Eksamensoppgåve i TMA4295 Statistisk inferens
|
|
- Tine Hjelle
- 6 år siden
- Visninger:
Transkript
1 Institutt for matematiske fag Eksamensoppgåve i TMA4295 Statistisk inferens Fagleg kontakt under eksamen: Vaclav Slimacek Tlf: Eksamensdato: Tirsdag 2. desember 2014 Eksamenstid (frå til): 09:00-13:00 Hjelpemiddelkode/Tillatne hjelpemiddel: C: Tabeller og Formler i Statistikk, Tapir NTNU-godkjent kalkulator Personleg, handskriven, gul hugselapp - A5-format Annan informasjon: Kopier av nokre viktige resultat frå læreboka er gitt som vedlegg Målform/språk: nynorsk Sidetal: 3 Sidetal vedlegg: 4 Kontrollert av: Dato Sign Merk! Studentane finn sensur i Studentweb. Har du spørsmål om sensuren må du kontakte instituttet ditt. Eksamenskontoret vil ikkje kunne svare på slike spørsmål.
2
3 TMA4295 Statistisk inferens, 2. desember 2014 Side 1 av 3 Oppgåve 1 Terningane Det er mistanke om at terningane som ein brukar ved eit casino er manipulerte, slik at sjansane for å få 1-arar og 6-arar er endra, medan dei andre utfalla ikkje er påverka. La p i vere sannsynet for å få i auge med ein terning frå casinoet. Følgjande modell vil bli studert: p 1 = 1 6 θ, p 2 = p 3 = p 4 = p 5 = 1 6, p 6 = θ, der θ er ein ukjend parameter med θ < 1/6. Ein gjer n kast med ein slik terning, der X i av desse kasta ender med i auge (i = 1, 2,..., 6). a) Kva for føresetnader må ein gjere for å sikre at den observerte vektoren X = (X 1, X 2,..., X 6 ) er multinomisk fordelt? Anta i det følgjande at desse føresetnadene held. Merk at resultat frå læreboka som gjeld uavhengige og identisk fordelte observasjonar også vil gjelde for multinomiske forsøk som i denne oppgåva. Vis at den simultane sannsynsmassefunksjonen (pmf ) for X kan verte skriven som ein eksponensiell familie på følgjande form: { ( ) ( )} 1 1 f(x θ) = h(x) exp x 1 ln 6 θ + x 6 ln 6 + θ for x A. Spesifiser funksjonen h(x) og mengda A av mulige verdiar for X. Gjer greie for kvifor den to-dimensjonale observatoren T (X) = (X 1, X 6 ) er suffisient for θ. b) Vis at T (X) er minimal-suffisient. c) Vis at maximum likelihood estimatoren (MLE) for θ er gitt ved ˆθ = 1 6 x6 x 1 x 6 + x 1 hvis x 6 + x 1 > 0, og at ˆθ er ubestemd dersom x 6 + x 1 = 0.
4 Side 2 av 3 TMA4295 Statistisk inferens, 2. desember 2014 d) For å kunne påvise at terningen er manipulert, vil ein teste H 0 : θ = 0 mot H 1 : θ 0. Finn eit uttrykk for sannsynskvota (likelihood ratio) λ(x) for dette problemet. Kva blir konklusjonen på sannsynskvotetesten (LRT) dersom n = 100 og den observerte vektor er (10, 14, 17, 21, 16, 22)? Du skal her bruke den asymptotiske fordelinga for sannsynskvota. Bruk signifikansnivå α = e) Vis at Cramér-Raos nedre grense for variansen til forventingsrette estimatorar for θ er 1 36θ 2 12n Bruk denne til å setje opp den asymptotiske fordelinga for maximum likelihood estimatoren ˆθ. Finn eit tilnærma 95% konfidensintervall for θ, og berekn intervallet når observasjonane er som i det førre punktet. Gjer også kort greie for, utan å gjere alle berekningane, korleis ein kan utleie ei tilnærma 95% konfidensmengde for θ ved å invertere ein sannsynskvotetest. f) Vis at estimatoren θ = X 6 X 1 2n er forventingsrett for θ, og finn eit uttrykk for variansen. Kvifor kan ikkje denne estimatoren bli forbetra ved hjelp av Rao-Blackwells teorem? g) Estimatoren θ frå førre punkt er forventingsrett, og er dessutan ein funksjon av den suffisiente observator T (X). Eit naturleg spørsmål er då om den er ein UMVU-estimator. Kan du bruke Cramér-Raos nedre grense frå punkt e) til å avgjere dette? Grunngi svaret. Dersom svaret er nei, er det naturleg å sjekke om Theorem i vedlegget kan bli bruka til å avgjere om θ er UMVU. (Dette teoremet er essensielt det som i forelesningane er kalt Lehmann-Scheffés teorem). Vis at T (X) ikkje er komplett, ved å bruke definisjonen av komplettheit. Kan du konkludere noko frå Theorem ?
5 TMA4295 Statistisk inferens, 2. desember 2014 Side 3 av 3 Oppgåve 2 Tid til feil Ein maskin blir sett i gang ved begynninga av døger nr. 1 og blir observert til den feilar første gong. La Y = y tyde at dette skjer i døger nr. y, (y = 1, 2,...). a) Sett opp føresetnader for at Y er geometrisk fordelt med parameter p, 0 < p < 1, dvs. at Y har pmf f(y) = (1 p) y 1 p for y = 1, 2,... I det følgjande skal du anta at desse føresetnadene er oppfylte. Vis at den momentgenererande funksjon (mgf ) for Y er gitt ved M Y (t) = pe t 1 (1 p)e t for t < ln(1 p). Vis korleis dette kan bli bruka til å vise at tida til feil, Y, har forventing µ = 1/p (døger). For å kunne registrere feiltida meir nøyaktig deler ein døgeret i n delar (for heltall n > 1), slik at tida Y n til feil nå blir målt med eining 1/n døger (t.d. i timar om n = 24). Det er naturleg å anta at Y n er geometrisk fordelt med parameter p n = p/n, medan tida til feil, målt med eining døger, blir X n = 1 n Y n b) Vis at X n konvergerer i fordeling mot ein tilfeldig variabel X, dvs. X n d X. Kva for kjent fordeling har X? Kva blir E(X)? (Vink: Berekn mgf for X n og finn grensa når n ).
6 TMA4295 Statistisk inferens, 2. desember 2014 Side i av iv
7 Side ii av iv TMA4295 Statistisk inferens, 2. desember 2014
8 TMA4295 Statistisk inferens, 2. desember 2014 Side iii av iv
9 Side iv av iv TMA4295 Statistisk inferens, 2. desember 2014
Eksamensoppgave i TMA4295 Statistisk inferens
Institutt for matematiske fag Eksamensoppgave i TMA4295 Statistisk inferens Faglig kontakt under eksamen: Vaclav Slimacek Tlf: 942 96 313 Eksamensdato: Tirsdag 2. desember 2014 Eksamenstid (fra til): 09:00-13:00
Eksamensoppgåve i TMA4240 / TMA4245 Statistikk
Institutt for matematiske fag Eksamensoppgåve i TMA4240 / TMA4245 Statistikk Fagleg kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato: 10. august 2017 Eksamenstid (frå til): 09.00-13.00
Eksamensoppgåve i ST1201/ST6201 Statistiske metoder
Institutt for matematiske fag Eksamensoppgåve i ST1201/ST6201 Statistiske metoder Fagleg kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 04. desember 2015 Eksamenstid (frå til): 09:00
Eksamensoppgåve i Løsningsskisse TMA4245 Statistikk
Institutt for matematiske fag Eksamensoppgåve i Løsningsskisse TMA4245 Statistikk Fagleg kontakt under eksamen: Gunnar Taraldsen a, Torstein Fjeldstad b Tlf: a 464 32 506, b 962 09 710 Eksamensdato: 23
Eksamensoppgåve i ST0103 Brukarkurs i statistikk
Institutt for matematiske fag Eksamensoppgåve i ST0103 Brukarkurs i statistikk Fagleg kontakt under eksamen: Jarle Tufto Tlf: 99 70 55 19 Eksamensdato: 3. desember 2016 Eksamenstid (frå til): 09:00-13:00
Eksamensoppgåve i ST0103 Brukarkurs i statistikk
Institutt for matematiske fag Eksamensoppgåve i ST0103 Brukarkurs i statistikk Fagleg kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: August 2018 Eksamenstid (frå til): 09:00 13:00 Hjelpemiddelkode/Tillatne
Eksamensoppgave i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland a, Sara Martino b Tlf: a 48 22 18 96, b 99 40 33 30 Eksamensdato: 30. november 2017 Eksamenstid
Eksamensoppgåve i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgåve i TMA4240 Statistikk Fagleg kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806
Eksamensoppgave i TMA4240 / TMA4245 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 / TMA4245 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato: 10. august 2017 Eksamenstid (fra til): 09.00-13.00
Eksamensoppgave i ST1201/ST6201 Statistiske metoder
Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 20. desember 2016 Eksamenstid (fra til): 09:00
Eksamensoppgåve i TMA4245 Statistikk
Institutt for matematiske fag Eksamensoppgåve i TMA4245 Statistikk Fagleg kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato:??. august 2014 Eksamenstid (frå til): 09:00 13:00 Hjelpemiddelkode/Tillatne
Eksamensoppgåve i ST1201/ST6201 Statistiske metoder
Institutt for matematiske fag Eksamensoppgåve i ST1201/ST6201 Statistiske metoder Fagleg kontakt under eksamen: Tlf: Eksamensdato: august 2015 Eksamenstid (frå til): Hjelpemiddelkode/Tillatne hjelpemiddel:
Eksamensoppgave i Løsningsskisse TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i Løsningsskisse TMA440 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland a, Sara Martino b Tlf: a 48 18 96, b 99 40 33 30 Eksamensdato: 30. november
Eksamensoppgave i ST0103 Brukerkurs i statistikk
Institutt for matematiske fag Eksamensoppgave i ST0103 Brukerkurs i statistikk Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: August 2018 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte
Eksamensoppgåve i TMA4250 Romleg Statistikk
Institutt for matematiske fag Eksamensoppgåve i TMA4250 Romleg Statistikk Fagleg kontakt under eksamen: Professor Henning Omre Tlf: 90937848 Eksamensdato: 5. juni 2015 Eksamenstid (frå til): 09:00-13:00
Eksamensoppgave i ST1201/ST6201 Statistiske metoder
Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 04. desember 2015 Eksamenstid (fra til): 09:00
Eksamensoppgave i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806
TMA4240 Statistikk H2010
TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må
Utfordring. TMA4240 Statistikk H2010. Mette Langaas. Foreleses uke 40, 2010
TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må
Eksamensoppgave i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Sara Martino a, Torstein Fjeldstad b Tlf: a 994 03 330, b 962 09 710 Eksamensdato: 28. november 2018 Eksamenstid
Eksamensoppgave i ST1201/ST6201 Statistiske metoder
Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Tlf: Eksamensdato: august 2015 Eksamenstid (fra til): Hjelpemiddelkode/Tillatte hjelpemidler:
Eksamensoppgåve i TMA4255 Anvendt statistikk
Institutt for matematiske fag Eksamensoppgåve i TMA4255 Anvendt statistikk Fagleg kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: 30. mai 2014 Eksamenstid (frå til): 09:00-13:00
Eksamensoppgave i TMA4245 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato:??. august 2014 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte
Eksamensoppgave i TMA4245 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Ingelin Steinsland a, Øyvind Bakke b Tlf: a 73 59 02 39, 926 63 096, b 73 59 81 26, 990 41 673 Eksamensdato:
Eksamensoppgave i TMA4245 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Gunnar Taraldsen a, Torstein Fjeldstad b Tlf: a 464 32 506, b 962 09 710 Eksamensdato: 23. mai 2018 Eksamenstid
Eksamensoppgave i ST1201/ST6201 Statistiske metoder
Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 11. desember 2014 Eksamenstid (fra til): 09:00
Eksamensoppgave i ST0103 Brukerkurs i statistikk
Institutt for matematiske fag Eksamensoppgave i ST0103 Brukerkurs i statistikk Faglig kontakt under eksamen: Jarle Tufto Tlf: 99 70 55 19 Eksamensdato: 3. desember 2016 Eksamenstid (fra til): 09:00-13:00
EKSAMENSOPPGAVE. «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark/ 4 sider med egne notater. Godkjent kalkulator.
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-1001. Dato: Mandag 9. mai 017. Klokkeslett: 09 13. Sted: Åsgårdvegen 9. Tillatte hjelpemidler: «Tabeller og formler i statistikk»
EKSAMEN I TMA4245 STATISTIKK Tysdag 21. mai 2013 Tid: 09:00 13:00 (Korrigert )
Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag Side 1 av 5 Nynorsk Fagleg kontakt under eksamen: Håkon Tjelmeland 73593538/48221896 Ola Diserud 93218823 EKSAMEN I TMA4245 STATISTIKK
Eksamensoppgåve i TMA4267 Lineære statistiske modellar
Institutt for matematiske fag Eksamensoppgåve i TMA4267 Lineære statistiske modellar Fagleg kontakt under eksamen: Øyvind Bakke Tlf: 73 59 81 26, 990 41 673 Eksamensdato: 22. mai 2015 Eksamenstid (frå
Eksamensoppgave i SØK1004 Statistikk for økonomer
Institutt for samfunnsøkonomi Eksamensoppgave i Faglig kontakt under eksamen: Per Tovmo Tlf.: 73 55 02 59 Eksamensdato: 7. desember 2016 Eksamenstid (fra-til): 4 timer (09-13.00) Hjelpemiddelkode/Tillatte
EKSAMEN I TMA4315 GENERALISERTE LINEÆRE MODELLAR
Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag Side 1 av 5 Nynorsk Kontakt under eksamen: Thiago G. Martins 46 93 74 29 EKSAMEN I TMA4315 GENERALISERTE LINEÆRE MODELLAR Torsdag
Forelesing 27 Oppsummering. Torstein Fjeldstad Institutt for matematiske fag, NTNU
Forelesing 27 Oppsummering Torstein Fjeldstad Institutt for matematiske fag, NTNU 18.04.2018 I dag Lineær regresjon (sjekk av modellantagelser) Praktisk informasjon Andre statistikk-kurs Oversikt over
Eksamensoppgave i TMA4255 Anvendt statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4255 Anvendt statistikk Faglig kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: 30. mai 2014 Eksamenstid (fra til): 09:00-13:00
Kapittel 2: Hendelser
Kapittel 2: Hendelser FENOMEN Eksperiment Utfall Utfallsrom Eksperiment. Utfall. Eksperiment Utfall Hendelse Sannsynlighet: egenskaper, gunstige vs. mulige, relativ frekvens Sannsynlighet for mer enn en
Eksamensoppgave i TMA4275 Levetidsanalyse
Institutt for matematiske fag Eksamensoppgave i TMA4275 Levetidsanalyse Faglig kontakt under eksamen: Bo Lindqvist Tlf: 975 89 418 Eksamensdato: Onsdag 8. juni 2016 Eksamenstid (fra til): 09:00-13:00 Hjelpemiddelkode/Tillatte
Eksamensoppgave i TMA4275 Levetidsanalyse
Institutt for matematiske fag Eksamensoppgave i TMA4275 Levetidsanalyse Faglig kontakt under eksamen: Bo Lindqvist Tlf: 975 89 418 Eksamensdato: Lørdag 31. mai 2014 Eksamenstid (fra til): 09:00-13:00 Hjelpemiddelkode/Tillatte
EKSAMEN I FAG TMA4240/TMA4245 STATISTIKK Lørdag 10. august 2013
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Fagleg kontakt under eksamen: John Tyssedal 41 64 53 76 EKSAMEN I FAG TMA4240/TMA4245 STATISTIKK Lørdag 10. august
Observatorar og utvalsfordeling. Torstein Fjeldstad Institutt for matematiske fag, NTNU
Observatorar og utvalsfordeling Torstein Fjeldstad Institutt for matematiske fag, NTNU 08.10.2018 I dag Til no i emnet Observatorar Utvalsfordelingar Sentralgrenseteoremet 2 Til no i emnet definisjon av
Eksamensoppgave i TMA4255 Anvendt statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4255 Anvendt statistikk Faglig kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: 3. juni 2016 Eksamenstid (fra til): 09:00-13:00
TMA4240 Statistikk Eksamen desember 2015
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Eksamen desember 15 Oppgave 1 La den kontinuerlege stokastiske variabelen X ha fordelingsfunksjon (sannsynstettleik
Eksamensoppgåve i TMA4255 Anvendt statistikk
Institutt for matematiske fag Eksamensoppgåve i TMA4255 Anvendt statistikk Fagleg kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: 3. juni 2016 Eksamenstid (frå til): 09:00-13:00
Eksamensoppgave i TMA4250 Romlig Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4250 Romlig Statistikk Faglig kontakt under eksamen: Professor Henning Omre Tlf: 90937848 Eksamensdato: 5. juni 2015 Eksamenstid (fra til): 09:00-13:00
STK Oppsummering
STK1100 - Oppsummering Geir Storvik 6. Mai 2014 STK1100 Tre temaer Deskriptiv/beskrivende statistikk Sannsynlighetsteori Statistisk inferens Sannsynlighetsregning Hva Matematisk verktøy for å studere tilfeldigheter
Eksamensoppgave i TMA4275 Levetidsanalyse
Institutt for matematiske fag Eksamensoppgave i TMA4275 Levetidsanalyse Faglig kontakt under eksamen: Jacopo Paglia Tlf: 967 03 414 Eksamensdato: Fredag 7. juni 2019 Eksamenstid (fra til): 09:00 13:00
Om eksamen. Never, never, never give up!
I dag I dag Rekning av eksamensoppgåver Eksamen Mai 2014, oppgåve 2 (inkl normal fordeling, lin.reg. og deskriptiv statistikk) Eksamen August 2012, oppgåve 3 a og b (inkl SME) Om eksamen (Truleg) 10 punkt.
Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering
Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering TMA4245 Statistikk Kapittel 8.1-8.5. Kapittel 9.1-9.3+9.15 Turid.Follestad@math.ntnu.no p.1/21 Har sett
EKSAMEN I FAG TMA4275 LEVETIDSANALYSE
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Bo Lindqvist 975 89 418 EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Fredag 26. mai 2006
EKSAMEN I EMNE TMA4245 STATISTIKK
Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag Side 1 av 5 Nynorsk Fagleg kontakt under eksamen: John Tyssedal 73 59 35 34/ 41 64 53 76 Jo Eidsvik 73 59 01 53/ 90 12 74 72 EKSAMEN
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1 Eksamensdag: Mandag 30. november 2015. Tid for eksamen: 14.30 18.00. Oppgavesettet
TMA4240 Statistikk Eksamen desember 2015
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Eksamen desember 15 Oppgave 1 La den kontinuerlige stokastiske variabelen X ha fordelingsfunksjon (sannsynlighetstetthet
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Eksamensdag: Torsdag 2. juni 24 Tid for eksamen: 4.3 8.3 Oppgavesettet er på 5 sider. Vedlegg: Tillatte hjelpemidler: STK429
TMA4245 Statistikk Eksamen desember 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 Ei bedrift produserer elektriske komponentar. Komponentane kan ha to typar
Eksamensoppgave i SØK1004 Statistikk for økonomer
Institutt for samfunnsøkonomi Eksamensoppgave i SØK1004 Statistikk for økonomer Faglig kontakt under eksamen: Hildegunn E. Stokke Tlf.: 73 59 16 65 Eksamensdato: 16. mai 2017 Eksamenstid (fra-til): 4 timer
Første sett med obligatoriske oppgaver i STK1110 høsten 2015
Første sett med obligatoriske oppgaver i STK1110 høsten 2015 Dette er det første obligatoriske oppgavesettet i STK1110 høsten 2015. Oppgavesettet består av fire oppgaver. Du må bruke Matematisk institutts
Estimatorar. Torstein Fjeldstad Institutt for matematiske fag, NTNU
Estimatorar Torstein Fjeldstad Institutt for matematiske fag, NTNU 11.10.2018 I dag Repetisjon Er dataa mine normalfordelt? Estimatorar Eigenskapar til S 2 Kahoot 2 Repetisjon Obervator Ein observator
EKSAMENSOPPGAVE STA-1001.
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-1001. Dato: Mandag 28. mai 2018. Klokkeslett: 09-13. Sted: Tillatte hjelpemidler: Administrasjonsbygget B154/AUDMAX. «Tabeller og
EKSAMEN I TMA4315 GENERALISERTE LINEÆRE MODELLER
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av?? Bokmål Kontakt under eksamen: Thiago G. Martins 46 93 74 29 EKSAMEN I TMA4315 GENERALISERTE LINEÆRE MODELLER Torsdag
EKSAMEN I TMA4245 Statistikk
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Turid Follestad (98 06 68 80/73 59 35 37) Hugo Hammer (45 21 01 84/73 59 77 74) Eirik
Eksamensoppgåve i TMA4255 Anvendt statistikk
Institutt for matematiske fag Eksamensoppgåve i TMA4255 Anvendt statistikk Fagleg kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: August 2016 Eksamenstid (frå til): Hjelpemiddelkode/Tillatne
Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.
Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 17 november 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk Tapir
Eksamensoppgave i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Jo Eidsvik og Arild Brandrud Næss Tlf: 90 12 74 72 og 99 53 82 94 Eksamensdato: 9. desember 2013 Eksamenstid
EKSAMEN I TMA4285 TIDSREKKJEMODELLAR Fredag 7. desember 2012 Tid: 09:00 13:00
Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag Side 1 av 8 Nynorsk Fagleg kontakt under eksamen: John Tyssedal 73593534/41645376 EKSAMEN I TMA4285 TIDSREKKJEMODELLAR Fredag 7.
Eksamensoppgave i SØK3515 / SØK8615 Mikro- og paneldataøkonometri
Institutt for samfunnsøkonomi Eksamensoppgave i SØK3515 / SØK8615 Mikro- og paneldataøkonometri Faglig kontakt under eksamen: Bjarne Strøm Tlf.: 73 59 19 33 Eksamensdato: 11.12.2014 Eksamenstid (fra-til):
i=1 t i +80t 0 i=1 t i = 9816.
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Jo Eidsvik 901 27 472 EKSAMEN I FAG SIF5075 LEVETIDSANALYSE Torsdag 22. mai 2003 Tid:
Om eksamen. Never, never, never give up!
Plan vidare Onsdag Gjere ferdig kap 11 + repetisjon Fredag Rekning av eksamensoppgåver Eksamen Mai 2014, oppgåve 2 (inkl normal fordeling, lin.reg. og deskriptiv statistikk) Eksamen August 2012, oppgåve
Eksamensoppgave i SØK Statistikk for økonomer
Institutt for samfunnsøkonomi Eksamensoppgave i SØK1004 - Statistikk for økonomer Faglig kontakt under eksamen: Per Tovmo Tlf.: 73 55 02 59 Eksamensdato: 7. desember 2015 Eksamenstid (fra-til): 4 timer
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST0 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Torsdag 9. mai 994. Tid for eksamen: 09.00 5.00. Oppgavesettet
TMA4245 Statistikk Eksamen desember 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer
Eksamensoppgave i TMA4150 Algebra
Institutt for matematiske fag Eksamensoppgave i TMA4150 Algebra Faglig kontakt under eksamen: Torkil Utvik Stai Tlf: 47638459 Eksamensdato: 29. mai 2018 Eksamenstid (fra til): 15:00 19:00 Hjelpemiddelkode/Tillatte
Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger
Institutt for matematiske fag Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Faglig kontakt under eksamen: Anton Evgrafov Tlf: 4503 0163 Eksamensdato: 30. mai 2017 Eksamenstid (fra
Eksamensoppgave i SØK1001 Matematikk for økonomer
Institutt for samfunnsøkonomi Eksamensoppgave i Faglig kontakt under eksamen: Hildegunn E. Stokke Tlf.: 97 9 94 54 Eksamensdato: 0. november 08 Eksamenstid (fra-til): 4 timer (09.00-.00) Sensurdato:. desember
Eksamensoppgave i TMA4267 Lineære statistiske modeller
Institutt for matematiske fag Eksamensoppgave i TMA4267 Lineære statistiske modeller Faglig kontakt under eksamen: Mette Langaas Tlf: 988 47 649 Eksamensdato: 4. juni 2016 Eksamenstid (fra til): 09.00
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST 101 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Mandag 30. november 1992. Tid for eksamen: 09.00 15.00.
Eksamensoppgåve i TMA4255 Anvendt statistikk
Institutt for matematiske fag Eksamensoppgåve i TMA4255 Anvendt statistikk Fagleg kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: August 2014 Eksamenstid (frå til): Hjelpemiddelkode/Tillatne
+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1
Løsningsforslag for: MOT10 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 6. november 007 TILLATTE HJELPEMIDLER: Kalkulator: HP0S, Casio FX8 eller TI-0 Tabeller og formler i statistikk (Tapir forlag) MERKNADER:
EKSAMEN I FAG TMA4240 STATISTIKK
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglige kontakter under eksamen: Jo Eidsvik 90127472 Arild Brandrud Næss 99538294 EKSAMEN I FAG TMA4240 STATISTIKK
Eksamensoppgave i TMA4267 Lineære statistiske modeller
Institutt for matematiske fag Eksamensoppgave i TMA4267 Lineære statistiske modeller Faglig kontakt under eksamen: Tlf: Eksamensdato: August 2014 Eksamenstid (fra til): Hjelpemiddelkode/Tillatte hjelpemidler:
Eksamensoppgave i TMA4255 Anvendt statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4255 Anvendt statistikk Faglig kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: August 2016 Eksamenstid (fra til): Hjelpemiddelkode/Tillatte
HØGSKOLEN I STAVANGER
HØGSKOLEN I STAVANGER Avdeling for TEKNISK NATURVITEN- EKSAMEN I: TE199 SANNSYNLIGHETSREGNING MED STATISTIKK SKAPELIGE FAG VARIGHET: 4 TIMER DATO: 5. JUNI 2003 TILLATTE HJELPEMIDLER: KALKULATOR OPPGAVESETTET
EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Xxxdag xx. juni 2008 Tid: 09:0013:00
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: NN EKSAMEN I FAG TMA4275 LEVETIDSANALYSE Xxxdag xx. juni 2008 Tid: 09:0013:00 Tillatte
Eksamensoppgave i SØK2103 Økonomiske perspektiver på politiske beslutninger
Institutt for samfunnsøkonomi Eksamensoppgave i SØK2103 Økonomiske perspektiver på politiske beslutninger Faglig kontakt under eksamen: Leiv Opstad Tlf.: 92 66 77 09 Eksamensdato: 15.12.2014 Eksamenstid
TMA4245 Statistikk Eksamen august 2014
TMA4245 Statistikk Eksamen august 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Oppgave 1 Ei bedrift produserer ein type medisin i pulverform Medisinen seljast på flasker
Eksamensoppgave i FIN3006 Anvendt tidsserieøkonometri
Institutt for samfunnsøkonomi Eksamensoppgave i FIN3006 Anvendt tidsserieøkonometri Faglig kontakt under eksamen: Arnt Ove Hopland Tlf.: 73 59 16 54 Eksamensdato: 30.05.2013 Eksamenstid (fra-til): 09.00
Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger
Institutt for matematiske fag Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Faglig kontakt under eksamen: Anton Evgrafov Tlf: 4503 0163 Eksamensdato: 06. juni 2016 Eksamenstid (fra
TMA4240 Statistikk Høst 2009
TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b5 Løsningsskisse Oppgave 1 Vi ønsker å finne ut om et nytt serum kan stanse leukemi.
TMA4240 Statistikk H2017 [15]
TMA4240 Statistikk H207 [5] Del 2: Statistisk inferens Populasjon og utvalg [8.] Observatorer og utvalgsfordelinger [8.2-8.3] Fordeling til gjennomsnittet og sentralgrenseteoremet [8.4] Normalplott [8.8]
EKSAMEN I FAG TMA4240/TMA4245 STATISTIKK
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: John Tyssedal 41 64 53 76 EKSAMEN I FAG TMA4240/TMA4245 STATISTIKK Lørdag 10. august
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting
ST0103 Brukerkurs i statistikk Høsten Momentestimatoren og sannsynlighetsmaksimeringsestimatoren
ST0103 Brukerkurs i statistikk Høsten 2016 Momentestimatoren og sannsynlighetsmaksimeringsestimatoren (SME) Boka har bare ett eksempel med sannsynlighetsmaksimeringsestimatoren. Vi gjengir dette nedenfor,
Eksamensoppgave i SØK1001 Matematikk for økonomer
Institutt for samfunnsøkonomi Eksamensoppgave i SØK1001 Matematikk for økonomer Faglig kontakt under eksamen: Hildegunn Stokke Tlf.: 97 19 94 54 Eksamensdato: 4. oktober 017 Eksamenstid (fra-til): 4 timer
Eksamensoppgåve i TMA4135 Matematikk 4D
Institutt for matematiske fag Eksamensoppgåve i TMA435 Matematikk 4D Fagleg kontakt under eksamen: Gard Spreemann Tlf: 73 55 02 38 Eksamensdato: 5. august 204 Eksamenstid (frå til): 09.00 3.00 Helpemiddelkode/Tillatne
Eksamensoppgave i TMA4255 Anvendt statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4255 Anvendt statistikk Faglig kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: 16. mai 2015 Eksamenstid (fra til): 09:00-13:00
STK juni 2016
Løsningsforslag til eksamen i STK220 3 juni 206 Oppgave a N i er binomisk fordelt og EN i np i, der n 204 Hvis H 0 er sann, er forventningen lik E i n 204/6 34 for i, 2,, 6 6 Hvis H 0 er sann er χ 2 6
Eksamensoppgave i TTK4175 Instrumenteringssystemer
Institutt for Teknisk Kybernetikk Eksamensoppgave i TTK4175 Instrumenteringssystemer Faglig kontakt under eksamen: Tor Onshus Tlf.: 73 59 43 88 / 92 60 74 60 Eksamensdato: 31.05.2016 Eksamenstid (fra-til):
Eksamensoppgave i TMA4255 Anvendt statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4255 Anvendt statistikk Faglig kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: August 2014 Eksamenstid (fra til): Hjelpemiddelkode/Tillatte
TMA4240 Statistikk 2014
TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 12, blokk II Oppgave 1 På ein av vegane inn til Trondheim er UP interessert i å måle effekten
TMA4240 Statistikk Høst 2007
TMA4240 Statistikk Høst 2007 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b4 Løsningsskisse Oppgave 1 Eksamen juni 1999, oppgave 3 av 3 a) µ populasjonsgjennomsnitt,
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1100 Statistiske metoder og dataanalyse 1 - Løsningsforslag Eksamensdag: Mandag 30. november 2015. Tid for eksamen: 14.30
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig