Dagens plan. INF3170 Logikk. Noen begreper. Automatisk bevissøk i førsteordens logikk

Størrelse: px
Begynne med side:

Download "Dagens plan. INF3170 Logikk. Noen begreper. Automatisk bevissøk i førsteordens logikk"

Transkript

1 INF3170 Logikk Dagens plan Forelesning 10: introduksjon, substitusjoner og uniisering Christian Mahesh Hansen 1 Institutt or inormatikk, Universitetet i Oslo 16. april 2007 Institutt or inormatikk (UiO) INF3170 Logikk / 39 i ørsteordens logikk Noen begreper Sekventkalkylen LK tilbyr et sett med regler or å bygge opp utledninger, og en egenskap som skiller bevis ra utledninger. Sunnhet sikrer oss at enhver bevisbar sekvent er gyldig. Kompletthet sikrer oss at det innes et bevis or enhver gyldig sekvent. Kalkylen sier imidlertid ingenting om hvordan man inner bevis or gyldige sekventer! Kompletthetsbeviset or LK gir hint om hvordan vi kan lage en søkealgoritme. La oss orsøke! En utledning er lukket hvis alle grenene er lukket. En utledning er utvidbar hvis det er mulig å anvende en regel på en ormel i en løvsekvent i utledningen. En søkealgoritme er komplett hvis den inner et bevis or enhver gyldig sekvent. Institutt or inormatikk (UiO) INF3170 Logikk / 39 Institutt or inormatikk (UiO) INF3170 Logikk / 39

2 Algoritme: gyldig?(γ ) π := Γ ; while (π ikke er lukket) do i (π ikke er utvidbar) then return ikke gyldig ; else ϕ := ikke-atomær ormel i løvsekvent i π; utvid π ved å anvende riktig LK-regel på ϕ; end i end while return gyldig ; Eektivitet Eektiviteten til algoritmen avhenger av tre ting: 1 Hvor eektivt er det å sjekke om utledningen er lukket? 2 Strategi or valg av utvidelse av utledningen. 3 Hvor eektiv er selve utvidelsen, dvs. regelanvendelsen? I ørste runde ser vi på punkt 1 og 3. Senere introduseres koblingskalkylen, som gir oppgav til en strategi or valg av utvidelser av utledningene. La oss starte med punkt 3 eektiviteten til regelanvendelsene. Algoritmen er komplett hvis utvelgelsen av ϕ er retterdig. Institutt or inormatikk (UiO) INF3170 Logikk / 39 Institutt or inormatikk (UiO) INF3170 Logikk / 39 Hvor kostbare er regelanvendelsene? γ-reglene α- og β-reglene henter ut delormler ra en sammensatt ormel: Γ, A, B Γ A, Γ B, L R Γ, A B Γ A B, All nødvendig inormasjon tilgjengelig i hovedormelen: kan utøres i konstant tid. Riktignok år vi en del ormelkopiering i β-regelen, men dette kan optimaliseres med.eks. pekere i en objektorientert implementasjon. δ-regelen setter inn en ny parameter or den bundne variabelen: Γ, ϕ[a/x] L Γ, xϕ Parametrene kan nummereres: utøres i konstant tid. La oss se på γ-reglene: Γ, xϕ, ϕ[t/x] Γ, xϕ, ϕ[t/x] L R Γ, xϕ Γ, xϕ Vi kan sette inn en vilkårlig lukket term t or x. For å å en komplett algoritme, må vi (ør eller senere) instansiere hver γ-ormel med alle termene i Herbranduniverset. Vi kan nummerere termene i Herbranduniverset og instansiere γ-ormlene i denne rekkeølgen. Hvilken rekkeølge er gunstig med tanke på å inne bevis så tidlig som mulig? xpx, Pa,..., Pa Pa, Qga. xpx, Pa Pa, Qga xpx Pa, Qga a, a, ga, a, ga,..., a, i Institutt or inormatikk (UiO) INF3170 Logikk / 39 Institutt or inormatikk (UiO) INF3170 Logikk / 39

3 Utsette valg av γ-term δ-reglene En bedre idé: Utsette valg av term i γ-reglene til et senere tidspunkt. La γ-reglene sette inn rie variable: a/u xpx, Pu Pa xpx Pa b/v xpx, Pv Pb xpx Pb xpx Pa Pb Substituere termer or variable slik at løvnodene blir aksiomer. Hvilke substitusjoner vi kan anvende på løvnoder med rie variable slik at de blir aksiomer? Problemet kan løses med uniiseringsalgoritmer. Institutt or inormatikk (UiO) INF3170 Logikk / 39 Når vi setter inn variable i γ-reglene år vi imidlertid problemer med δ-reglene. Hvordan sikre at parameteren vi setter inn er ny når vi ennå ikke har satt inn termer or de rie variablene? b/u, a/v Lua Lbv yluy ylyv x ylxy x ylyx kan ikke lukkes Lu (u) Lg(v)v yluy ylyv x ylxy x ylyx Vi lar δ-reglene introdusere en Skolemterm: (u 1,..., u n ), der er et nytt unksjonssymbol, kalt en Skolemunksjon, og u 1,..., u n er alle variablene som orekommer ritt i δ-ormelen. På den måten sikrer vi at termen introdusert av δ-regelen er ny uansett hva slags verdi vi velger å instansiere de rie variablene med. Institutt or inormatikk (UiO) INF3170 Logikk / 39 Oppsummering Vi skal introdusere en ri-variabel sekventkalkyle og vise at den er sunn og komplett. γ-reglene introduserer nye rie variable og δ-reglene introduserer Skolemtermer. Ved hjelp av uniiseringsalgoritmer inner vi substitusjoner som lukker utledningen. 1 Institutt or inormatikk (UiO) INF3170 Logikk / 39 Institutt or inormatikk (UiO) INF3170 Logikk / 39

4 Vi har tidligere deinert ϕ[s/x] som ormelen vi år ved å erstatte alle rie orekomster av x i ϕ med s. I ri-variabel sekventkalkyle har vi behov or å erstatte lere orskjellige variable med termer samtidig. Vi skal nå deinere en bestemt type unksjoner substitusjoner som generaliserer én-variabel substitusjon til lere variable. Notasjon: Når vi anvender en substitusjon σ på en ormel ϕ eller en term t skriver vi ϕσ eller tσ istedenor σ(ϕ)/σ(t). Deinisjon (Substitusjon) En substitusjon er en unksjon σ ra mengden variable V til mengden av termer T i et gitt ørsteordens språk. Støtten (support) eller støttemengden (support set) til σ er mengden av variable x slik at xσ x. σ er grunn dersom xσ er en lukket term or alle variable x i støttemengden til σ. Institutt or inormatikk (UiO) INF3170 Logikk / 39 Institutt or inormatikk (UiO) INF3170 Logikk / 39 Notasjon En substitusjon σ med endelig støtte {x 1,..., x n } slik at x 1 σ = t 1,..., x n σ = t n skriver vi ote slik: σ = {t 1 /x 1,..., t n /x n } Substitusjonen ɛ slik at xɛ = x or alle variable x kalles identitetssubstitusjonen. Identitetssubstitusjonen kan skrives {} siden den har tom støttemengde. σ = {a/x, a/y} er en substitusjon slik at xσ = a yσ = a zσ = z or alle andre variable er en grunn substitusjon τ = {a/y, x/z} er en substitusjon slik at yσ = a zσ = x vσ = v or alle andre variable er ikke en grunn substitusjon Institutt or inormatikk (UiO) INF3170 Logikk / 39 Institutt or inormatikk (UiO) INF3170 Logikk / 39

5 Substitusjon på termer Substitusjon på ormler Vi deinerer substitusjon på termer som tidligere. Deinisjon (Substitusjon på termer) Vi deinerer resultatet av å anvende en substitusjon σ på vilkårlige termer rekursivt ved: cσ = c or et konstantsymbol c. (t 1,..., t n )σ = (t 1 σ,..., t n σ) or en unksjonsterm (t 1,..., t n ). La σ = {gy/x, y/z}. (x, a)σ = (gy, a) h(y, z)σ = h(y, y) xσ = gy La τ = {y/x, x/y}. xτ = y (x, y)τ = (y, x) Som tidligere, ønsker vi at substitusjoner ikke skal endre bundne variable. Eksempel: or σ = {a/x, b/y} så vil x(px Qy)σ = xpx Qb. Vi begrenser substitusjonen på den bundne variabelen: Deinisjon (Begrenset substitusjon) La σ være en substitusjon. Substitusjonen σ begrenset på x, skrevet σ x, er deinert slik at { y hvis y = x yσ x = yσ ellers or enhver variabel y. Institutt or inormatikk (UiO) INF3170 Logikk / 39 Institutt or inormatikk (UiO) INF3170 Logikk / 39 Deinisjon (Substitusjon på ormler) ϕσ er deinert rekursivt ved: 1 R(t 1,..., t n )σ = R(t 1 σ,..., t n σ) 2 ψσ = (ψσ) 3 (ϕ 1 ϕ 2 )σ = (ϕ 1 σ ϕ 2 σ), hvor {,, } 4 (Qxψ)σ = Qx(ψσ x ), hvor Q {, } Vi antar, som tidligere, at ingen variable blir bundet som resultat av å anvende en substitusjon. Dette kan vi unngå ved å omdøpe bundne variable. La σ = {x/x, a/y, y/z} σ x = { x/x, a/y, y/z} σ y = {x/x, a/y, y/z} σ z = {x/x, a/y, y/z } P(x, y)σ = P(x, a) xp(x, y)σ = x(p(x, y)σ x ) = xp(x, a) z(px Qz)σ = z((px Qz)σ z ) = z(px Qz) Institutt or inormatikk (UiO) INF3170 Logikk / 39 Institutt or inormatikk (UiO) INF3170 Logikk / 39

6 Komposisjon av substitusjoner Komposisjon av substitusjoner med endelig støtte La σ og τ være substitusjoner. Anta at vi ørst anvender σ og så τ på en ormel ϕ: (ϕσ)τ. Vi har av og til bruk or å snakke om den substitusjonen som tilsvarer å anvende σ etterulgt av τ. Deinisjon (Komposisjon av substitusjoner) La σ og τ være substitusjoner. Komposisjonen av σ og τ er en substitusjon skrevet στ slik at x(στ) = (xσ)τ or hver variabel x. Oppgave: vis at ϕ(στ) = (ϕσ)τ or alle ormler ϕ og alle substitusjoner σ og τ. Påstand La σ 1 = {s 1 /x 1,..., s n /x n } og σ 2 = {t 1 /y 1,..., t k /y k }. Da er σ 1 σ 2 = {(s 1 σ 2 )/x 1,..., (s n σ 2 )/x n, (z 1 σ 2 )/z 1,..., (z m σ 2 )/z m } der z 1,..., z m er de variablene blant y 1,..., y k som ikke er blant x 1,..., x n. La σ = {z/x, a/y} og τ = {b/y, a/z}. Da er στ = {(zτ)/x, (aτ)/y, (zτ)/z} = {a/x, a/y, a/z}. La σ = {y/x} og τ = {x/y}. Da er στ = {(yτ)/x, (yτ)/y} = {x/x, x/y} = {x/y}. Institutt or inormatikk (UiO) INF3170 Logikk / 39 Institutt or inormatikk (UiO) INF3170 Logikk / 39 1 I ri-variabel sekventkalkyle kan vi ha løvsekventer på ormen Γ, P(s 1,..., s n ) P(t 1,..., t n ), der hver s i og t i er termer som kan inneholde variable. For å lukke løvsekventen må vi inne en substitusjon σ slik at s i σ = t i σ or hver i. Det er ikke sikkert at noen slik substitusjon innes! sproblemet La s og t være termer. Finn alle substitusjoner som gjør s og t syntaktisk like, dvs. alle σ slik at sσ = tσ. En substitusjon som gjør termene s og t syntaktisk like, kalles en uniikator or s og t. To termer er uniiserbare hvis de har en uniikator. Institutt or inormatikk (UiO) INF3170 Logikk / 39 Institutt or inormatikk (UiO) INF3170 Logikk / 39

7 Er (x) og (a) uniiserbare? Ja. Vi ser at σ = {a/x} er en uniikator: (x)σ = (a) Er (x, b) og (a, y) uniiserbare? Kan være lettere å se hvis vi skriver termene som trær: Er (a, b) og g(a, b) uniiserbare? a b a b x b a y g Symbolene i posisjon 0 (rotposisjonen) er like. Symbolene i venstre barn er ulike, men kan uniiseres med {a/x}. Symbolene i høyre barn er ulike, men kan uniiseres med {b/y}. Symbolene i posisjon 0 er ulike, og kan ikke uniiseres! Institutt or inormatikk (UiO) INF3170 Logikk / 39 Institutt or inormatikk (UiO) INF3170 Logikk / 39 Er x og (x) uniiserbare? Er (x, x) og (a, b) uniiserbare? x x a b Symbolene i posisjon 0 er like. Symbolene i venstre barn er ulike, men kan uniiseres med {a/x}. Vi må anvende {a/x} på x i både venstre og høyre barn. Symbolene i høyre barn er nå ulike, og kan ikke uniiseres! x x Symbolene i posisjon 0 er ulike, men kan uniiseres med { (x)/x}. Vi må samtidig anvende { (x)/x} på x i høyre tre. På posisjon 1 ser vi nå at symbolene x og er ulike. Hvis vi uniiserer med { (x)/x}, må vi igjen erstatte x i høyre tre. Sånn kan vi holde på en stund... Institutt or inormatikk (UiO) INF3170 Logikk / 39 Institutt or inormatikk (UiO) INF3170 Logikk / 39

8 Generelt har vi: To ulike konstantsymboler eller unksjonssymboler er ikke uniiserbare. En variabel x er ikke uniiserbar med en term som inneholder x. Vi skal lage en uniiseringsalgoritme, som inner alle uniikatorer or to termer. Problem: To termer har potensielt uendelig mange uniikatorer! Vi kan ikke returnere alle... Løsning: Finne en representant σ or mengden av uniikatorer slik at alle andre uniikatorer kan konstrueres ra σ. En slik uniikator kalles en mest generell uniikator. Deinisjon (Mer generell substitusjon) La σ 1 og σ 2 være substitusjoner. Vi sier at σ 2 er mer generell enn σ 1 hvis det innes en substitusjon τ slik at σ 1 = σ 2 τ. Er { (y)/x} mer generell enn { (a)/x}? Ja, siden { (a)/x} = { (y)/x}{a/y}. Er { (a)/x} mer generell enn { (y)/x}? Nei, or det innes ingen substitusjon σ slik at { (y)/x} = { (a)/x}σ. Er { (y)/x} mer generell enn { (y)/x}? Ja, siden { (y)/x} = { (y)/x}ɛ. (Husk: ɛ er identitetssubstitusjonen.) Institutt or inormatikk (UiO) INF3170 Logikk / 39 Institutt or inormatikk (UiO) INF3170 Logikk / 39 Deinisjon (Uniikator) La s og t være termer. En substitusjon σ er en uniikator or s og t hvis sσ = tσ. en mest generell uniikator (mgu) or s og t hvis den er en uniikator or s og t, og den er mer generell enn alle andre uniikatorer or s og t. Vi sier at s og t er uniiserbare hvis de har en uniikator. La s = (x) og t = (y). σ 1 = {a/x, a/y} er en uniikator or s og t σ 2 = {y/x} og σ 3 = {x/y} er også uniikatorer or s og t σ 2 og σ 3 er de mest generelle uniikatorene or s og t Variabelomdøping Fra det oregående eksempelet ser vi at to termer kan ha lere orskjellige mest generelle uniikatorer. Disse mgu-ene er imidlertid like opp til omdøping av variable. Deinisjon (Variabelomdøping) En substitusjon η er en variabelomdøping hvis 1 xη er en variabel or alle x V, og 2 xη yη or alle x, y V slik at x y. Er disse substitusjonene variabelomdøpinger? σ 1 = {z/x, x/y, y/z} Ja. σ 2 = {z/x, y/z} Nei, siden yσ 2 = zσ 2. σ 3 = {z/x, x/y, y/z, a/u} Nei, siden uσ 3 ikke er en variabel. Institutt or inormatikk (UiO) INF3170 Logikk / 39 Institutt or inormatikk (UiO) INF3170 Logikk / 39

9 Unikhet opp til omdøping av variable Deltermer Deinisjon (Deltermer) Påstand Hvis σ 1 og σ 2 er mest generelle uniikatorer or to termer s og t, så innes en variableomdøping η slik at σ 1 η = σ 2. Mengden av deltermer av en term t er den minste mengden T slik at t T, og hvis (t 1,..., t n ) T, så er hver t i T. Alle termer i T utenom t er ekte deltermer av t. Bevis som oppgave? La s = gx. Deltermer er: x, gx Ekte deltermer er: x La t = (x, a). Deltermer er: x, a, (x, a) Ekte deltermer er: x, a En term er altså en delterm av seg selv. Institutt or inormatikk (UiO) INF3170 Logikk / 39 Institutt or inormatikk (UiO) INF3170 Logikk / 39 Nummererte termtrær Vi har sett at termer kan representeres med trær. Når vi uniiserer er det gunstig å nummerere barna til noder i termtreet: a g x Slike trær kalles nummererte termtrær. c h a, 1 x, 2 g, 1, 0 c, 1 h, 2 Vi reerer til roten til det nummererte termtreet til en term t som rot(t). Institutt or inormatikk (UiO) INF3170 Logikk / 39 Kritisk par Når vi skal uniisere to termer t 1 og t 2 er vi interessert i å inne par av deltermer som er ulike. Samtidig er det ønskelig å se på ulike deltermer så nærme roten som mulig. Deinisjon (Kritisk par) Et kritisk par or to termer t 1 og t 2 er et par k 1, k 2 slik at k 1 er en delterm av t 1 k 2 er en delterm av t 2 når vi tenker på termer som nummererte termtrær så er rot(k 1 ) orskjellig ra rot(k 2 ) stien ra rot(t 1 ) til rot(k 1 ) er lik stien ra rot(t 2 ) til rot(k 2 ) Merk: stiene kan være tomme, dvs. at termene er ulike allerede i rotsymbolet. Tomme stier er trivielt like... Institutt or inormatikk (UiO) INF3170 Logikk / 39

10 Eksempel La s = (x, gb) og t = (a, hc). Vi år ølgende nummererte termtrær: x, 1 g, 2, 0 b, 1 a, 1 h, 2, 0 c, 1 Er b, c kritisk par or s og t? Nei, stien ra rot(s) til rot(b) er ulik stien ra rot(t) til rot(c). Er x, a kritisk par or s og t? Ja. Er gb, hc kritisk par or s og t? Ja. Algoritme: uniiser(t 1, t 2 ) σ := ɛ; while (t 1 σ t 2 σ) do velg et kritisk par k 1, k 2 or t 1 σ, t 2 σ; i (hverken k 1 eller k 2 er en variabel) then return ikke uniiserbare ; end i x := den av k 1, k 2 som er variabel (hvis begge er, så velg én); t := den av k 1, k 2 som ikke er x; i (x orekommer i t) then return ikke uniiserbare ; end i σ := σ{t/x}; end while return σ; Institutt or inormatikk (UiO) INF3170 Logikk / 39 Institutt or inormatikk (UiO) INF3170 Logikk / 39 Egenskaper ved uniiseringsalgoritmen Hvis termene t 1 og t 2 er uniiserbare, så returnerer algoritmen en mest generell uniikator or t 1 og t 2. Denne mgu-en er en representant or alle andre uniikatorer or t 1 og t 2. Hvis t 1 og t 2 ikke er uniiserbare, så returnerer algoritmen ikke uniiserbare. Institutt or inormatikk (UiO) INF3170 Logikk / 39

INF3170 Forelesning 10

INF3170 Forelesning 10 INF3170 Forelesning 10 Fri-variabel sekventkalkyle Roger Antonsen - 20. april 2010 (Sist oppdatert: 2010-04-27 11:37) Innhold Fri-variabel sekventkalkyle 1 Introduksjon..........................................

Detaljer

Fri-variabel sekventkalkyle

Fri-variabel sekventkalkyle INF3170 Logikk Forelesning 10: Fri-variabel sekventkalkyle Roger Antonsen Institutt for informatikk, Universitetet i Oslo Fri-variabel sekventkalkyle 20. april 2010 (Sist oppdatert: 2010-04-27 11:38) INF3170

Detaljer

Dagens plan. INF4170 Logikk. Fri-variabel sekventkalkyle. Forelesning 10: Automatisk bevissøk II fri-variabel sekventkalkyle og sunnhet.

Dagens plan. INF4170 Logikk. Fri-variabel sekventkalkyle. Forelesning 10: Automatisk bevissøk II fri-variabel sekventkalkyle og sunnhet. INF4170 Logikk Dagens plan Forelesning 10: fri-variabel sekventkalkyle og sunnhet Martin iese 1 Institutt for informatikk, Universitetet i Oslo 14. april 2008 Institutt for informatikk (UiO) INF4170 Logikk

Detaljer

INF3170 Logikk. Ukeoppgaver oppgavesett 7

INF3170 Logikk. Ukeoppgaver oppgavesett 7 INF3170 Logikk Ukeoppgaver oppgavesett 7 Unifisering I forelesning 10 så vi på en unifiseringsalgoritme som finner en mest generell unifikator for to termer. I automatisk bevissøk har vi imidlertid bruk

Detaljer

Dagens plan. INF4170 Logikk. Modelleksistens for grunn LK repetisjon. Kompletthet av fri-variabel LK. Teorem (Kompletthet) Lemma (Modelleksistens)

Dagens plan. INF4170 Logikk. Modelleksistens for grunn LK repetisjon. Kompletthet av fri-variabel LK. Teorem (Kompletthet) Lemma (Modelleksistens) INF4170 Logikk Dagens plan Forelesning 11: Automatisk bevissøk III fri-variabel kompletthet og repetisjon av sunnhet Martin Giese 1 Institutt for informatikk, Universitetet i Oslo 2 31. april 2008 Institutt

Detaljer

Dagens plan. INF3170 Logikk. Introduksjon. Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet. Christian Mahesh Hansen. 5.

Dagens plan. INF3170 Logikk. Introduksjon. Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet. Christian Mahesh Hansen. 5. INF3170 Logikk Dagens plan Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen 1 Institutt for informatikk, Universitetet i Oslo 2 5. mars 2007 Institutt for informatikk

Detaljer

Førsteordens sekventkalkyle

Førsteordens sekventkalkyle INF3170 Logikk Forelesning 7: Sekventkalkyle for førsteordens logikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Førsteordens sekventkalkyle 16. mars 2010 (Sist oppdatert: 2010-04-06

Detaljer

Hvis formlene i Γ og er lukkede, vil sannhetsverdiene til formlene under M være uavhengig av variabeltilordning.

Hvis formlene i Γ og er lukkede, vil sannhetsverdiene til formlene under M være uavhengig av variabeltilordning. Forelesning 12: Automatisk bevissøk III fri-variabel kompletthet og repetisjon av sunnhet Christian Mahesh Hansen - 30. april 2007 1 Kompletthet av fri-variabel LK Teorem 1.1 (Kompletthet). Hvis Γ er gyldig,

Detaljer

Fortsettelse. INF3170 Logikk. Eksempel 1. Forelesning 8: Mer sekventkalkyle og sunnhet. Roger Antonsen

Fortsettelse. INF3170 Logikk. Eksempel 1. Forelesning 8: Mer sekventkalkyle og sunnhet. Roger Antonsen INF3170 Logikk Forelesning 8: Mer sekventkalkyle og sunnhet Roger Antonsen Institutt for informatikk, Universitetet i Oslo Fortsettelse 6. april 2010 (Sist oppdatert: 2010-04-06 14:24) INF3170 Logikk 6.

Detaljer

INF3170 Logikk. Forelesning 8: Mer sekventkalkyle og sunnhet. Roger Antonsen. 6. april Institutt for informatikk, Universitetet i Oslo

INF3170 Logikk. Forelesning 8: Mer sekventkalkyle og sunnhet. Roger Antonsen. 6. april Institutt for informatikk, Universitetet i Oslo INF3170 Logikk Forelesning 8: Mer sekventkalkyle og sunnhet Roger Antonsen Institutt for informatikk, Universitetet i Oslo 6. april 2010 (Sist oppdatert: 2010-04-06 14:23) Fortsettelse INF3170 Logikk 6.

Detaljer

Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen - 5. mars 2007

Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen - 5. mars 2007 Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen - 5. mars 2007 1 Førsteordens sekventkalkyle 1.1 Introduksjon Vi har til nå sett sekventkalkyle for utsagnslogikk. Vi

Detaljer

Kompletthet av LK. INF3170 Logikk. Overblikk. Forelesning 9: Mer sekventkalkyle og kompletthet. Roger Antonsen

Kompletthet av LK. INF3170 Logikk. Overblikk. Forelesning 9: Mer sekventkalkyle og kompletthet. Roger Antonsen INF370 Logikk Forelesning 9: Mer sekventkalkyle og kompletthet Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kompletthet av LK 3. april 200 (Sist oppdatert: 200-04-3 2:04) INF370 Logikk

Detaljer

INF3170 { Logikk. Forelesning 5: Automatisk bevissk. Arild Waaler. 29. oktober Institutt for informatikk, Universitetet i Oslo

INF3170 { Logikk. Forelesning 5: Automatisk bevissk. Arild Waaler. 29. oktober Institutt for informatikk, Universitetet i Oslo INF3170 { Logikk Forelesning 5: Automatisk bevissk Arild Waaler Institutt for informatikk, Universitetet i Oslo 29. oktober 2013 Dagens plan 1 Automatisk bevissk 2 Automatisk bevissk II 3 Kompletthet av

Detaljer

INF1800 LOGIKK OG BEREGNBARHET

INF1800 LOGIKK OG BEREGNBARHET INF1800 LOGIKK OG BEREGNBARHET FORELESNING 21: FØRSTEORDENS LOGIKK Roger Antonsen Institutt for informatikk Universitetet i Oslo 28. oktober 2008 (Sist oppdatert: 2008-10-28 16:50) Førsteordens sekventkalkyle

Detaljer

Repetisjon: Førsteordens syntaks og semantikk. 2 Førsteordens sekventkalkyle. 3 Sunnhet av førsteordens sekventkalkyle. 1 Mengden T av termer i L:

Repetisjon: Førsteordens syntaks og semantikk. 2 Førsteordens sekventkalkyle. 3 Sunnhet av førsteordens sekventkalkyle. 1 Mengden T av termer i L: INF3170 Logikk Dagens plan Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen Institutt for informatikk, Universitetet i Oslo 1 Repetisjon: Førsteordens syntaks og semantikk

Detaljer

Førsteordens sekventkalkyle

Førsteordens sekventkalkyle INF1800 LOGIKK OG BEREGNBARHET FORELESNING 21: FØRSTEORDENS LOGIKK Roger Antonsen Førsteordens sekventkalkyle Institutt for informatikk Universitetet i Oslo 28. oktober 2008 (Sist oppdatert: 2008-10-28

Detaljer

Merk: kopieringen av hovedformelen i γ-reglene medfører at bevissøk i førsteordens logikk ikke nødvendigvis behøver å terminere!

Merk: kopieringen av hovedformelen i γ-reglene medfører at bevissøk i førsteordens logikk ikke nødvendigvis behøver å terminere! Forelesning 8: Førsteordens logikk kompletthet Martin Giese - 10. mars 2008 1 Repetisjon: Kalkyle og Sunnhet av LK 1.1 Sekventkalkyleregler Definisjon 1.1 (γ-regler). γ-reglene i sekventkalkylen LK er:

Detaljer

Dagens plan. INF3170 Logikk. Semantikk for sekventer. Definisjon (Motmodell/falsifiserbar sekvent) Definisjon (Gyldig sekvent) Eksempel.

Dagens plan. INF3170 Logikk. Semantikk for sekventer. Definisjon (Motmodell/falsifiserbar sekvent) Definisjon (Gyldig sekvent) Eksempel. INF3170 Logikk Dagens plan Forelesning 3: Utsagnslogikk sekventkalkyle, sunnhet og kompletthet 1 Sekventkalkyle Christian Mahesh Hansen 2 Institutt for informatikk, Universitetet i Oslo 3 5. februar 2007

Detaljer

Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen - 3. mars 2007

Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen - 3. mars 2007 Forelesning 7: Førsteordens logikk sekventkalkyle og sunnhet Christian Mahesh Hansen - 3. mars 2007 1 Repetisjon: Førsteordens syntaks og semantikk Et førsteordens språk L består av: 1. Logiske symboler

Detaljer

Dagens plan. INF3170 Logikk. Forstå teksten og begrepene! Disponér tiden! Forelesning 15: Oppgaveløsing. Christian Mahesh Hansen. 21.

Dagens plan. INF3170 Logikk. Forstå teksten og begrepene! Disponér tiden! Forelesning 15: Oppgaveløsing. Christian Mahesh Hansen. 21. INF3170 Logikk Dagens plan Forelesning 15: Oppgaveløsing Christian Mahesh Hansen 1 Generelle eksamenstips Institutt for informatikk, Universitetet i Oslo 2 21. mai 2007 Institutt for informatikk (UiO)

Detaljer

Definisjon 1.1 (Kompletthet). Sekventkalkylen LK er komplett hvis enhver gyldig sekvent er LK-bevisbar.

Definisjon 1.1 (Kompletthet). Sekventkalkylen LK er komplett hvis enhver gyldig sekvent er LK-bevisbar. Forelesning 16: Repetisjon Christian Mahesh Hansen - 4. juni 2007 1 Kompletthet 1.1 Introduksjon Definisjon 1.1 (Kompletthet). Sekventkalkylen LK er komplett hvis enhver gyldig sekvent er LK-bevisbar.

Detaljer

INF1800 LOGIKK OG BEREGNBARHET

INF1800 LOGIKK OG BEREGNBARHET INF1800 LOGIKK OG BEREGNBARHET FORELESNING 15: UTSAGNSLOGIKK Roger Antonsen Institutt for informatikk Universitetet i Oslo 7. oktober 2008 (Sist oppdatert: 2008-10-07 20:59) Sekventkalkyle for utsagnslogikk

Detaljer

Sekventkalkyle for utsagnslogikk

Sekventkalkyle for utsagnslogikk INF1800 LOGIKK OG BEREGNBARHET FORELESNING 15: UTSAGNSLOGIKK Roger Antonsen Sekventkalkyle for utsagnslogikk Institutt for informatikk Universitetet i Oslo 7. oktober 2008 (Sist oppdatert: 2008-10-07 20:59)

Detaljer

1 Utsagnslogikk (10 %)

1 Utsagnslogikk (10 %) 1 Utsagnslogikk (10 %) a1) A A, C A A C A B A B (A C) B, C B B C B B, C A, C B, C A C B C A C B C B (A C) A (B C) B (A C) Utledningen lukkes ikke og vi får følgende valuasjon v som falsifiserer formelen:

Detaljer

Dagens plan. INF3170 Logikk. Kompletthet følger fra modelleksistens. Kompletthet. Definisjon (Kompletthet) Teorem (Modelleksistens)

Dagens plan. INF3170 Logikk. Kompletthet følger fra modelleksistens. Kompletthet. Definisjon (Kompletthet) Teorem (Modelleksistens) INF3170 Logikk Dagens plan Forelesning 16: Repetisjon Christian Mahesh Hansen Institutt for informatikk, Universitetet i Oslo 1 2 4. juni 2007 3 Institutt for informatikk (UiO) INF3170 Logikk 04.06.2007

Detaljer

Dagens plan. INF3170 Logikk. Induktive definisjoner. Eksempel. Definisjon (Induktiv definisjon) Eksempel

Dagens plan. INF3170 Logikk. Induktive definisjoner. Eksempel. Definisjon (Induktiv definisjon) Eksempel INF3170 Logikk Dagens plan Forelesning 2: Induktive definisjoner, utsagnslogikk og sekventkalkyle Christian Mahesh Hansen Institutt for informatikk, Universitetet i Oslo 1 Induktive definisjoner 2 29.

Detaljer

Beregn minutter til å se gjennom og fullføre ubesvarte oppgaver på slutten av eksamenstiden.

Beregn minutter til å se gjennom og fullføre ubesvarte oppgaver på slutten av eksamenstiden. Forelesning 15: Oppgaveløsing Christian Mahesh Hansen - 21. mai 2007 1 Generelle eksamenstips 1.1 Disponér tiden! Sett opp et grovt tidsbudsjett. En tre timers eksamen har 3 * 60 = 180 minutter. Oppgavene

Detaljer

Forelesning 3: Utsagnslogikk sekventkalkyle, sunnhet og kompletthet Christian Mahesh Hansen - 5. februar 2007

Forelesning 3: Utsagnslogikk sekventkalkyle, sunnhet og kompletthet Christian Mahesh Hansen - 5. februar 2007 Forelesning 3: Utsagnslogikk sekventkalkyle, sunnhet og kompletthet Christian Mahesh Hansen - 5. februar 2007 1 Sekventkalkyle 1.1 Semantikk for sekventer Semantikk for sekventer Definisjon 1.1 (Gyldig

Detaljer

INF1800 Forelesning 15

INF1800 Forelesning 15 INF1800 Forelesning 15 Utsagnslogikk Roger Antonsen - 7. oktober 2008 (Sist oppdatert: 2008-10-07 20:59) Sekventkalkyle for utsagnslogikk Introduksjonseksempel Hvordan finne ut om en gitt formel er en

Detaljer

Forelesning 3-6. februar 2006 Utsagnslogikk sekventkalkyle og sunnhet. 1 Mengdelære III. 2 Utsagnslogikk. 1.1 Multimengder. 2.

Forelesning 3-6. februar 2006 Utsagnslogikk sekventkalkyle og sunnhet. 1 Mengdelære III. 2 Utsagnslogikk. 1.1 Multimengder. 2. Forelesning 3-6. februar 2006 Utsagnslogikk sekventkalkyle og sunnhet 1 Mengdelære III 1.1 Multimengder Multimengder Mengder der antall forekomster av hvert element teller Definisjon (Multimengde). En

Detaljer

Definisjon 1.1 (Sunnhet). Sekventkalkylen LK er sunn hvis enhver LK-bevisbar sekvent er gyldig.

Definisjon 1.1 (Sunnhet). Sekventkalkylen LK er sunn hvis enhver LK-bevisbar sekvent er gyldig. Forelesning 5: Kompletthet og første-ordens logikk Roger Antonsen - 20. februar 2006 1 Kompletthet 1.1 Repetisjon Gyldig P, P Q Q Hvis v = P og v = P Q, så v = Q. Bevisbar P P Q Q P, P Q Q Falsifiserbar

Detaljer

INF3170 Logikk. Forelesning 3: Utsagnslogikk, semantikk, sekventkalkyle. Roger Antonsen. Institutt for informatikk, Universitetet i Oslo

INF3170 Logikk. Forelesning 3: Utsagnslogikk, semantikk, sekventkalkyle. Roger Antonsen. Institutt for informatikk, Universitetet i Oslo INF3170 Logikk Forelesning 3: Utsagnslogikk, semantikk, sekventkalkyle Roger Antonsen Institutt for informatikk, Universitetet i Oslo 9. februar 2010 (Sist oppdatert: 2010-02-09 15:10) Utsagnslogikk INF3170

Detaljer

Forelesning 2: Induktive definisjoner, utsagnslogikk og sekventkalkyle Christian Mahesh Hansen januar 2007

Forelesning 2: Induktive definisjoner, utsagnslogikk og sekventkalkyle Christian Mahesh Hansen januar 2007 Forelesning 2: Induktive definisjoner, utsagnslogikk og sekventkalkyle Christian Mahesh Hansen - 29. januar 2007 1 Induktive definisjoner Induktive definisjoner Definisjon 1.1 (Induktiv definisjon). Å

Detaljer

Dagens plan. INF3170 Logikk. Syntaks: Utsagnslogiske formler. Motivasjon

Dagens plan. INF3170 Logikk. Syntaks: Utsagnslogiske formler. Motivasjon INF3170 Logikk Dagens plan Forelesning 4: og førsteordens logikk Christian Mahesh Hansen Institutt for informatikk, Universitetet i Oslo 1 2 12. februar 2007 3 Institutt for informatikk (UiO) INF3170 Logikk

Detaljer

Repetisjonsforelesning

Repetisjonsforelesning Repetisjonsforelesning INF3170 Andreas Nakkerud Institutt for informatikk 24. november 2014 Institutt for informatikk Universitetet i Oslo Repetisjon 24. november 2014 1 / 39 Utsagnslogikk Utsagnslogikk

Detaljer

Hvis Ole følger inf3170, så liker Ole logikk. Ole følger inf3170, og Ole følger ikke inf3170. Ole følger inf3170, eller Ole følger ikke inf3170.

Hvis Ole følger inf3170, så liker Ole logikk. Ole følger inf3170, og Ole følger ikke inf3170. Ole følger inf3170, eller Ole følger ikke inf3170. Forelesning 4: Repetisjon og førsteordens logikk Christian Mahesh Hansen - 12. februar 2007 1 Repetisjon Motivasjon Er utsagnene sanne? Hvis Ole følger inf3170, så liker Ole logikk. Ole følger inf3170,

Detaljer

INF3170 Forelesning 4

INF3170 Forelesning 4 INF3170 Forelesning 4 Sunnhet og kompletthet - 16. februar 2010 (Sist oppdatert: 2010-02-09 17:43) Dagens plan Innhold Sunnhet 1 Introduksjon.......................................... 1 Bevaring av falsifiserbarhet..................................

Detaljer

Forelesning 9: Frsteordens logikk { kompletthet Roger Antonsen mars 2006

Forelesning 9: Frsteordens logikk { kompletthet Roger Antonsen mars 2006 Forelesning 9: Frsteordens logikk { kompletthet Roger Antonsen - 27. mars 2006 1 Kompletthet av LK 1.1 Overblikk Vi skal na bevise at LK er komplett. Ikke bare er LK sunn, den kan ogsa vise alle gyldige

Detaljer

Forelesning 14: Automatisk bevissøk IV matriser og koblingskalkyle Christian Mahesh Hansen mai 2006

Forelesning 14: Automatisk bevissøk IV matriser og koblingskalkyle Christian Mahesh Hansen mai 2006 Forelesning 14: Automatisk bevissøk IV matriser og koblingskalkyle Christian Mahesh Hansen - 22. mai 2006 1 Automatisk bevissøk IV 1.1 Introduksjon Bevissøk med koblinger Vi har til nå sett på forskjellige

Detaljer

Dagens plan. INF3170 Logikk. Obliger og eksamen. Forelesning 1: Introduksjon. Utsagnslogikk og sekventkalkyle. Arild Waaler. 21.

Dagens plan. INF3170 Logikk. Obliger og eksamen. Forelesning 1: Introduksjon. Utsagnslogikk og sekventkalkyle. Arild Waaler. 21. INF3170 Logikk Dagens plan Forelesning 1: Introduksjon. og sekventkalkyle Arild Waaler Institutt for informatikk, Universitetet i Oslo 1 Praktisk informasjon 2 21. januar 2008 3 Institutt for informatikk

Detaljer

INF4170 { Logikk. Forelesning 1: Utsagnslogikk. Arild Waaler. 20. august Institutt for informatikk, Universitetet i Oslo

INF4170 { Logikk. Forelesning 1: Utsagnslogikk. Arild Waaler. 20. august Institutt for informatikk, Universitetet i Oslo INF4170 { Logikk Forelesning 1: Utsagnslogikk Arild Waaler Institutt for informatikk, Universitetet i Oslo 20. august 2013 Dagens plan 1 Utsagnslogikk 2 Sekventkalkyle 3 Sunnhet 4 Kompletthet Institutt

Detaljer

INF1800 LOGIKK OG BEREGNBARHET

INF1800 LOGIKK OG BEREGNBARHET INF1800 LOGIKK OG BEREGNBARHET FORELESNING 18: FØRSTEORDENS LOGIKK Roger Antonsen Institutt for informatikk Universitetet i Oslo 15. oktober 2008 (Sist oppdatert: 2008-10-15 23:50) Repetisjon og noen løse

Detaljer

Repetisjon og noen løse tråder

Repetisjon og noen løse tråder INF1800 LOGIKK OG BEREGNBARHET FORELESNING 18: FØRSTEORDENS LOGIKK Roger Antonsen Repetisjon og noen løse tråder Institutt for informatikk Universitetet i Oslo 15. oktober 2008 (Sist oppdatert: 2008-10-15

Detaljer

Dagens plan. INF3170 Logikk. Negasjon som bakgrunn for intuisjonistisk logikk. Til nå i kurset. Forelesning 9: Intuisjonistisk logikk.

Dagens plan. INF3170 Logikk. Negasjon som bakgrunn for intuisjonistisk logikk. Til nå i kurset. Forelesning 9: Intuisjonistisk logikk. INF3170 Logikk Dagens plan Forelesning 9: Arild Waaler 1 Institutt for informatikk, Universitetet i Oslo 2 Konsistens 19. mars 2007 Institutt for informatikk (UiO) INF3170 Logikk 19.03.2007 2 / 28 Innledning

Detaljer

Førsteordens logikk - syntaks

Førsteordens logikk - syntaks INF3170 Logikk Forelesning 5: Førsteordens logikk syntaks og semantikk Institutt for informatikk Universitetet i Oslo Førsteordens logikk - syntaks 23. februar 2010 (Sist oppdatert: 2010-02-09 17:42) INF3170

Detaljer

INF4170 Logikk. Forelesning 12: Automatisk bevissøk IV matriser og koblingskalkyle. Bjarne Holen. Institutt for informatikk, Universitetet i Oslo

INF4170 Logikk. Forelesning 12: Automatisk bevissøk IV matriser og koblingskalkyle. Bjarne Holen. Institutt for informatikk, Universitetet i Oslo INF4170 Logikk Forelesning 12: matriser og koblingskalkyle Bjarne Holen Institutt for informatikk, Universitetet i Oslo 11. mai 2010 Dagens plan 1 Institutt for informatikk (UiO) INF4170 Logikk 11.05.2010

Detaljer

Intuisjonistisk logikk

Intuisjonistisk logikk INF3170 Logikk Forelesning 11: Intuisjonistisk logikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Intuisjonistisk logikk 27. april 2010 (Sist oppdatert: 2010-04-27 11:58) INF3170 Logikk

Detaljer

INF3170 Logikk. Forelesning 11: Intuisjonistisk logikk. Roger Antonsen. 27. april Institutt for informatikk, Universitetet i Oslo

INF3170 Logikk. Forelesning 11: Intuisjonistisk logikk. Roger Antonsen. 27. april Institutt for informatikk, Universitetet i Oslo INF3170 Logikk Forelesning 11: Intuisjonistisk logikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo 27. april 2010 (Sist oppdatert: 2010-04-27 11:58) Intuisjonistisk logikk INF3170 Logikk

Detaljer

Forelesning 1: Introduksjon. Utsagnslogikk og sekventkalkyle Arild Waaler januar 2008

Forelesning 1: Introduksjon. Utsagnslogikk og sekventkalkyle Arild Waaler januar 2008 Forelesning 1: Introduksjon. Utsagnslogikk og sekventkalkyle Arild Waaler - 21. januar 2008 1 Praktisk informasjon 1.1 Forelesere og tid/sted Forelesere: Martin Giese (martingi@ifi.uio.no) Arild Waaler

Detaljer

INF3170 / INF4171. Intuisjonistisk logikk: Kripke-modeller, sunnhet, kompletthet. Andreas Nakkerud. 15. september 2015

INF3170 / INF4171. Intuisjonistisk logikk: Kripke-modeller, sunnhet, kompletthet. Andreas Nakkerud. 15. september 2015 INF3170 / INF4171 Intuisjonistisk logikk: Kripke-modeller, sunnhet, kompletthet Andreas Nakkerud 15. september 2015 Kripke-modeller Vi ser på modeller for et språk L. Definisjon En Kripke-modell er et

Detaljer

INF3170 Forelesning 11

INF3170 Forelesning 11 INF3170 Forelesning 11 Intuisjonistisk logikk Roger Antonsen - 27. april 2010 (Sist oppdatert: 2010-04-27 11:58) Innhold Intuisjonistisk logikk 1 Innledning........................................... 1

Detaljer

INF1800 Forelesning 18

INF1800 Forelesning 18 INF1800 Forelesning 18 Førsteordens logikk Roger Antonsen - 15. oktober 2008 (Sist oppdatert: 2008-10-15 23:50) Repetisjon og noen løse tråder Førsteordens språk Et førsteordens språk L består av: 1. Logiske

Detaljer

Dagens plan. INF3170 Logikk. Redundans i LK-utledninger. Bevissøk med koblinger. Forelesning 13: Automatisk bevissøk IV matriser og koblingskalkyle

Dagens plan. INF3170 Logikk. Redundans i LK-utledninger. Bevissøk med koblinger. Forelesning 13: Automatisk bevissøk IV matriser og koblingskalkyle INF3170 Logikk Dagens plan Forelesning 13: matriser og koblingskalkyle Bjarne Holen 1 Institutt for informatikk, Universitetet i Oslo 7. mai 2007 Institutt for informatikk (UiO) INF3170 Logikk 07.05.2007

Detaljer

Dagens plan. INF3170 Logikk. Resolusjon: regel og utledninger. Overblikk. Definisjon. Forelesning 14: Avanserte emner. Christian Mahesh Hansen

Dagens plan. INF3170 Logikk. Resolusjon: regel og utledninger. Overblikk. Definisjon. Forelesning 14: Avanserte emner. Christian Mahesh Hansen INF3170 Logikk Forelesning 14: Avanserte emner Dagens plan 1 Christian Mahesh Hansen 2 Dualiteter Institutt for informatikk, Universitetet i Oslo 3 14. mai 2007 4 5 Teorier, aksiomer og ufullstendighet

Detaljer

Forelesning 5: Førsteordens logikk syntaks og semantikk Christian Mahesh Hansen februar 2007

Forelesning 5: Førsteordens logikk syntaks og semantikk Christian Mahesh Hansen februar 2007 Forelesning 5: Førsteordens logikk syntaks og semantikk Christian Mahesh Hansen - 19. februar 2007 1 Førsteordens logikk - syntaks 1.1 Repetisjon Et førsteordens språk L består av: 1. Logiske symboler

Detaljer

Forelesning 13: Automatisk bevissøk IV matriser og koblingskalkyle Bjarne Holen - 7. mai 2007

Forelesning 13: Automatisk bevissøk IV matriser og koblingskalkyle Bjarne Holen - 7. mai 2007 Forelesning 13: Automatisk bevissøk IV matriser og koblingskalkyle Bjarne Holen - 7. mai 2007 1 Automatisk bevissøk IV 1.1 Introduksjon Bevissøk med koblinger Vi har til nå sett på forskjellige varianter

Detaljer

Bevis for sunnhet (og kompletthet) av bevissystemet med hensyn på semantikken

Bevis for sunnhet (og kompletthet) av bevissystemet med hensyn på semantikken Forelesning 4: Intuisjonistisk logikk Arild Waaler - 11. februar 2008 1 Intuisjonistisk logikk 1.1 Innledning Til nå i kurset Det utsagnslogiske språket: konnektiver og formler Bevissystem:LK og DPLL for

Detaljer

Forberedelse Kompletthet Kompakthet INF3170 / INF4171. Predikatlogikk: kompletthet, kompakthet. Andreas Nakkerud. 8.

Forberedelse Kompletthet Kompakthet INF3170 / INF4171. Predikatlogikk: kompletthet, kompakthet. Andreas Nakkerud. 8. INF3170 / INF4171 Predikatlogikk: kompletthet, kompakthet Andreas Nakkerud 8. september 2015 Forberedelse Theorem La x være en variabel som ikke forekommer i Γ eller i φ. (i) Γ φ Γ[x/c] Γ[x/c]. (ii) Hvis

Detaljer

INF1800 Forelesning 17

INF1800 Forelesning 17 INF1800 Forelesning 17 Førsteordens logikk Roger Antonsen - 14. oktober 2008 (Sist oppdatert: 2008-10-14 16:29) Før vi begynner Repetisjon og kommentarer Vi skal nå kunne Utsagnslogikk: syntaks og semantikk

Detaljer

INF1800 LOGIKK OG BEREGNBARHET

INF1800 LOGIKK OG BEREGNBARHET INF1800 LOGIKK OG BEREGNBARHET FORELESNING 17: FØRSTEORDENS LOGIKK Roger Antonsen Institutt for informatikk Universitetet i Oslo 14. oktober 2008 (Sist oppdatert: 2008-10-14 16:29) Før vi begynner Repetisjon

Detaljer

FOL: syntaks og representasjon. 15. og 16. forelesning

FOL: syntaks og representasjon. 15. og 16. forelesning FOL: syntaks og representasjon 15. og 16. forelesning Førsteordens logikk Førsteordens logikk: et formelt system som man bruker til å representere og studere argumenter. Som utsagnslogikk, men mer uttrykkskraftig,

Detaljer

Semantikk Egenskaper ved predikatlogikk Naturlig deduksjon INF3170 / INF4171. Predikatlogikk: Semantikk og naturlig deduksjon.

Semantikk Egenskaper ved predikatlogikk Naturlig deduksjon INF3170 / INF4171. Predikatlogikk: Semantikk og naturlig deduksjon. INF3170 / INF4171 Predikatlogikk: Semantikk og naturlig deduksjon Andreas Nakkerud 3. september 2015 Eksempel Gitt en similaritetstype 0, 2; 1; 2 bygger vi en struktur (modell) hvor A = {c 1, c 2, a, b},

Detaljer

Dagens plan. INF3170 Logikk. Sekventkalkyle Gerhard Gentzen ( ) Innhold. Forelesning 12: Snitteliminasjon. Herman Ruge Jervell. 8.

Dagens plan. INF3170 Logikk. Sekventkalkyle Gerhard Gentzen ( ) Innhold. Forelesning 12: Snitteliminasjon. Herman Ruge Jervell. 8. INF3170 Logikk Dagens plan Forelesning 12: Herman Ruge Jervell 1 Institutt for informatikk, Universitetet i Oslo 2 8. mai 2006 Institutt for informatikk (UiO) INF3170 Logikk 08.05.2006 2 / 27 Regler Innhold

Detaljer

Litt mer mengdelære. INF3170 Logikk. Multimengder. Definisjon (Multimengde) Eksempel

Litt mer mengdelære. INF3170 Logikk. Multimengder. Definisjon (Multimengde) Eksempel INF3170 Logikk Forelesning 2: Mengdelære, induktive definisjoner og utsagnslogikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Litt mer mengdelære 2. februar 2010 (Sist oppdatert: 2010-02-02

Detaljer

Dagens plan INF3170 Logikk. Obliger og eksamen. Forelesning 1: Introduksjon, mengdelære og utsagnslogikk. Christian Mahesh Hansen og Roger Antonsen

Dagens plan INF3170 Logikk. Obliger og eksamen. Forelesning 1: Introduksjon, mengdelære og utsagnslogikk. Christian Mahesh Hansen og Roger Antonsen Dagens plan INF3170 Logikk Forelesning 1: Introduksjon, mengdelære og utsagnslogikk Christian Mahesh Hansen og Roger Antonsen Institutt for informatikk, Universitetet i Oslo 1 Praktisk informasjon 2 23.

Detaljer

En formel er gyldig hviss den sann i alle tolkninger. Kan dette sjekkes automatisk?

En formel er gyldig hviss den sann i alle tolkninger. Kan dette sjekkes automatisk? Utsagnslogikk En formel er gyldig hviss den sann i alle tolkninger Tolkning = linje i sannhetsverditabell Altså: En formel er gyldig hviss den har T i alle linjene i sin sannhetsverditabell. Dette kan

Detaljer

INVERST FUNKSJONSTEOREM MAT1100 KALKULUS

INVERST FUNKSJONSTEOREM MAT1100 KALKULUS INVERST FUNKSJONSTEOREM MAT1100 KALKULUS Simon Foldvik 29. Oktober 2017 1. Introduksjon Vi skal i dette dokumentet bevise en global og en lokal versjon av inverst unksjonsteorem i én variabel. Kort oppsummert

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 10. desember 2012 Tid for eksamen: 09.00 13.00 Innledning La U være mengden

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 26. november 2010 Tid for eksamen: 13:00 17:00 Oppgave 1 La A = { }. Mengdelære

Detaljer

Dagens plan. INF3170 Logikk. Introduksjon. Forelesning 6: Førsteordens logikk syntaks og semantikk. Martin Giese. 25. februar 2008.

Dagens plan. INF3170 Logikk. Introduksjon. Forelesning 6: Førsteordens logikk syntaks og semantikk. Martin Giese. 25. februar 2008. INF3170 Logikk Dagens plan Forelesning 6: og semantikk Martin Giese Institutt for informatikk Universitetet i Oslo 1 Innledning til førsteordens logikk 2 25. februar 2008 3 Institutt for informatikk (UiO)

Detaljer

Definisjoner og løsning i formel

Definisjoner og løsning i formel Dilik. p.1/24 Dierensiallikninger Deinisjoner og løsning i ormel Forelesning uke 45, 2005 MA-INF1100 Dilik. p.2/24 Dierensiallikninger Struktur i presentasjonen Lysarkene gjennomgår hovedpunkter ra alkulus

Detaljer

INF3170 Forelesning 2

INF3170 Forelesning 2 INF3170 Forelesning 2 Mengdelære, induktive definisjoner og utsagnslogikk Roger Antonsen - 2. februar 2010 (Sist oppdatert: 2010-02-02 14:26) Dagens plan Innhold Litt mer mengdelære 1 Multimengder.........................................

Detaljer

Forelesning 6: Førsteordens logikk syntaks og semantikk Martin Giese februar 2008

Forelesning 6: Førsteordens logikk syntaks og semantikk Martin Giese februar 2008 Forelesning 6: Førsteordens logikk syntaks og semantikk Martin Giese - 25. februar 2008 1 Innledning til førsteordens logikk 1.1 Introduksjon I utsagnslogikk kan vi analysere de logiske konnektivene,,

Detaljer

INF3140 Modeller for parallellitet INF3140/4140: Programanalyse

INF3140 Modeller for parallellitet INF3140/4140: Programanalyse INF3140/4140: Programanalyse Uke 4, side 1. Hvordan sjekke egenskaper ved programmer? Testing eller debugging øker tilliten til programmet ved prøving, men gir ingen garanti for korrekthet Operasjonell

Detaljer

Løsningsforslag til utvalgte oppgaver av eksamenen i MAT3600/MAT4600 høsten 2005

Løsningsforslag til utvalgte oppgaver av eksamenen i MAT3600/MAT4600 høsten 2005 Løsningsforslag til utvalgte oppgaver av eksamenen i MAT3600/MAT4600 høsten 2005 Oppgave 1 La L være førsteordens språket {a,b,f,r} hvor a og b er konstantsymbol, f er et funksjonsymbol med aritet 2 og

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 27: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 30. april 2008 Oppsummering Mandag så vi på hvordan vi kan finne uttrykk og termer på infiks form,

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 26: Trær Roger Antonsen Institutt for informatikk, Universitetet i Oslo 5. mai 2009 (Sist oppdatert: 2009-05-06 22:27) Forelesning 26 MAT1030 Diskret Matematikk 5.

Detaljer

Notat 05 for MAT Relasjoner, operasjoner, ringer. 5.1 Relasjoner

Notat 05 for MAT Relasjoner, operasjoner, ringer. 5.1 Relasjoner Notat 05 for MAT1140 5 Relasjoner, operasjoner, ringer 5.1 Relasjoner Når R er en relasjon som er veldefinert på A B, slik at R(x, y) er en påstand når x A og B B, tenker vi på relasjonen som noe som lever

Detaljer

Dagens tema: Kjøresystemer II

Dagens tema: Kjøresystemer II Dagens tema Kjøresystemer II En kort repetisjon (Ghezzi&Jazayeri 2.7.3) Språk med blokker (Ghezzi&Jazayeri 2.7.4) Dynamisk allokering (Ghezzi&Jazayeri 2.7.5) Parametre (Ghezzi&Jazayeri 2.7.7) Ark 1 av

Detaljer

INF1800 LOGIKK OG BEREGNBARHET

INF1800 LOGIKK OG BEREGNBARHET INF1800 LOGIKK OG BEREGNBARHET FORELESNING 20: FØRSTEORDENS LOGIKK Roger Antonsen Institutt for informatikk Universitetet i Oslo 22. oktober 2008 (Sist oppdatert: 2008-10-22 10:50) Mer om førsteordens

Detaljer

Mer om førsteordens logikk

Mer om førsteordens logikk INF1800 LOGIKK OG BEREGNBARHET FORELESNING 20: FØRSTEORDENS LOGIKK Roger Antonsen Mer om førsteordens logikk Institutt for informatikk Universitetet i Oslo 22. oktober 2008 (Sist oppdatert: 2008-10-22

Detaljer

Det utsagnslogiske spraket: konnektiver og formler. Semantikk: Denisjon av sannhet og gyldighet

Det utsagnslogiske spraket: konnektiver og formler. Semantikk: Denisjon av sannhet og gyldighet Forelesning 4-13. februar 2006 Intuisjonistisk logikk 1 Intuisjonistisk logikk 1.1 Innledning Til na i kurset Det utsagnslogiske spraket: konnektiver og formler Bevissystem: sekventkalkylen LK for klassisk

Detaljer

Sekventkalkyle for utsagnslogikk

Sekventkalkyle for utsagnslogikk Sekventkalkyle for utsagnslogikk Tilleggslitteratur til INF1800 Versjon 11. september 2007 1 Hva er en sekvent? Hva er en gyldig sekvent? Sekventkalkyle er en alternativ type bevissystem hvor man i stedet

Detaljer

Databaser fra et logikkperspektiv del 2

Databaser fra et logikkperspektiv del 2 Databaser fra et logikkperspektiv del 2 Evgenij Thorstensen IFI, UiO Høst 2015 Evgenij Thorstensen (IFI, UiO) Databaser og logikk del 2 Høst 2015 1 / 22 Outline 1 Konjunktive spørringer 2 QA for konj.

Detaljer

INF3170 Logikk. Ukeoppgaver oppgavesett 6

INF3170 Logikk. Ukeoppgaver oppgavesett 6 INF3170 Logikk Ukeoppgaver oppgavesett 6 Normalformer Negasjons normalform I dette oppgavesettet skal vi se nærmere på normalformer. Formelen (P Q) kan også skrives som P Q. Formlene er ekvivalente, dvs.

Detaljer

x A e x = x e = x. (2)

x A e x = x e = x. (2) Notat om Algebra for MAT1140 1 Algebra 1.1 Operasjoner Definisjon 1.1. En operasjon på en mengde A er en avbildning fra A A til A. Bemerkning 1.1. Mer generelt kan man snakke om n-ære operasjoner på A,

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 27: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 4. mai 2010 (Sist oppdatert: 2010-05-04 14:11) Forelesning 27 MAT1030 Diskret Matematikk 4. mai 2010

Detaljer

INF1800 LOGIKK OG BEREGNBARHET

INF1800 LOGIKK OG BEREGNBARHET INF1800 LOGIKK OG BEREGNBARHET FORELESNING 2: MENGDELÆRE Roger Antonsen Institutt for informatikk Universitetet i Oslo 20. august 2008 (Sist oppdatert: 2008-09-03 12:36) Mengdelære Læreboken Det meste

Detaljer

INF2810: Funksjonell Programmering

INF2810: Funksjonell Programmering INF2810: Funksjonell Programmering Høyereordens prosedyrer, lambda og lokale variabler Erik Velldal Universitetet i Oslo 9. februar 2017 Tema 2 Forrige uke Lister og listerekursjon quote Høyereordens prosedyrer

Detaljer

INF2810: Funksjonell Programmering

INF2810: Funksjonell Programmering INF2810: Funksjonell Programmering Høyereordens prosedyrer, lambda og lokale variabler Erik Velldal Universitetet i Oslo 9. februar 2017 Tema 2 Forrige uke Lister og listerekursjon quote Høyereordens prosedyrer

Detaljer

MA3301 Beregnbarhets- og kompleksitetsteori Høsten

MA3301 Beregnbarhets- og kompleksitetsteori Høsten MA3301 Beregnbarhets- og kompleksitetsteori Høsten 2012 1 Notat 2 Om den kanoniske automaten til et språk og minimalisering. Vi vil si at en automat M = Q, Σ, q 0, A, δ er redusert enhver tilstand q Q

Detaljer

Forelesning 27. MAT1030 Diskret Matematikk. Bevistrær. Bevistrær. Forelesning 27: Trær. Roger Antonsen. 6. mai 2009 (Sist oppdatert: :28)

Forelesning 27. MAT1030 Diskret Matematikk. Bevistrær. Bevistrær. Forelesning 27: Trær. Roger Antonsen. 6. mai 2009 (Sist oppdatert: :28) MAT1030 Diskret Matematikk Forelesning 27: Trær Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 27 6. mai 2009 (Sist oppdatert: 2009-05-06 22:28) MAT1030 Diskret Matematikk 6.

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Teknostart forelesning 6 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Teknostart forelesning 6 Grenseverdier I dagens forelesning skal vi se på følgende: 1 En formell definisjon

Detaljer

INF1800 Forelesning 20

INF1800 Forelesning 20 INF1800 Forelesning 20 Førsteordens logikk Roger Antonsen - 22. oktober 2008 (Sist oppdatert: 2008-10-22 10:51) Mer om førsteordens logikk Tillukninger Vi har definert semantikk kun for lukkede formler.

Detaljer

Sekventkalkyle for første ordens predikatlogikk uten likhet

Sekventkalkyle for første ordens predikatlogikk uten likhet Sekventkalkyle for første ordens predikatlogikk uten likhet Tilleggslitteratur til INF1800 Versjon 29/9 07 Vi definerer sekventer for predikatlogikk på samme måte som i utsagnslogikk. En sekvent består

Detaljer

Løsningsforslag til eksamen i FY3464 KVANTEFELTTEORI Torsdag 26. mai 2005

Løsningsforslag til eksamen i FY3464 KVANTEFELTTEORI Torsdag 26. mai 2005 NTNU Side av 5 Institutt or ysikk Fakultet or ysikk, inormatikk og matematikk Eksamen gitt av Kåre Olaussen Dette løsningsorslaget er på 5 sider. Løsningsorslag til eksamen i FY3464 KVANTEFELTTEORI Torsdag

Detaljer

Løsningsforslag til eksamen i MAT 1100, H06

Løsningsforslag til eksamen i MAT 1100, H06 Løsningsforslag til eksamen i MAT, H6 DEL. poeng Hva er den partiellderiverte f z xyz cosxyz x sinyz + xyz cosyz xy cosyz x sinyz + xz cosyz cosyz xyz sinyz når fx, y, z = xz sinyz? Riktig svar b: x sinyz

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2017

MA0002 Brukerkurs i matematikk B Vår 2017 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2017 Løsningsforslag Øving 11 Oppgaver fra boken: 10.6 :, 8, 12, 19, 1, (valgfritt - 9,

Detaljer

Dagens plan. INF3170 Logikk. Mengder. Definisjon. Notasjon. Forelesning 0: Mengdelære, Induksjon. Martin Giese. 23. januar 2008.

Dagens plan. INF3170 Logikk. Mengder. Definisjon. Notasjon. Forelesning 0: Mengdelære, Induksjon. Martin Giese. 23. januar 2008. INF3170 Logikk Dagens plan Forelesning 0:, Induksjon Martin Giese 1 Institutt for informatikk, Universitetet i Oslo 2 23. januar 2008 Institutt for informatikk (UiO) INF3170 Logikk 23.01.2008 2 / 47 1

Detaljer

2. en tolkning av alle ikke-logiske symboler i spraket. n i 2 RM. 1 ; : : : ; t M. 1.2 Sprak og modeller - et komplekst forhold

2. en tolkning av alle ikke-logiske symboler i spraket. n i 2 RM. 1 ; : : : ; t M. 1.2 Sprak og modeller - et komplekst forhold Forelesning 7: Frsteordens logikk { seantikk og sekventkalkyle Roger Antonsen - 6. ars 2006 1 Frsteordens logikk og seantikk 1.1 Repetisjon En odell M for et sprak L bestar av 1. en ikke-to engde jmj,

Detaljer