningsforslag R eksamen våren 08 løsningsforslag DEL Uten hjelpemidler Oppgave ( poeng) Deriver funksjonene a) f ( x) = cos ( x ) f ( x) = sin( x ) = sin( x ) b) g ( x) = x sin x g ( x) = sin x + x cos x = sin x + x

Detaljer

Eksamen MAT H Løsninger

Eksamen MAT H Løsninger Eksamen MAT1140 - H2014 - Løsninger Oppgave 1 Vi setter opp en vanlig sannhetsverditabell. La Φ betegne formelen i oppgaven. Tabellen vil bli som følger: A B C A B A C Φ T T T T T T T T F T T T T F T F

Detaljer

Forelesning 21 torsdag den 30. oktober

Forelesning 21 torsdag den 30. oktober Forelesning 21 torsdag den 30. oktober 5.12 Mersenne-primtall Merknad 5.12.1. Nå kommer vi til å se på et fint tema hvor kvadratisk gjensidighet kan benyttes. Terminologi 5.12.2. La n være et naturlig

Detaljer

Rasjonale potenser. For å finne side av kvadrat med gitt areal A løser vi likning x 2 = A.

Rasjonale potenser. For å finne side av kvadrat med gitt areal A løser vi likning x 2 = A. Rasjonale potenser Vi har tidligere sett hvordan man definierer potenser med heltall. Vi skal nå se hvordan man naturlig definierer potenser også for rasjonale tall, dvs brøk hvor teller og nevner er heltall.

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Teknostart Forelesning 3 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Teknostart Forelesning 3 Tema Logikk Definisjoner og Teoremer Mengder og Egenskaper ved de Reelle Tall

Detaljer

1 Primtall og divisorer

1 Primtall og divisorer Oppgaver 1 Primtall og divisorer KATEGORI 1 1.1 Primtallsfaktorisering Oppgave 1.110 Bruk lommeregneren til å finne ut om tallet er et primtall. a) 47 b) 61 c) 143 Oppgave 1.111 Finn ut ved hjelp av tverrsummen

Detaljer

Il UNIVERSITETET I AGDER

Il UNIVERSITETET I AGDER Il UNIVERSITETET I AGDER FAKULTETFOR TEKNOLOGIOG REALFAG EKSAMEN Emnekode: Emnenavn: MA913 Tall og algebra Dato: 7. desember 2011 Varighet: 09.00 15.00 Antall sider inkl. forside 7 Tillatte hjelpemidler:

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Plenumsregning 11: Ukeoppgaver Mathias Barra Matematisk institutt, Universitetet i Oslo 7. mars 009 (Sist oppdatert: 009-03-30 09:39) Oppgave 7. Finn en rekursiv og en ikke-rekursiv

Detaljer

Obligatorisk oppgave MAT2200 VÅREN 2011

Obligatorisk oppgave MAT2200 VÅREN 2011 Obligatorisk oppgave MAT2200 VÅREN 2011 Alle punkter teller likt. Det kreves at 50% er riktig (som betyr 10 av 19 punkter) for at oppgaven skal godkjennes. Den skal leveres i egen innleveringsboks i 7.

Detaljer

Repetisjon: høydepunkter fra første del av MA1301-tallteori.

Repetisjon: høydepunkter fra første del av MA1301-tallteori. Repetisjon: høydepunkter fra første del av MA1301-tallteori. Matematisk induksjon Binomialteoremet Divisjonsalgoritmen Euklids algoritme Lineære diofantiske ligninger Aritmetikkens fundamentalteorem Euklid:

Detaljer

Niels Henrik Abels matematikkonkurranse Finale Løsninger

Niels Henrik Abels matematikkonkurranse Finale Løsninger Niels Henrik Abels matematikkonkurranse 6. mars 2018 Oppgave 1. Det kinesiske restleddteoremet tillater oss å telle opp antall par (x, y) der x er restklassen til n!! modulo 125 og y er restklassen modulo

Detaljer

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform 1 10 Tall og tallregning Studentene skal kunne gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall definere og benytte de anerkjente skrivemåtene for åpne, halvåpne og lukkede intervaller

Detaljer

Forelesning 24 mandag den 10. november

Forelesning 24 mandag den 10. november Forelesning 24 mandag den 10. november 6.3 RSA-algoritmen Merknad 6.3.1. Én av de meste berømte anveldesene av tallteori er i kryptografi. Alle former for sikre elektroniske overføringer er avhengige av

Detaljer

Problemløsing. Treningshefte foran den Internasjonale Matematikkolympiade. Einar Andreas Rødland 199X

Problemløsing. Treningshefte foran den Internasjonale Matematikkolympiade. Einar Andreas Rødland 199X Problemløsing Treningshefte foran den Internasjonale Matematikkolympiade Einar Andreas Rødland 199X Innhold 1 Innledning 3 2 Logikk og notasjon 3 3 Reductio ad absurdum 5 4 Induksjon 5 4.1 Induksjonsbevis.................................

Detaljer

Eksamen R2, Høsten 2015, løsning

Eksamen R2, Høsten 2015, løsning Eksamen R, Høsten 05, løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) Deriver funksjonene a) f( ) 5cos( ) f 5 sin 0sin

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA405 Matematikk Anbefalte oppgaver - Løsningsforslag Uke 6 3..9: Vi starter med å finne de kritiske punktene. De deriverte blir T x (x, y) = ( x xy)e x y T y (x, y) = ( y xy)e x y, slik at de kritiske

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2017

MA0002 Brukerkurs i matematikk B Vår 2017 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2017 Løsningsforslag Øving 11 Oppgaver fra boken: 10.6 :, 8, 12, 19, 1, (valgfritt - 9,

Detaljer

FASIT OG TIPS til Rinvold: Visuelle perspektiv. Tallteori. Caspar forlag, 2. utgave, 2009

FASIT OG TIPS til Rinvold: Visuelle perspektiv. Tallteori. Caspar forlag, 2. utgave, 2009 FASIT OG TIPS til Rinvold: Visuelle perspektiv. Tallteori. Caspar forlag, 2. utgave, 2009 Versjon 09.01.2012. Det er ikke tatt med svar på alle oppgaver. Denne fasiten vil bli oppdatert etter hvert. Oppdager

Detaljer

Oversikt over kvadratiske kongruenser og Legendresymboler

Oversikt over kvadratiske kongruenser og Legendresymboler Oversikt over kvadratiske kongruenser og Legendresymboler Richard Williamson 3. desember 2014 Oppgave 1 Heltallet er et primtall. Er 11799 en kvadratisk rest modulo? Hvordan løse oppgaven? Oversett først

Detaljer

Karakteriseringen av like mengder. Mengder definert ved en egenskap.

Karakteriseringen av like mengder. Mengder definert ved en egenskap. Notat 2 for MAT1140 2 Bevis La oss si at vi er overbevist om at utsagn P er sant, og at vi ønsker å kommunisere denne innsikten. Eller la oss si vi er ganske sikre på at P er sant, men ønsker, overfor

Detaljer

A) 12 B) 13 C) 14 D) 15 E) 16

A) 12 B) 13 C) 14 D) 15 E) 16 SETT 21 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. En bonde skal sette opp et gjerde rundt et trekantet område med sider 20 m, 20 m og 30 m. Han planlegger å sette opp stolper med 5 meters avstand

Detaljer

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts.

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts. Gauss-Jordan eliminasjon; redusert echelonform Forelesning, TMA4110 Fredag 18/9 Martin Wanvik, IMF MartinWanvik@mathntnuno En matrise vil normalt være radekvivalent med flere echelonmatriser; med andre

Detaljer

Løsningsforslag til eksamenen i MAT103, våren 2015

Løsningsforslag til eksamenen i MAT103, våren 2015 Løsningsforslag til eksamenen i MAT103, våren 2015 Oppgave 1 (vekt 10%) a) Et tall a er et partall hvis a er delelig med 2, dvs a 0(mod 2). Et tall a er et oddetall hvis a ikke delelig med 2, dvs a 1(mod

Detaljer

MAUMAT644 ALGEBRA vår 2016 Første samling Runar Ile

MAUMAT644 ALGEBRA vår 2016 Første samling Runar Ile MAUMAT644 ALGEBRA vår 2016 Første samling Runar Ile 1 Introduksjon: Grupper og ringer Ringer En ring er et sted hvor du kan addere, subtrahere og multiplisere. Hvis du også kan dividere kalles ringen for

Detaljer

Niels Henrik Abels matematikkonkurranse 2011 2012

Niels Henrik Abels matematikkonkurranse 2011 2012 Bokmål Niels Henrik Abels matematikkonkurranse 011 01 Første runde. november 011 Ikke bla om før læreren sier fra! Abelkonkurransens første runde består av 0 flervalgsoppgaver som skal løses i løpet av

Detaljer

Eksamen R2, Høst 2012, løsning

Eksamen R2, Høst 2012, løsning Eksamen R, Høst 0, løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) Deriver funksjonene a) cos f e Vi bruker produktregelen

Detaljer

Løsningsforslag øving 6

Løsningsforslag øving 6 Løsningsforslag øving 6 7 Husk Teorem 79 i notatet: En delmengde U av et vektorrom V er et underrom hvis ) nullvektoren er i U, ) summen av to vektorer i U er i U igjen, og 3) et skalarmultiplum av en

Detaljer

12 Vekst. Areal under grafer

12 Vekst. Areal under grafer MATEMATIKK: 2 Vekst. Areal under grafer 2 Vekst. Areal under grafer 2. Stigningstall og gjennomsnittlig vekst I kapitlene 8 og 0 viste vi hvordan vi kunne regne ut stigningen til en rett linje eller lineær

Detaljer

Tallregning og algebra

Tallregning og algebra 30 Tallregning og algebra Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2014

MA0002 Brukerkurs i matematikk B Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2014 Løsningsforslag Øving 10 Oppgaver fra boken: 10.6 : 1, 8, 9, 12, 19, 26, 29,, 4 Det

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

Noen tallteoretiske resultater av Fermat

Noen tallteoretiske resultater av Fermat Noen tallteoretiske resultater av Fermat Arne B. Sletsjøe Universitetet i Oslo Pierre de Fermat (1601/1607-1665) Fermats lille teorem Fermats rettvinklede teorem Fermats siste teorem Cubum autem in duos

Detaljer

Geometri i rommet. Kapittel Vektorer i R 3. Lengden av v er gitt ved

Geometri i rommet. Kapittel Vektorer i R 3. Lengden av v er gitt ved Kaittel 5 Geometri i rommet I dette kaitlet skal vi konsentrere oss om isometrier i R. Det er stort sammenfall mellom teoriene i og dimensjoner, og mange av resultatene fra forrige kaittel er gyldig også

Detaljer

Løsningsforslag til prøveunderveiseksamen i MAT-INF 1100, H-03

Løsningsforslag til prøveunderveiseksamen i MAT-INF 1100, H-03 Løsningsforslag til prøveunderveiseksamen i MAT-INF 1100, H-03 Denne prøveeksamenen har samme format som den virkelige underveiseksamenen, og inneholder oppgaver av samme type og vanskelighetsgrad. De

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 16: Rekursjon og induksjon Roger Antonsen Institutt for informatikk, Universitetet i Oslo 17. mars 009 (Sist oppdatert: 009-03-17 11:4) Forelesning 16 MAT1030 Diskret

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2016

MA0002 Brukerkurs i matematikk B Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2016 Løsningsforslag Øving 11 Oppgaver fra boken: 10.6 : 1, 8, 9, 12, 19, 26, 29,, 4 Det

Detaljer

At z + w og zw er reelle betyr at deres imaginrdeler er lik null, det vil si at b + d 0 ad + bc 0 Den frste ligningen gir b d. Setter vi dette inn i d

At z + w og zw er reelle betyr at deres imaginrdeler er lik null, det vil si at b + d 0 ad + bc 0 Den frste ligningen gir b d. Setter vi dette inn i d Lsningsforslag til utvalgte ogaver i kaittel I dette kaittelet har mange av ogavene et mindre teoretisk reg enn i de foregaende kaitlene, og jeg regner derfor med at lrebokas eksemler og fasit er dekkende

Detaljer

MA1201/MA6201 Høsten 2016

MA1201/MA6201 Høsten 2016 MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Løsningsforslag Øving Med forebehold om feil. Hvis du finner en, ta kontakt med Karin. Kapittel 6. a) Stemmer. Anta

Detaljer

Chapter 6 - Discrete Mathematics and Its Applications. Løsningsforslag på utvalgte oppgaver

Chapter 6 - Discrete Mathematics and Its Applications. Løsningsforslag på utvalgte oppgaver Avsnitt 6. Chapter 6 - Discrete Mathematics and Its Applications Løsningsforslag på utvalgte oppgaver Oppgave a) Valget av en fra matematikk og en fra data er uavhengig av hverandre. Dermed blir det 35

Detaljer

Grublegruppe 19. sept. 2011: Algebra I

Grublegruppe 19. sept. 2011: Algebra I Grublegruppe 19. sept. 2011: Algebra I Ivar Staurseth ivarsta@math.uio.no Innledning, definisjoner Vi har så langt jobbet med mengder, X, hvor vi har hatt et avstandsbegrep og hvor vi har vært i stand

Detaljer

Kommentarer til Eksamen IM005 - V02

Kommentarer til Eksamen IM005 - V02 Kommentarer til Eksamen IM005 - V02 Følgende oppgaver er aktuelle innenfor dagens pensum: Oppgave 1a,d,e,f,h,i Oppgave 2a,b,c Oppgave 3 Oppgave 4a,c,d I Oppgavene 1f,h,i skal det stå enkel graf (simple

Detaljer

ESTETIKK I MATEMATIKK. 1. Om det vakre - Er du opptatt av estetikk? - Hva mener du, om jeg ser mye på kunst? - Ja, nei...

ESTETIKK I MATEMATIKK. 1. Om det vakre - Er du opptatt av estetikk? - Hva mener du, om jeg ser mye på kunst? - Ja, nei... ESTETIKK I MATEMATIKK KRISTIAN RANESTAD Abstract. Det vakre spiller en vesentlig motiverende og veiledende rolle i matematikken. Med eksempler fra geometri, tallteori og et gammelt puslespill viser jeg

Detaljer

Matematisk induksjon

Matematisk induksjon Matematisk induksjon 1 Innledning Dette er et nytt forsøk på å forklare induksjon. Strategien min i forelesning var å prøve å unngå å få det til å se ut som magi, ved å forklare prinsippet fort ved hjelp

Detaljer