TMA4240 Statistikk H2010

Størrelse: px
Begynne med side:

Download "TMA4240 Statistikk H2010"

Transkript

1 TMA4240 Statistikk H : Kombinatorikk 2.4: Sannsynlighet, og Monte Carlo simulering. Mette Langaas Foreleses onsdag 25. august 2010

2 2 Sist - Kap 0 Hva er statistikk, og hvorfor skal du lære det? Faginfo Forelesinger, øvinger, tavleøving, eksamen, pensum, hjelpemiddel, spørreundersøkelse, WWW-side, Tma4240h2010 FB, quiz. Kap 1 Deskriptiv statistikk: representativt utvalg, diskret/kontinuerlige målinger, senter og variasjon av målinger. Kap Utfallsrom, hendelser, komplement, union, snitt, sammensatte hendelser.

3 3 Hva er de fargelagte områdene?

4 4 Kombinatorikk [2.3] MÅL: telle opp antall utfall i et utfallsrom eller for en hendelse. Hvor mange ulike norske bilskilt er det mulig å lage? Fra en klasse på 100 studenter trenger man en person til referansegruppen til fire fag. Hvor mange mulige måter kan man få til dette på? Hvor mange mulige svar på en flervalgsoppgave (MCQ) med 10 spørsmål og fem svaralternativ? Hvor mange mulige vinnerrekker i lotto finnes det? Ti personer har møtt opp til dugnad på Abakus-kjelleren. Tre trengs til maling, fire til snekring og tre til å steke vafler. Hvor mange måter kan de ti personene fordeles på disse tre arbeidslagene?

5 5 Produktregel for valgprosess [2.3] TEO 2.1 Produktregel: Hvis en operasjon kan utføres på n 1 måter, og for hver av disse en annen operasjon kan utføres på n 2 måter, så kan de to operasjonene utføres på n 1 n 2 måter. TEO 2.2 Den generaliserte produktregel: En valgprosess har k trinn. I det første trinnet er det n 1 valgmuligheter, i det andre trinnet er det n 2 muligheter,..., i det siste trinnet er et n k muligheter. Da er det tilsammen n 1 n 2... n k valgmuligheter.

6 6 Ordnede utvalg MED tilbakelegging: Fra en mengde med n elementer kan vi lage n n n = n r ordnede utvalg på r elementer når utvelgingen skjer med tilbakelegging. UTEN tilbakelegging, TEO 2.4: Fra en mengde med n elementer kan vi lage n (n 1) (n 2) (n r + 1) n P r ordnede utvalg på r elementer når utvelgingen skjer uten tilbakelegging.

7 7 Permutasjoner DEF 2.7 Permutasjon: En permutasjon er en ordning av alle, eller en delmengde av alle elementer. TEO 2.3: n elementer kan ordnes i rekkefølge på n! = n (n 1) 2 1 måter. TEO 2.5: n elementer kan ordnes i rekkefølge i en sirkel på (n 1)! = (n 1) 2 1 måter.

8 8 Ikke-ordnede utvalg TEO 2.8 Uordnet utvalg uten tilbakelegging: Fra en mengde med n elementer kan vi lage ( n ) r = n (n 1) (n 2) (n r+1) r! = n! r!(n r)! = n C r uordnede utvalg på r elementer når utvelgingen skjer uten tilbakelegging.

9 9 Binomisk koeffisient og Pascals trekant Binomisk koeffisient: ( ) n r = n! r!(n r)!. ( n r ) finnes i rad n på plass r.

10 10 Oppsummering kombinatorikk På hvor mange måter kan man trekke r elementer fra n når trekningen skjer med/uten tilbakelegging når ordningen betyr/ikke betyr noe? ordnet ikke-ordnet med tilbakelegg. n r ikke pensum n! uten tilbakelegg. (n r)! = ( n P n ) r r = n! r!(n r)! = n C r

11 11 Ikke-ordnede utvalg: Alternativ utledning Fra de n ulike elementene a 1, a 2,..., a n skal vi lage to grupper med hhv. r og n r medlemmer. Hvor mange måter, K, kan det gjøres hvis vi ikke tar hensyn til ordningen innen de to gruppene? anta at vi har EN slik gruppering som gir r a-er (n r) a-er Det er r! mulige måter å ordne de r a-ene på venstre side på og (n r)! mulige måter å ordne de (n r) a-ene på høyre side på. Dvs. totalt r!(n r)! måter. Vi gjør dette med alle K grupperinger, og det er det samme som å permutere de n opprinnelige elementene, dvs K r!(n r)! = n! Dermed K = n! r!(n r)!

12 12 Ikke-ordnede utvalg i r celler Generalisering av ikke-ordnede utvalg i 2 celler (de r vi har valgt og de (n r) vi ikke har valgt). TEO 2.7: Vi kan dele en mengde med n elementer inn i r celler med n 1 elementer i første celle, n 2 elemeter i andre celle, (..., ) og n r elementer i rte celle, på n n 1,n 2,...,n r = n! n 1!n 2! n r! måter, der n = n 1 + n n r. TEO 2.6: Antall ordninger av n objekter, der n 1 er av type 1, n 2 n! er av type 2,... og n k er av type k, er n 1!n 2! n k!. (Sier det samme som TEO 2.7). Multinomisk koeffisient: ( n n 1,n 2,...,n r )

13 Sannsynlighet for hendelse Kast to terninger Første terning ,1 1,2 1,3 1,4 1,5 1,6 2 2,1 2,2 2,3 2,4 2,5 2,6 Andre 3 3,1 3,2 3,3 3,4 3,5 3,6 terning 4 4,1 4,2 4,3 4,4 4,5 4,6 5 5,1 5,2 5,3 5,4 5,5 5,6 6 6,1 6,2 6,3 6,4 6,5 6,6 Merk av i tabellen over og finn sannsynligheten for følgende hendelser: 1. A: samme antall øyne for begge terninger 2. B: sum antall øyne C: minst en sekser

14 14 Sannsynlighet for hendelse [2.4] DEF 2.8 (modifisert) Et sannsynlighetsmål, P, på et utfallsrom, S, er en reell funksjon definert på hendelser i S, slik at 0 P(A) 1, A S P(S) = 1 P( ) = 0 DEF 2.9 Hvis resultatet av et eksperiment er ett av N like sannsynlige utfall (uniform sannsynlighetsmodell), og hvis nøyaktig n av disse gir hendelsen A, så er sannsynligheten til A P(A) = n N = antall gunstige utfall for A antall mulige utfall

15 Figur fra Xeni Dimakos, Norsk Regnesentral

16 16 Alternativt om sannsynlighet Sannsynlighet kan være en subjektiv betraktning. Sannsynligheten for at Odd Grenland vinner serien i Sannsynligheten for at du får A på eksamen i TMA4240. Relativ frekvens konvergerer mot sannsynlighet Chevalier de Mere s problem: er det mer sannsynlig å få 1. minst en sekser i fire kast med en terning, eller 2. minst en dobbel-sekser i 24 kast med to terninger? de Mere mente (fra empiriske data) at 1) var større enn 2). Hvordan kom han frem til det?

17 17 Monte Carlo simulering: P(minst en sekser i fire kast med en terning) La antallet simuleringer N være f.eks. 1000, og kall antallet suksesser for n. n = 0 For (i = 1, 2,..., N) Kast en terning fire ganger. Fikk du minst en sekser så la n = n + 1 Anslå sannsynligheten for minst en sekser på fire kast med en terning til n N. Jo større N er desto bedre blir anslaget - husk at relativ frekvens går mot sannsynlighet. Mer om dette i statistisk inferens -delen av kurset (kapittel 8-10).

18 18 demere: relativ frekvens minst en sekser i fire kast med en terning minst en dobbel-sekser i 24 kast med to terninger

19 19 demere: relativ frekvens minst en sekser i fire kast med en terning minst en dobbel-sekser i 24 kast med to terninger

20 20 demere: ulike startpunkt

2.3: Kombinatorikk 2.4: Sannsynlighet, og Monte Carlo simulering. Foreleses onsdag 25. august 2010

2.3: Kombinatorikk 2.4: Sannsynlighet, og Monte Carlo simulering. Foreleses onsdag 25. august 2010 TMA4240 Statistikk H2010 2.3: Kombinatorikk 2.4: Sannsynlighet, og Monte Carlo simulering. Mette Langaas Foreleses onsdag 25. august 2010 2 Sist - Kap 0 Hva er statistikk, og hvorfor skal du lære det?

Detaljer

Kapittel 2: Sannsynlighet [ ]

Kapittel 2: Sannsynlighet [ ] Kapittel 2: Sannsynlighet [2.3-2.5] TMA4240 Statistikk (F2 og E7) 2.3, 2.4, 2.5: Kombinatorikk og sannsynlighet [18.august 2004] Ole.Petter.Lodoen@math.ntnu.no p.1/21 Produktregel for valgprosess TEO 2.1

Detaljer

Kapittel 2: Sannsynlighet

Kapittel 2: Sannsynlighet Kapittel 2: Sannsynlighet 2.1, 2.2: Utfallsrom og hendelser 2.3, 2.4: Kombinatorikk og sannsynlighet 2.5, 2.6, 2.7: Regneregler, betinget sanns. 2.8: Bayes regel Eirik Mo Institutt for matematiske fag,

Detaljer

Utfallsrom og hendelser. Disjunkte hendelser. Kapittel 2: Sannsynlighet. Eirik Mo Institutt for matematiske fag, NTNU

Utfallsrom og hendelser. Disjunkte hendelser. Kapittel 2: Sannsynlighet. Eirik Mo Institutt for matematiske fag, NTNU 3 Utfallsrom og hendelser Kapittel 2: Sannsynlighet 2., 2.2: Utfallsrom og hendelser 2.3, 2.4: Kombinatorikk og sannsynlighet 2.5, 2.6, 2.7: Regneregler, betinget sanns. 2.8: Bayes regel DEF 2. Ufallsrom:

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 2.5: Addisjonsregler (union) 2.6: Betinget sannsynlighet 2.7: Multiplikasjonsregler (snitt) 2.8: Bayes regel (starte litt) Mette Langaas Foreleses mandag 30. august 2010 2 Kapittel

Detaljer

Kapittel 2, Sannsyn. Definisjonar og teorem på lysark, eksempel og tolking på tavla. TMA september 2016 Ingelin Steinsland

Kapittel 2, Sannsyn. Definisjonar og teorem på lysark, eksempel og tolking på tavla. TMA september 2016 Ingelin Steinsland Kapittel 2, Sannsyn 2.1 Utfallsrom Onsdag 2.2 Hendingar Onsdag 2.3 Telle mogeleg utfall: I dag 2.4 Sannsyn for ei hending: Onsdag 2.5 Addetive reglar: Onsdag 2.6 Betinga sannsyn, uavhengighet og produktregelen

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 Kp. 2 Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige

Detaljer

Kapittel 2: Sannsynlighet [ ]

Kapittel 2: Sannsynlighet [ ] Kapittel 2: Sannsynlighet [2.6-2.8] TMA4240 Statistikk (F2 og E7) 2.6, 2.7, 2.8: Betinget sannsynlighet [23.august 2004] Ole.Petter.Lodoen@math.ntnu.no p.1/18 Oppsummering fra 2.1-2.5 FENOMEN Eksperiment

Detaljer

sannsynlighet for hendelse = antall ganger hendelsen inntreffer antall forsøk

sannsynlighet for hendelse = antall ganger hendelsen inntreffer antall forsøk Forrige forelesning oppsummert på 90 sekunder "stokastisk forsøk": myntkast, terningkast, trekking av kort,... utfallsrom: alle de mulige utfallene av et stokastisk forsøk eksempel på utfallsrom: kaster

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 2 Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige

Detaljer

TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger : Uniform, binomisk, hypergeometrisk fordeling

TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger : Uniform, binomisk, hypergeometrisk fordeling TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger 5.1-5.4: Uniform, binomisk, hypergeometrisk fordeling Mette Langaas 2 Arbeidshverdag etter endt studium Studere et fenomen (f.eks.

Detaljer

STK1100 våren 2017 Kombinatorikk

STK1100 våren 2017 Kombinatorikk STK1100 våren 2017 Kombinatorikk Svarer til avsnitt 2.3 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Uniform sannsynlighetsmodell Et stokastisk forsøk har N utfall. Det er de mulige

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 2.8: Bayes regel 3.1: Stokastisk variabel 3.2: Diskrete sannsynlighetsfordelinger 3.3: Kontinuerlige sannsynlighetsfordelinger Mette Langaas Foreleses onsdag 1. september 2010

Detaljer

MULTIPLE CHOICE ST0103 BRUKERKURS I STATISTIKK September 2016

MULTIPLE CHOICE ST0103 BRUKERKURS I STATISTIKK September 2016 MULTIPLE CHOICE ST0103 BRUKERKURS I STATISTIKK September 2016 SETT RING RUNDT DET RIKTIGE SVARET FOR HVER OPPGAVE. Oppgave 1 Stokastisk forsøk Stokastiske forsøk karakteriseres ved to av følgende egenskaper.

Detaljer

Sannsynlighet og statistikk

Sannsynlighet og statistikk Sannsynlighet og statistikk Arkeologiske utgravinger har vist at mennesker har underholdt seg med forskjellige spill i tusener av år. Terninger fra India som ble brukt i spill, er faktisk 5000 år gamle.

Detaljer

Sannsynlighetsregning og kombinatorikk

Sannsynlighetsregning og kombinatorikk Sannsynlighetsregning og kombinatorikk Introduksjon Formålet med sannsynlighet og kombinatorikk er å kunne løse problemer i statistikk, somoftegårutpååfattebeslutninger i situasjoner der tilfeldighet rår.

Detaljer

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 1 Section 4-1: Introduksjon til sannsynlighet 2 Section 4-2: Enkel sannsynlighetsregning 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 4 Section 5-2: Tilfeldige variable 5 Section 5-3: Binomisk

Detaljer

Sannsynlighetsregning

Sannsynlighetsregning Sannsynlighetsregning 1 Sannsynlighet Mål for opplæringa er at eleven skal kunne formulere, eksperimentere med og drøfte enkle uniforme og ikkje-uniforme sannsynsmodellar berekne sannsyn ved hjelp av systematiske

Detaljer

STK1100 våren Kombinatorikk = = Uniform sannsynlighetsmodell. Et stokastisk forsøk har N utfall. Det er de mulige utfallene for forsøket.

STK1100 våren Kombinatorikk = = Uniform sannsynlighetsmodell. Et stokastisk forsøk har N utfall. Det er de mulige utfallene for forsøket. ST1100 våren 2017 ombinatorikk Uniform sannsynlighetsmodell Et stokastisk forsøk har N utfall. Det er de mulige utfallene for forsøket. Vi antar at de N utfallene er like sannsynlige. Svarer til avsnitt

Detaljer

Kapittel 2: Sannsynlighet

Kapittel 2: Sannsynlighet Kapittel 2: Sannsynlighet Definisjoner: Noen grunnleggende begrep. Stokastisk forsøk: Et forsøk/eksperiment der det er tilfeldig hva utfall blir. Utfallsrom, : Mengden av alle mulige utfall av et stokastisk

Detaljer

Blokk1: Sannsynsteori

Blokk1: Sannsynsteori Blokk1: Sannsynsteori Statistikk er vitskapen om læring frå data, og måling, kontroll og kommunikasjon av usikkerheit (Davians Louis, Science, 2012). Vi lærer frå data ved å spesifisere ein statistisk

Detaljer

Tema 1: Hendelser, sannsynlighet, kombinatorikk Kapittel ST1101 (Gunnar Taraldsen) :19

Tema 1: Hendelser, sannsynlighet, kombinatorikk Kapittel ST1101 (Gunnar Taraldsen) :19 Tema 1: Hendelser, sannsynlighet, kombinatorikk Kapittel 2.1-2.7 ST1101 (Gunnar Taraldsen) 2019-01-12 17:19 Sentrale definisjoner og regneregler Definisjoner: Stokastisk forsøk, utfallsrom, hendelser (snitt,

Detaljer

Total sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk = Vi kan skrive en hendelse B som en disjunkt

Total sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk = Vi kan skrive en hendelse B som en disjunkt MAT000V Sannsynlighetsregning og kombinatorikk Total sannsynlighet Vi kan skrive en hendelse B som en disjunkt union av A B og A B Total sannsynlighet og Bayes' setning Kombinatorikk Ordnede utvalg med

Detaljer

- Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking av et lottotall o.l.

- Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking av et lottotall o.l. SANNSYNLIGHETSREGNING Terminologi Kombinatorikk Stokastisk Utfallsrom / utfall (enkeltutfall) - Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking

Detaljer

ØVINGER 2017 Løsninger til oppgaver. 3.1 Myntkast For et enkelt myntkast har vi to mulige utfall, M og K. Utfallsrommet blir

ØVINGER 2017 Løsninger til oppgaver. 3.1 Myntkast For et enkelt myntkast har vi to mulige utfall, M og K. Utfallsrommet blir ØVINGER 017 Løsninger til oppgaver Øving 3.1 Myntkast For et enkelt myntkast har vi to mulige utfall, M og K. Utfallsrommet blir S = {M, K}. Med to etterfølgende myntkast blir utfallsrommet S = {MM, MK,

Detaljer

Mappeoppgave om sannsynlighet

Mappeoppgave om sannsynlighet Mappeoppgave om sannsynlighet Statistiske eksperimenter Første situasjon Vi kom frem til å bruke Yatzy som et spill vi ønsket å beregne sannsynlighet ut ifra. Vi valgte ut tre like og to par. Etter en

Detaljer

Fagdag 5-08.01.09. 2) Du skal fylle ut en tippekupong. På hvor mange måter kan dette gjøres?

Fagdag 5-08.01.09. 2) Du skal fylle ut en tippekupong. På hvor mange måter kan dette gjøres? Fagdag Plan Fagdag - 08.01.0 1,2 time: Repetisjon kapittel 3 - Sannsynlighet Oppgaver Teori (lesestoff) 3, time: Arbeide med.1 og.2: 16, 17, 18, 1 3, time: Ekstra vurdering før terminoppgjør Repetisjon

Detaljer

Kapittel 3: Kombinatorikk

Kapittel 3: Kombinatorikk Kapittel 3: Kombinatorikk Kombinatorikk handler om å telle opp antall muligheter i ulike situasjoner (for eksempel telle opp antall gunstige og antall mulige i forbindelse med sannsynlighetsberegninger.

Detaljer

Kapittel 3: Kombinatorikk

Kapittel 3: Kombinatorikk Kapittel 3: Kombinatorikk Kombinatorikk handler om å telle opp antall muligheter i ulike situasjoner (for eksempel telle opp antall gunstige og antall mulige i forbindelse med sannsynlighetsberegninger).

Detaljer

Statistikk 1 kapittel 3

Statistikk 1 kapittel 3 Statistikk 1 kapittel 3 Nico Keilman ECON 2130 Vår 2014 Kapittel 3 Sannsynlighetsregning Formål: å kvantifisere usikkerhet ved hjelp av sannsynligheter Viktige begreper stokastisk forsøk: et forsøk der

Detaljer

Statistikk 1 kapittel 3

Statistikk 1 kapittel 3 Statistikk 1 kapittel 3 Nico Keilman ECON 2130 Vår 2016 Kapittel 3 Sannsynlighetsregning Formål: å kvantifisere usikkerhet ved hjelp av sannsynligheter Viktige begreper stokastisk forsøk: et forsøk der

Detaljer

b) Hvis det er mulig å svare blankt (dvs. vet ikke) blir det 5 svaralternativer på hvert spørsmål, og dermed mulige måter å svare på.

b) Hvis det er mulig å svare blankt (dvs. vet ikke) blir det 5 svaralternativer på hvert spørsmål, og dermed mulige måter å svare på. Diskret matematikk - Høgskolen i Oslo Løsningsforslag for en del oppgaver fra boken Discrete Mathematics and Its Applications Forfatter: Kenneth H. Rosen Avsnitt 5. Oppgave 3 Når et spørsmål har 4 svaralternativer

Detaljer

Sannsynlighet løsninger

Sannsynlighet løsninger Sannsynlighet løsninger Innhold 3.1 Pascals talltrekant... 2 3.2 Kombinatorikk... 5 3.3 Sannsynlighetsberegninger... 10 3.4 Hypergeometrisk sannsynlighetsmodell... 12 3.5 Binomisk sannsynlighetsmodell...

Detaljer

Kompetansemål Sannsynlighet, S Innledning Pascals talltrekant Binomialkoeffisienter Kombinatorikk...

Kompetansemål Sannsynlighet, S Innledning Pascals talltrekant Binomialkoeffisienter Kombinatorikk... Sannsynlighet Innhold Kompetansemål Sannsynlighet, S1... 2 Innledning... 2 3.1 Pascals talltrekant... 3 Binomialkoeffisienter... 6 3.2 Kombinatorikk... 9 Ordnet og uordnet utvalg... 10 Med og uten tilbakelegging...

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Grunnbegrep. Grunnbegrep, sannsynligheten for et utfall

ÅMA110 Sannsynlighetsregning med statistikk, våren Grunnbegrep. Grunnbegrep, sannsynligheten for et utfall ÅM110 Sannsynlighetsregning med statistikk, våren 006 Kp. Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige utfallen

Detaljer

Sannsynlighet i uniforme modeller. Addisjon av sannsynligheter

Sannsynlighet i uniforme modeller. Addisjon av sannsynligheter Sannsynlighet i uniforme modeller. Addisjon av sannsynligheter Fagstoff Listen [] Hendelse En hendelse i en sannsynlighetsmodell består av ett eller flere utfall. Vi ser på det tilfeldige forsøket «kast

Detaljer

ECON Statistikk 1 Forelesning 3: Sannsynlighet. Jo Thori Lind

ECON Statistikk 1 Forelesning 3: Sannsynlighet. Jo Thori Lind ECON2130 - Statistikk 1 Forelesning 3: Sannsynlighet Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Hva er sannsynlighet? 2. Grunnleggende regler for sannsynlighetsregning 3. Tilfeldighet i datamaskinen

Detaljer

Oppgaver. Innhold. Sannsynlighet Vg1P

Oppgaver. Innhold. Sannsynlighet Vg1P Oppgaver Innhold Modul 1. Hva er sannsynlighet?... 2 Modul 2. Addisjon av sannsynligheter. Gunstige og mulige utfall... 6 Modul 3. Beregne sannsynligheter ved å bruke tabeller... 10 Modul 4. Beregne sannsynligheter

Detaljer

Lottotrekningen i Excel

Lottotrekningen i Excel Peer Andersen Lottotrekningen i Excel Mange leverer ukentlig inn sin lottokupong i håp om å vinne den store gevinsten. Men for de aller fleste blir den store gevinsten bare en uoppnåelig drøm. En kan regne

Detaljer

Kapittel 3: Stokastiske variable og sannsynlighetsfordelinger

Kapittel 3: Stokastiske variable og sannsynlighetsfordelinger Kapittel 3: Stokastiske variable og sannsynlighetsfordelinger TMA4245 Statistikk (B, K1, I) 3.1, 3.2, 3.3 foreleses torsdag 15.januar 0.00 0.02 0.04 0.06 0.08 160 170 180 190 hoyde i cm Mette.Langaas@math.ntnu.no

Detaljer

INNHOLD. Matematikk for ungdomstrinnet

INNHOLD. Matematikk for ungdomstrinnet INNHOLD STATISTIKK... 2 FREKVENS... 2 RELATIV FREKVENS... 2 FREKVENSTABELL... 2 KLASSEDELING... 3 SØYLEDIAGRAM (STOLPEDIAGRAM)... 3 LINJEDIAGRAM... 4 SEKTORDIAGRAM... 4 HISTOGRAM... 4 FRAMSTILLING AV DATA...

Detaljer

Dataanalyse. Hva er en dataanalyse og hvordan gå frem for å gjennomføre en dataanalyse av det innsamlede datagrunnlaget fra en feltundersøkelse?

Dataanalyse. Hva er en dataanalyse og hvordan gå frem for å gjennomføre en dataanalyse av det innsamlede datagrunnlaget fra en feltundersøkelse? Hva er en dataanalyse og hvordan gå frem for å gjennomføre en dataanalyse av det innsamlede datagrunnlaget fra en feltundersøkelse? Skrevet av: Kjetil Sander Utgitt av: estudie.no Revisjon: 1.0 (Sept.

Detaljer

6 Sannsynlighetsregning

6 Sannsynlighetsregning MATEMATIKK: 6 Sannsynlighetsregning 6 Sannsynlighetsregning 6.1 Forsøk. Utfallsrom. Sannsynlighet (sjanse). Sannsynlighetsmodell Ved ett kast med en terning vet vi at terningen vil vise enten ett, to,

Detaljer

Sannsynlighetsregning

Sannsynlighetsregning Kapittel 3: Sannsynlighetsregning Definisjoner: Noen grunnleggende begrep. Stokastisk forsøk: Et forsøk/eksperiment der det er tilfeldig hva utfallet blir. Utfallsrom, S: Mengden av alle mulige utfall

Detaljer

STK1100 våren Betinget sannsynlighet og uavhengighet. Svarer til avsnittene 2.4 og 2.5 i læreboka

STK1100 våren Betinget sannsynlighet og uavhengighet. Svarer til avsnittene 2.4 og 2.5 i læreboka STK1100 våren 2017 Betinget sannsynlighet og uavhengighet Svarer til avsnittene 2.4 og 2.5 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Eksempel 1 Vi vil først ved hjelp av et eksempel

Detaljer

Terningkast. Utfallsrommet S for et terningskast med en vanlig spillterning med 6 sider er veldefinert 1, 2, 3, 4, 5, 6

Terningkast. Utfallsrommet S for et terningskast med en vanlig spillterning med 6 sider er veldefinert 1, 2, 3, 4, 5, 6 Terningkast Halvor Aarnes, UiO, 2014 Innhold Ett terningkast og utfallsrom... 1 Union og snitt... 4 Betinget sannsynlighet... 5 Forventningsverdi E(X) og varianse Var(X)... 5 Konfidensintervall for proporsjoner...

Detaljer

Hvorfor sannsynlighetsregning og kombinatorikk?

Hvorfor sannsynlighetsregning og kombinatorikk? Sannsynlighet og kombinatorikk i videregående skole Helmer Aslaksen Institutt for lærerutdanning og skoleforskning/matematisk institutt Universitetet i Oslo helmer.aslaksen@gmail.com www.math.nus.edu.sg/aslaksen/

Detaljer

Sannsynlighet og kombinatorikk i videregående skole

Sannsynlighet og kombinatorikk i videregående skole Sannsynlighet og kombinatorikk i videregående skole Helmer Aslaksen Institutt for lærerutdanning og skoleforskning/matematisk institutt Universitetet i Oslo helmer.aslaksen@gmail.com www.math.nus.edu.sg/aslaksen/

Detaljer

Oppgaver. Innhold. Sannsynlighet 1P, 1T og 2P-Y

Oppgaver. Innhold. Sannsynlighet 1P, 1T og 2P-Y Oppgaver Innhold 3.1 Hva er sannsynlighet?... 2 3.2 Addisjon av sannsynligheter. Gunstige og mulige utfall... 5 3.3 Beregne sannsynligheter ved å bruke tabeller... 9 3.4 Beregne sannsynligheter ved å bruke

Detaljer

Løsninger. Innhold. Sannsynlighet 1P, 1T og 2P-Y

Løsninger. Innhold. Sannsynlighet 1P, 1T og 2P-Y Løsninger Innhold 3. Hva er sannsynlighet?... 2 3.2 Addisjon av sannsynligheter. Gunstige og mulige utfall... 3.3 Beregne sannsynligheter ved å bruke tabeller... 2 3.4 Beregne sannsynligheter ved å bruke

Detaljer

Sannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere

Sannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere 2 Sannsynligheten for en hendelse (4.2) Sannsynligheten for en hendelse sier oss hvor ofte vi forventer at hendelsen inntreffer, dvs. den forventede relative frekvens av hendelsen. ST0202 Statistikk for

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 ÅM0 Sannsynlighetsregning med statistikk, våren 00 Kp. Sannsynlighetsregning (sannsynlighetsteori).5 (kp..5) - innledning Eks.: Et terningkast; {,, 3, 4, 5, 6}. Ved bruk av uniform modell: hvert utfall

Detaljer

Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I

Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I 4 Kombinatorikk Vi må lære tellemetoder når valgtrær, som vi brukte tidligere, blir for store og vanskelig å håndtere.

Detaljer

Sannsynlighetsregning

Sannsynlighetsregning Sannsynlighetsregning Per G. Østerlie Thora Storm vgs per.osterlie@stfk.no 5. april 203 Hva og hvorfor? Hva? Vi får høre at det er sannsynlig at et eller annet kommer til å skje. Sannsynligheten for å

Detaljer

MAT0100V Sannsynlighetsregning og kombinatorikk

MAT0100V Sannsynlighetsregning og kombinatorikk MAT000V Sannsynlighetsregning og kombinatorikk Uordnet utvalg uten tilbakelegging (repetisjon) Tilfeldige variabler og sannsynlighetsfordelinger Hypergeometrisk fordeling Binomisk fordeling Ørnulf Borgan

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 3.3: Kontinuerlige sannsynlighetsfordelinger 4.1: Matematisk forventing (univariat del) Mette Langaas Foreleses mandag 6. september 2010 2 3.1 Stokastisk variabel (repetisjon)

Detaljer

3.1 Stokastisk variabel (repetisjon)

3.1 Stokastisk variabel (repetisjon) TMA4240 Statistikk H2010 3.3: Kontinuerlige sannsynlighetsfordelinger 4.1: Matematisk forventing (univariat del) Mette Langaas Foreleses mandag 6. september 2010 2 3.1 Stokastisk variabel (repetisjon)

Detaljer

Innledning kapittel 4

Innledning kapittel 4 Innledning kapittel 4 Sannsynlighet og tilfeldighet Basert på materiale fra Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Deterministiske fenomener Almanakk for Norge viser: når det er fullmåne

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren

ÅMA110 Sannsynlighetsregning med statistikk, våren ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 24. april Bjørn H. Auestad Oppsummering våren

Detaljer

Sannsynlighetsregning og Statistikk

Sannsynlighetsregning og Statistikk Sannsynlighetsregning og Statistikk Leksjon 2. Leksjon 2 omhandler begreper og regneregler for sannsynligheter. Dette er behandlet i kapittel 3.1 og 3.2 i læreboka. Du bør når du har fullført leksjon 2

Detaljer

Foreleses onsdag 8. september 2010

Foreleses onsdag 8. september 2010 TMA4240 Statistikk H200 4.2: Varians (univariat del) 4.4: Chebyshevs teorem 3.4: Simultanfordelinger Mette Langaas Foreleses onsdag 8. september 200 Mette.Langaas@math.ntnu.no, TMA4240H200 2 4.2 Varians

Detaljer

Quiz, 4 Kombinatorikk og sannsynlighet

Quiz, 4 Kombinatorikk og sannsynlighet Quiz, 4 Kombinatorikk og sannsynlighet Innhold 4.1 Begreper i sannsynlighetsregning... 2 4.2 Addisjon av sannsynligheter... 6 4.3 Produktsetningen for sannsynlighet... 12 4.4 Kombinatorikk og sannsynlighetsberegning...

Detaljer

Løsninger. Innhold. Sannsynlighet Vg1P

Løsninger. Innhold. Sannsynlighet Vg1P Løsninger Innhold Modul. Hva er sannsynlighet?... 2 Modul 2. Addisjon av sannsynligheter. Gunstige og mulige utfall... 7 Modul 3. Beregne sannsynligheter ved å bruke tabeller... 3 Modul 4. Beregne sannsynligheter

Detaljer

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk MAT0100V Sannsynlighetsregning og kombinatorikk Forventning, varians og standardavvik Tilnærming av binomiske sannsynligheter Konfidensintervall Ørnulf Borgan Matematisk institutt Universitetet i Oslo

Detaljer

µ = E(X) = Ʃ P(X = x) x

µ = E(X) = Ʃ P(X = x) x Redigerte høydepunkt fra forrige episode 3.2: Punktsannsynlighet og kumulativ sannsynlighet punktsannsynlighet: sanns. for at en stok. var. X har en viss verdi x; P(X = x) kumulativ sannsynlighet: sanns.

Detaljer

ST0103 Brukerkurs i statistikk Høst 2014

ST0103 Brukerkurs i statistikk Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag ST0103 Brukerkurs i statistikk Høst 2014 Løsningsforslag Øving 1 2.1 Frekvenstabell For å lage en frekvenstabell må vi telle

Detaljer

SANNSYNLIGHETSREGNING

SANNSYNLIGHETSREGNING SANNSYNLIGHETSREGNING Er tilfeldigheter tilfeldige? Når et par får vite at de skal ha barn, vurderes sannsynligheten for pike eller gutt normalt til rundt 50/50. Det kan forklare at det fødes omtrent like

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må

Detaljer

Utfordring. TMA4240 Statistikk H2010. Mette Langaas. Foreleses uke 40, 2010

Utfordring. TMA4240 Statistikk H2010. Mette Langaas. Foreleses uke 40, 2010 TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2014 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel om en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA0 Sannsynlighetsregning med statistikk, våren 0 Kp. 3 Diskrete tilfeldige variable Noen viktige sannsynlighetsmodeller Noen viktige sannsynlighetsmodeller ( Sanns.modell : nå betyr det klasse/type sanns.fordeling.

Detaljer

Forelening 1, kapittel 4 Stokastiske variable

Forelening 1, kapittel 4 Stokastiske variable Forelening 1, kapittel 4 Stokastiske variable Eksempel X = "antall kron på kast med to mynter (før de er kastet)" Uniformt utfallsrom {MM, MK, KM, KK}. X = x beskriver hendelsen "antall kron på kast med

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk (5sp), våren 2012 BMF100 Sannsynlighetsregning og statistikk 1 (10sp), våren 2012

ÅMA110 Sannsynlighetsregning med statistikk (5sp), våren 2012 BMF100 Sannsynlighetsregning og statistikk 1 (10sp), våren 2012 Introduksjon Prakstisk informasjon, s. 1 ÅMA110 Sannsynlighetsregning med statistikk (5sp), våren 2012 BMF100 Sannsynlighetsregning og statistikk 1 (10sp), våren 2012 Ny rammeplan for ingeniørfag Sannsynlighetsregning

Detaljer

Sannsynlighet oppgaver

Sannsynlighet oppgaver Sannsynlighet oppgaver Innhold 3.1 Pascals talltrekant... 2 3.2 Kombinatorikk... 4 3.3 Sannsynlighetsberegninger... 8 3.4 Hypergeometrisk sannsynlighetsmodell... 9 3.5 Binomisk sannsynlighetsmodell...

Detaljer

1 Sannsynlighetsrgning

1 Sannsynlighetsrgning 1 Sannsynlighetsrgning 1.1 Det er 13 grønne og 18 røde baller i en eske. Vi trekker ut to baller etter hverandre. a) Hva er sannsynligheten for å få to grønne baller? Svar: P(g 1, g 2 ) = p(g 1 ) p(g 2

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2015 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel om en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Tilfeldige variable (5.2) Dersom vi til hvert utfall av eksperimentet tilordner et tall, har vi laget en tilfeldig variabel.

Detaljer

TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger

TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger Binomisk fordeling* ( ) n b(x; n, p) = p x (1 p) n x = x ( ) n p x q n x, x x = 0, 1, 2,..., n Fenomén: i) n forsøk. ii) Suksess/fiasko

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2016 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel med en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

Sannsynlighetsbegrepet

Sannsynlighetsbegrepet Sannsynlighetsbegrepet Notat til STK1100 Ørnulf Borgan Matematisk institutt Universitetet i Oslo Januar 2004 Formål Dette notatet er et supplement til kapittel 1 i Mathematical Statistics and Data Analysis

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 TMA0 Statistikk 0 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer, blokk I Løsningsskisse Oppgave Hendelsene A og B er ikke disjunkte, det vil si at de kan ha

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 6, blokk I Løsningsskisse Oppgave 1 Vi antar X er normalfordelt, X N(3315, 55 2. Ved bruk av formelheftet finner

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 21. april Bjørn H. Auestad Oppsummering våren

Detaljer

Datainnsamling, video av forelesning og referansegruppe

Datainnsamling, video av forelesning og referansegruppe Datainnsamling, video av forelesning og referansegruppe Datainnsamling Om du ikkje alt har gjort det: https://wiki.math.ntnu.no/tma4240/2015h/start Video http://video.adm.ntnu.no/serier/55d47b463d96a Referansegruppe

Detaljer

Statistikk og økonomi, våren 2017

Statistikk og økonomi, våren 2017 Statistikk og økonomi, våren 207 Obligatorisk oppgave 3 Løsningsforslag Oppgave Produsenten av en type bærbar datamaskin har registrert at sannsynligheten er 0.2 for at tastaturet svikter, 0.09 for at

Detaljer

Oppgaver i sannsynlighetsregning 3

Oppgaver i sannsynlighetsregning 3 Oppgaver i sannsynlighetsregning 3 Oppgave 1 Vi har et lykkehjul med 8 like sektorer som er nummerert fra 1 til 8. Du har valgt sektor nummer 3. a) Tenk deg at du snurrer lykkehjulet en gang. Hva er sjansen

Detaljer

10.4 Sannsynligheter ved flere i utvalget (kombinatorikk)

10.4 Sannsynligheter ved flere i utvalget (kombinatorikk) 10. er ved flere i utvalget (kombinatorikk) Så langt i framstillingen har vi diskutert den språklige siden, den matematiske tolkningen av sannsynlighetsbegrepet og presentert ulike modeller som kan anvendes

Detaljer

Sannsynlighet for alle.

Sannsynlighet for alle. Sannsynlighet for alle. Signe Holm Knudtzon Høgskolen i Buskerud og Vestfold Novemberkonferansen 2015 Novemberkonferansen 2015 Signe Holm Knudtzon. HBV. Sannsynlighet for alle 1 Sannsynlighet for alle.

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Kapittel 7: Utvalgsfordeling Bo Lindqvist Institutt for matematiske fag 2 Fra kapittel 1: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg

Detaljer

Forelesning 6, kapittel 3. : 3.6: Kombinatorikk.

Forelesning 6, kapittel 3. : 3.6: Kombinatorikk. Forelesning 6, kapittel 3. : 3.6: Kombinatorikk. Kombinatorikk betyr her: Formler for opptelling av antall kombinasjoner. Generelt er denne grenen av matematikk videre, og omfatter blant annet grafteori.

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2017 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel med en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

5.2 Diskret uniform fordeling. Midtveiseksamen (forts.) Kapittel 5. Noen diskrete sannsynlighetsfordelinger. TMA4245 V2007: Eirik Mo

5.2 Diskret uniform fordeling. Midtveiseksamen (forts.) Kapittel 5. Noen diskrete sannsynlighetsfordelinger. TMA4245 V2007: Eirik Mo Histogram of x 1 2 3 4 5 6 x 0 1 2 3 4 5 6 3 Midtveiseksamen oppg. 1a eksamen 06.08.2004 Kapittel 5 Noen diskrete sannsynlighetsfordelinger TMA4245 V2007: Eirik Mo Høsten 2004 ble det i TMA4240 bli innført

Detaljer

Deskriptiv statistikk., Introduksjon til dataanalyse

Deskriptiv statistikk., Introduksjon til dataanalyse Introduksjon til dataanalyse Deskriptiv statistikk 2 Kapittel 1 Denne timen og delvis forrige time er inspirert av Kapittel 1, men vi kommer ikke til å gå igjennom alt fra dette kapittelet i forelesning.

Detaljer

Velkommen til TMA4240. Velkommen til TMA / 18

Velkommen til TMA4240. Velkommen til TMA / 18 Velkommen til TMA4240 Velkommen til TMA4240 1 / 18 Kort om kurset TMA4240 Statistikk Jeg er Sara Martino Dere er MTDT, MTKJ, MTNANO, MTPETR Vi had forelesning: Tirsdager kl 14.15-16.00 i F1 Torsdager kl

Detaljer

Deskriptiv statistikk., Introduksjon til dataanalyse

Deskriptiv statistikk., Introduksjon til dataanalyse Introduksjon til dataanalyse Deskriptiv statistikk 2 Kapittel 1 Denne timen og delvis forrige time er inspirert av Kapittel 1, men vi kommer ikke til å gå igjennom alt fra dette kapittelet i forelesning.

Detaljer

Noen diskrete sannsynlighetsfordelinger. (utarbeidet av Mette Langaas), TMA4245 V2007

Noen diskrete sannsynlighetsfordelinger. (utarbeidet av Mette Langaas), TMA4245 V2007 Kapittel 5 Noen diskrete sannsynlighetsfordelinger TMA4245 V2007: Eirik Mo 2 5.2 Diskret uniform fordeling Diskret uniform fordeling: Hvis den stokastiske variabelen X antar verdiene x 1, x 2,..., x k

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 Kp. 2 Sannsynlighetsregning i (sannsynlighetsteori) t i) 2.5 Betinget sannsynlighet 1 Betinget sannsynlighet (kp. 2.5) - innledning Eks.: Et terningkast;

Detaljer

STK1100 våren Betinget sannsynlighet og uavhengighet. Vi trenger en definisjon av betinget sannsynlighet! Eksempel 1

STK1100 våren Betinget sannsynlighet og uavhengighet. Vi trenger en definisjon av betinget sannsynlighet! Eksempel 1 STK00 våren 07 Betinget sannsynlighet og uavhengighet Esempel Vi vil først ved hjelp av et esempel se intuitivt på hva betinget sannsynlighet betyr. Vi legger fire røde ort og to svarte ort i en bune.

Detaljer

ST0202 Statistikk for samfunnsvitere Introduksjon til ST0202 høsten 2012 Kapittel 1: Statistikk

ST0202 Statistikk for samfunnsvitere Introduksjon til ST0202 høsten 2012 Kapittel 1: Statistikk ST0202 Statistikk for samfunnsvitere Introduksjon til ST0202 høsten 2012 Kapittel 1: Statistikk Bo Lindqvist Institutt for matematiske fag http://wiki.math.ntnu.no/st0202/2012h/start 2 Lærebok Robert Johnson

Detaljer

Emnenavn: Geometri, måling, statistikk og sannsynlighetsregning 2 (5-10) Eksamenstid: 6 timer, 09:00 15:00. Faglærere: Russell Hatami.

Emnenavn: Geometri, måling, statistikk og sannsynlighetsregning 2 (5-10) Eksamenstid: 6 timer, 09:00 15:00. Faglærere: Russell Hatami. EKSAMEN Emnekode: LUMAT10415 Emnenavn: Geometri, måling, statistikk og sannsynlighetsregning 2 (5-10) Dato: 15. desember 2017 Eksamenstid: 6 timer, 09:00 15:00 Hjelpemidler: Numerisk kalkulator Vedlagt

Detaljer